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1. INTRODUCTION

The application of the inverse scattering method (ISM)/l/
to quadratic bundles of special type allowed one the integrate
some physically important nonlinear evolution equation (NLEE).
The first in this direction was the paper/2/ | yhere starting
from a bundle of the type®:

LiWg® = oy Liu2 oaa® - 21yWa a0,

(1.0
a .| ° \ ,

—n¥

uy 0 /
an exhaustive study of the massive Thirring model has been pre-
sented. In the papers /34 it has been shown, that the bundle:

a
Loy @ - liog —+ @@ 221y Bz r) =0, @@ =(g ‘3)(1 .2)

allows one to solve the modified nonlinear Schrodinger equation
(NLS eq.):

gy + qzy +1€(1q®1q) = 0,  p = eq*. (1.3)

The complete integrability and the construction of the hierar-
chy of Hamiltonian structures’/$8/ for the NLEE, related to
(1.2), has been proved in’?/. The considerations there have
been based on the method of expansions over the "squared" solu-
tions "7'19/  Another NLEE, related to (1.2) is the Mikhailov
model:

Bixe - 2ibjhgh;, + m®n =0, h,=q, (1.4)
hzxt +2ih1h2 hzx + m2h2 ==0. h2= px N

a relativistically invariant field theory model, equivalent to
the massive Thirring model’7?/, In refs./11-18/ the following
bundles have been considered:

¥Here we have used characteristics variables; thus the bundle
Ly esuals the summ T()\) 4+ X0 of the bundles, introduced
in ref,’% T——
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LWy ® = liog =+ 2a® 0%+ 0p @ x 1) = 0 (1.5)

LWy @ = lio,-L + @+ AP+ @2+28010 P (x, 0) = 0
8 dx (1.6)

They allow one to obtain the Lax representation for another va-
riant of the NLS eq.:

. =2 2 = d 2
iq,+ qxx+2B’91q laq -la-a?dq la), (1.7)

Note, that both variants of the modified NLS equation are appli-
cable in plasma physics/1447/ .

On the other hand, the standard ways of the 1SM have baen
applled to the polynom1a1 bundle of maximally ganaral typa
which in the 2x2 case has the form:

LWy ®= g, A)m0 (1.8)

=
I M2
o

AU, @y

[iaa —-(—1~-+
dx

The analysis, based on the study of the central extensions of
Lie algebras (see refs/%an/ and the references therein) leoad to
explicitly Hamiltonian form of the NLEE. Unfortinately tha cor-
responding Kirillov-Kostant syplectic form is degenerated. The
natural solution of the problem consists, roughly speaking, in
the following: one should somewhat restrict the form of tha 1li-
near problem (1.8) so, that the phase space of the corresponding
NLEE coincides with the orbit of the co—adjoint action in our
algebra (more rigorously - see ref./1% ), In particular, for

the quadratic inA bundles this restriction, together with an
appropriate choice of the gauge/zo/and the co~ad301nt action,
leads to:

0
Ly E[wéé34-Q0+AQ1+r0—K2M(&A)=0,Ql-(p ?). (1.9)
1

Therefore, from general arguments it follows, that the NLEE,
related to (1.9) possess a hierarchy of Hamiltonian structures,
the corresponding symplectic forms {,, m =0, +I, +2, ... belng
nondegenerate. But generically both the NLEE and ‘even the sim-
plest of the forms Q depend nonlocally on q ¢ Py Tge

As a conJecture, allow1ng one to obtain 1oca1 NLEE we propose
the following. It is well known, that the solution of the inver-
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se scatterlng problem for a large number of linear problems
L(A) is equivalent to the solution of a Riemann problem/¥,
This last problem has an unique solution with fixed norm, i.e.,
with fixed value of the solution for A+ . Obviocusly the norma-
lization of the Riemann problem should correlate with the asym-

-ptotics of the solutions LAy = 0 of the linear problem for

A 50, Qur conjecture consists in that one should require cano-
nical normalization for the Riemann problem. In particular, for
the system (1.9) the corresponding Riemann problem is written
down in ref. 21/, and the requirement of canonical normalization
is ‘fulfilled if:

1 .
t, B_ﬂE_qlpl. (1.10)

As we shall see below, the "restriction" (1.10) leads to local
NLEE, and the simplest symplectic form (, becomes canonical. The
same conjecture, applied to the 2x2 polynomial bundles of power
N > 3 also allows one to obtain local NLEE and simple 2-form
Q. 728/ In this case from the 4N initially independent elemets
of Lg() (1.8) there remain only '2N-2 independent onegz i.e.,
this conJecture has the sence of reduction for the NLEE

Let us now explain why the condition (1.10) is not essentlal-
ly a restriction for the system (1.9). Really, applying the
gauge transformation/20/:

LoL=e3"PLne' 8@ o= Fayeo-t0) . (.11
x T

‘the system (1.9) goes into the system (1.9'), with Q] and r%

instead of @, and r,, where:
. 0 qf . —21 . 21
Q= .1}, q;=q,e ¢ P;=p,® L (1.12)
pi 0

Obviously the transformation (1.11) is equivalent to the change
of variables (1.12) in the NLEE.

. w
In the present paper the expansions of w = (wl ) y W = ( (:l)
0 Pi

and ;383, g = diag(a , over the "squared" solutions {¥ ]
of (1.9), (1.10) obta1ne3 in ref.’2! are applied for the study
of corresponding NLEE. The main resul;.consists in the explicit
construction of the Hamiltonian structures of these NLEE and the
calculation of their action-angle variables. ;he appropriate
choice of the system of "squares" {¥} « in ref. makes all the
proofs in Sec.3 analogical to the simpler cases /7% | This once
more leads up to the conjecture, that the expansion over the



"squares" method is of more universal character and may be ap-
plied to a much larger class of linear problems L(\) ,see’/22/1In
Sec.4 we display a new 2-component variant of the modified NLS
eq. Equations (1.3) and (1.7) may be obtained from it by speci-
al reductions, after which the symplectic forms g, with even
indices become degenerate. Therefore the corresponding action-
angle variables are calculated using one of the forms Qoret s
e.g., 0y or ;. We also give a generalization of the Mikhai-
lov model (1.4). In Sec. 2 we formulate some of the results in
ref.’? » which are needed in Secs. 3 and 4.

The authors are grateful to Academicians Kh.Ja.Khristov and
1.T.Todorov for their support. We thank P.P.Kulish, A.G,Reyman
and M.A.Semenov-Tian-Shanskii for numerous stimulating discus—
sions. :

2. PRELIMINARIES

Let the potentials Q; (¥ in L) (1.9), (1.10) be complex—
valued functions of Schwartz type such, that the discrete spect—
rum A of the operator L(\) is simple and finite. The Jost so~
lutions are given by their asymptotics:

2 2
tim (/,(x,ne“ 8% _ 1, lim qs(x,x)e”‘ BT L,
x> o X o0 . 2.nH
v, M) =l 0t é(x A) = (leT 67,

their columns ¢, % (¥, ¢™) being analytic in A for ImA®> 0
(ImA® < 0), The transfer matrix is introduced by:

$(x, M=y (x,2)80) , ot pm
S R (2.2)
dﬁts(h)=1, ’r

+ : .
The diagonal elements a () are also analytic in A for ImAzz 0
and satisfy the dispersion relations:

- N A=
DM == f —% 1l 4+ ptp=(l+ = In at
2"F h=A a=1 )\_)‘a_'
+ 2 (2'3)
D@A) =-+Ina~(), ImA* 20, I =ReiR,

where pi(A)= bi/ai, A g+ ©A are the discrete eigenvalues of
L{QA) and the contour I' is introduced in fig. 1 of 2L

4
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The main result of ref./Eh’consistglin the_proof of the com-—

pleteness relations for the systems {¥} and {®} of "squared"
solutions of L{A) , where:

Wl = @@ A, 2 T, Y2, Y%, a=1,..NI,

=t —t o
{®l={0 "(x,A), A c L, ®_(x, ®,®, a=1,.,Nl,

v Nl ),

o*=N"20%x,0) ,

=4 4 =+ ’ S - ot +
Wa (X)B"d—x—‘y (X. A)Iha_{,_’ v =‘/’ *¢ (xv >t)y 'Y =¢ *QS (X,A),

Yodg ¢1 ¢1
Ve 2‘(K¢°¢ _ e Vg by )’
-1 1 0o + . -
N, = o Ly =—iw [dyw,, W= (q,~py)

+ +
Zio» 1+27, x

Here we shall write down only the symplectic variant of the
completeness relation:

8(x—y) = [ arlQx A) PTG, - P@NQT(r, NIA, +
r (2.4)
N
+ 2 1@z R - P00 Te) + & @ P P07 0)A,

where

P(x, A) = --1-(9""-1_’-+ + p-‘i’--)(x,:\) = —1-(o+¢_@4++ a-d-)-—') (x, ),
” "

Q% N) = — (0" T ) (1, A) (T = =87 (x, A) -3

' 2b* b~ T et Y
Prm- waict ¥, Qj(x):;—;—[ci vioatetw),
otW=b¥/at, acr, af-o wfaf)t, o . pt/at,

+ + + 4 0 -ig 0 -i

r, Lt t 1 _ 2
byt bl (W =blyl @, AO‘(-ia 0), 02=(1 0)

. .



These relations allow one to_expand any function ¢ T
¢ §(C*) over the systems {¥}, {®#} or {P, @}.
ding expansion coefficients have the form:

-
v, ],

= (fy,..1 4
The correspon—

@ t1, @ 1, [, fl,

where [ ,] is the following skew-scalar product in $(C%):

0 —logy

(t, ) = [ axt ) g0, A, (2.6)

—o0 ~iog 0

In particular, for f = w(x) and f = 0g8W(x) the corresponding
expansion coefficients are expressed through the scattering
data of the system L(A) and their variations:

— - —+

[(D", W] = ?ia‘b”, [ ,z;é'o‘w] = ~ia® Bp ,
— . - — - 2 2.7)
[‘I’i,w]=iiaibt, [ t,a w]=-iaiﬁat,
The expansions themselves have the form:
V@ 2L At ¥t (1 A) 4
mr

. | (2.8)

+2 3 [CL¥ g0 - c ¥ ()] =i [ P(x ) +1i z [P (x)+P_ (0],
a=

r

and

- - s - —_— N - -
gy 8w = — L7 A ¥ —5 ¥)(x,A) —2 EI[U:(x)+Ua(x)]=
T a=

. A . .
= [ @G M) PO - P, NEIW] + 2 [Vg @) +Vgla),  (2.9)

'1

ol -+ t ~ %
a(x) Bc ‘IJ (x)+c 8Aa+\l’ (x) a()—-Q (x)8p -:Pa (x)aqa

In (2.9) we have introduced the following notations (compare
with (2.5) and (2.7)):

500 =[P, 558%], 530 =I[Q, 55 8%],

(2.10)

P = Lanll + ptp~],  q) =+m2y, A er,
b4 2 b=

.

pX —tan,, Qb - tilndl
Note, that the set of expansion coefficients for w(x) over the
system {‘P! coincides with the set of scattering data T introduc-
ed in ref. /21/, formula (2.7). Thus the formulae (2.8) and (2.9)
allow one to interprete the transfer from w(x) to T and the
ISM itself as a generalized Fourier transform.

Let us give also the explicit form of the operators\/\._;:

-zt 1-z¢
10’ 1’ A i d 1
A, = D =F0g — ——=qp,, (2.11)
s + _nt 9 8 dx o 171 .
D ZOO ' Z01
for which the elements of [¥] and &} are eigen= and adjoint-

functions:

=~ 4 - 4
—Age )W () =¥ (1),
(2.12)
® .

(A+—-~:\)‘l—’i(x,k)=0. AeTu A, (A,

A_-N8%xA) =0, AcTuUA: (A_-A +)<1> =

| 1+

Analogically the operator ¥ A .=——-(A +A ) is naturally related
to the system {P, Q}, since:

(A-MP(x,A) =0, (A-AQxA)=0, rcTuyUA. (2.13)
The operators A4 and A satisfy conjugation-like relations with
respect to the skew-scalar product (2.6):

[f, A+g] = [A_‘u g] ’

f.g c S(CH). (2.14)
{t, Agl = [Af, g],

With the help of the operators A+ and A one is able to obtain
compact expressions for the expansion coefficients D™ of D())
(2.3):

DA = £ A™™D™ | i[> 1; DA =- X A"DE™ pj«t,
me=1 m=0
and their variations as functionals of w(x):
o0 00 .
D@ -2 Tar oy 5T, AT ) +
m_, g (2.15)
+o— f dx (o, w, (%), 0) AT w(x),
2m —o0

#The authors are gratefull to S.V.Manakov, who called their
attention to the operator A.



) _ 1=
sp™ _ 12_[;3aw, AT W], (2.16)
It is also easy to check, that from the expansion of W(X) over

the sympletic basis {P,Q} and from (2.12), (2.13) there fol-
lows:

FA)W =FA_)w =FA)w. (2.17)
Thus in the formulae (2.14) and (2.15) one may replace the ope-~

rator A by A_.or A. This we shall use below, and here we write

down the explicit form of the first few D(M); e
DN = L[ ax(agpy + a,p0)
@ 4 L2z, i -
D* = 2_£ dx[qppy + =4y + =0y a; —qp, ],
3 o ' ‘
D( ) - ':];‘ f dx (poqlI —'qulx)v (2.]8) |
NO

i 2 . 2
=5/ dx[p,,ay, + 1M gy = GgPgy) + B4 aq+Pgay)” ~

i
abul LI

4 =Py ?] '

PO

3. THE DESCRIPTION OF THE NLEE AND THEIR HAMILTONIAN
STRUCTURES

pam o

Starting from the results, listed in Sec.2, it is not diffi-
cult to construct the theory of the NLEE related to L) (1.9),
(1.10).In the proofs below we shall follow the ideas of ref./% 7/
but will prefer to use the expansions over_ the symplectic b351s !
{P,Q} rather than those over the system {¥} , because the ope~
rator A is "selfadjoint" with respect to the skew—scalar pro- = ]
duct, see (2.14).

=

Theorem__ Let the potential of the linear problem (1.9),

(1.10) w(x, t) and the meromorphic function F(\) are such that

0 £ F(Ay)#éw and the integrals f A BY) a3 poy
- r dt r dt

are absolutely convergent for all 0 <t< o .
fies the NLEE:

8

Then w(x, t) satis-

”

- dw -
G5 <= + FW# = 0 (3.1)

if and only if the set {p(\), q)}
wing linear equations:

(2.10) satisfies the follo-

dp dq
s T » A-
=0 i =FW,
~t At 3.2
%®a 0  Ja FOU ) o
= 0, i o .
dt at

The proof is obtained directly, incerting in the 1l.h.s. of
(3.1) the expansions (2.8) for W(x,t) and (2.9) for the varia-

tion of the form oy 8% = 7 8t +0(Y)? over the system {p,qQ}.

Remark 1. If FQ\) =F ()\)/F (), , where Fo(A) and F (A}, are
polynomials in A, then the NLEE (3.1) should be understood as

iF, (A)a' -d-;-+ F, (A)w = 0. (3.3)

Remark 2. From (2.16) it is obvious, that the NLEE (3.1) may
be written in two more forms, equivalent to (3.1):

dw = dw -
103T+F(A )W = 0, 103€E—=+ F(A_)W =0
Remark 3. From the expansions of w(x,t) and o3w over the

system i‘l‘[ there follows, that the NLEE (3.1) is equ1va1ent to
the following set of linear equations for the scattering data T:

* : :
id‘; 4 0,0, 128 - 1ROy, det (), d;\:i =0. (3.4

From (3.2) and (2.3) if follows, that:
dD ()

= 0,
& (3.5)

i.e., the quantities D{™ are integrals of motion for the NLEE
3.1).

Let us go now to the Hamlltonlan structures of the NLEE (3.1).
The corresponding phase space is naturally parametrized by the

~,



independent elements of the potentials of W. The Hamiltonian H
should be constructed as a linear combination of the integrals
of motion D, One should also find a symplectic form Q such,
that the Hamiltonian equations of motion, given by H and Q :

Gy S, ) = 8H() (3.6)

coincide with the NLEE (3.1). Let F(\) =3 F‘k)\k be a polynomial
over the positive and negative powers of A ,

k
Hp=13F,p &1y (3.7)

and Q=Qy, where @y1is a canonical 2-form:

i -— - — —
Qy =- E—[aaﬁw N oo dwl . (3.8)

Here the sign A means exterior product. From {(3.7), (2.16) and

(2.17) there immidiately follows that 3H, = _1-[;3'53-, F(A) w).

Thus it is easy to check that (3.6) with H= H
incides with the NLEE (3.1).

Note, that the chcice of the pair Qo, Hp 1ead1ng to eq (3.1)
or to an eq. equivalent to (3.1) is by no means unique
Thus the choice:

and =Q0 co~

Q= Q== 155854 A" 5y 801, (3.9)

= g k+m+1 .
H = H[Y «izF, pk¥n+l (3.10)

leads to equations, differing from (3.1) by a left multiplica-
tion with the operator A™. The corresponding linear equations
for the scattering data may differ from (3.2) only for A = O,
i.e., on a manifold with measure zero. Thus the pairs @ ms H(m)
m= 0,+1,+2,... give us a hierarchy of Hamiltonian structures
for the NLEE (3 1). Sometimes for the NLEE in the form (3.3)
it is convenient to choose:

]

i - A
Qp, —:-2—[338WQ'F2(A)036w] , (3.11)

Hp =iXF D"V p o)y.sF

1 i,k 1 1,k

(3.12)
The pairwise compatibility of the 2-forms Q_ is most easily

m
established by recalculatlng them in terms of the scattering
data variations. This is conveniently done with the help of the

10

o

symplectic completeness relation (2.4). Incerting in into (3.8)
and (3.9) and using the first line in (2.10) we readily obtain:

o= [ AATEPW A BIN) + -
r (3.13)

N A
+12Dtmb‘p /\Sq +/\ 8p /\Bq]
amq ot

all Q _simultaneously become ca-
are pailrwise compatible between

Thus in terms of {ﬁ(x), (I()\)!
nonical, and therefore allQ
themselves.

Let us express now the Hamiltonian Hy in terms of the scat-
tering data. From (3.9) and (2.3) ye obtain, that:

~ ~

P,
H =—-—--fdy.F‘\p.)p(u)—l b [F(
2r a=1 2

(3.14)
- raFey,

i,e., Hyp depends only on the half of the canonical variables
{p, 4} (2.10). Thus the complete integrability of all the NLEE
(3.1) is established; the corresponding action—angle variables
are given by (2.10).

Let us finish this paragraph by the remark, that the symplec-
tic basis {P, Q! allows one to define explicitly the Lagarange
manifold of the NLEE Nl by:

M=1{teh; [f,P]l=0,

[t, Pai] =01}, (3.15)

We list without proofs all the important propertxes of M ,see
refs! 19,7/,

i) If f&M, then Af=A_f=A fc;

ii) WM, and therefore F(A YW = FA_)W = F(A)w c I,
iii) if W&, t) satifies the NLEE (3.1), then og®, &M
iv) dimM = codimM.

Let us only verify that M is indeed the Lagrange manifold, i.e.,
that lem = 0. Indeed, from ogdw ¢l and (3.15) we have

(5, 8w, P =8p()
vious, that Q

0, , rel'uA, and from (3.13) it is ob-

0.

=

al

11



4, EXAMPLES OF NLEE

) Here we shall consider some interesting from our point of
view NLEE (3.1). Choosing FW =-4A%* ipn (3.1) we obtain the
system:

i"swn W+ iB1+ U wy —2ugwy =0,
iog Woy + Woyg —iBg—Riugogwyyz+ u wy + qpyugw, =0,

2
qi plx

1 2
|—P21 Qo4 3 A PP

2
BO 9y Poy

1
Up = doPy +qPg. Wy = 5-a3pf - 2qp,,
which after the involution
Pg = € 9% p, = ¢, 4 € = ¢ ¥ = ¢
0% » Py 1 0" ‘1 4 i (4.2)
goes into the following 2~component modified NLS eq.:
: 2
1qlt+ Gygx *+ 1flqlq,‘lrx + V4 - Vg dg=0,
14, + Qog2~ leg qfqax - 2vyq tx
|2

+ c1|q1 Vod; +V,q4=0.

(4.3)

= * * o 1. 4 -
Vo = €,9,9] +¢Q, Q5 , VvV, = lal [ - 2¢41a

This system contains as particular cases the NLS equation, and
also the modified NLS egs. (1.3) and (1.7). Indeed the NLS equ-
ation iqg, + 90,1x —~2¢0|q20|q0 =0 is obtained from (4.3) with
9,= 0. This is to be expected, since for g, = O the linear
problem (1.3) goes into the Zakharov-Shabat system, which has
been investigated in detail earlier, see refs,”/1:8-10/

For q5 = 0 (4.3) is reduced to the NLEE:

2
: 2 € .
T+ e+t q7ay + Lo ltq =0, (4.4)

which after the change of variables (1.12) with ox) = f1 deI‘l%]
. 2 z

goes into the modified NLS eq. (1.3). This change of variables
is closely related to the gauge transformation (1.11), after

12

which the linear problem (!.9), (1.10) with Q3= O becomes
equal to Lgd) (1.2). This may be used to check, that in this
way all the results related to the system (1.2) are reproduced,
see ref.””,

Another possible reduction, leading to equations of NLS'type
has the form:

€0
Qp=aq,, Pg=-ap,. a=-na*, N = = 1, (4.5)
1
Then (4.3) becomes:
2
€
. . 4
Bqy +ay,,+ de afay, —2la®leglafla, + —Llajla =0 (46

and after the change of variables (1.12) with ¢(x) = _;_1_ fdy\qfi\
one obtains the following modified NLS eq.: x

u, +u,, 4-'iel(lu2|\1)x —-2a250‘lu2]u =0,
4.7)
u =q,(xei?

=
This with €1= =@ , €= =t coinsides with (1.7).
2
a
The involution (4.2) imposes the following restrictions on
the set of scattering data T:

PY Q) =—e pT**q), b =~ bTT*,
. €0 (4.8)
A =mAr o, om =
1
Analogically (4.5) leads to
PEO) ==pTEN), A ET
(4.9)

at () =afE), mr® 20

Note, that the restrictions (4.9) do not dépend ona and coin-
cide with the properties of the scttering data for Ly ) (1.2);
the former is gauge equivalent (see (1.11)) to L(\) with@y= O.

The Hamiltonian structure of the NLS‘eq. (4.3) is most sim—
ply given by Q =Q,, H =-4D{®  which after taking into consi-
deration the involution (4.2) are equal to:

—if * - ]
QO =i fdx[€08q0A3q1 elﬁqOASql]

-0

13



=i Q8P TN +
r

N
. o 1 1
+ 21(1+n)a§'1[8)\a+/\ SB; -=5);-a+ A Sﬁa] + (4.10)

N

1
+ 20 -m) T [8A, A 8B°

o 1
s +b‘)\a+/\ 8/8a] .

PO = Salt ~eg p* W pt *nA ),

TO) = -2!_-111 "W/ *a*1, rer,
1
Age=Ag + 10, laby =g8° +ig}, a=1,.,N,
L Faxi- *
H g_idxl (eoqlxqox +€lqi“x qu) +

3161
B

+

- *
slqoqn) +$vv | =

3 2 *
Iqll(e q _q A

0'x ' 0 (4.11)

c 2 fduptp ) + LS 5 _(pa% )5
wrtp ) = 1[(kd,ﬂ) ~{nAz . )°1 .

i

From (4.3) it is easy to obtain the explicit form of the action-
angle variables.

As it has been noted, the modified NLS eq. (4.7) is obtained
from (4.1) by imposing the two invelutions (4.2) and (4.5). From
(4.9) and (3.13) it follows, that all 2-forms {1y =0;analogical-
1y D(@k+1) ¢ see (3.14). Thé Hamiltonian structure of (4.7)
may be given, e.g., by Q =ﬁ_1, H=-4D® or by Q= Q s H=
= ~4D(®) , where the sign~ here means, that in the expr}essions
for ﬂk and D (™) one should impose the involutions (4.2) and
(4.5). The gxplicit calculation of Q_ , m>0in terms of the
potential W(x,t) is related to the calculation of the inverse
operator A™1, which for a# 0 is difficult. In this case we
can make use of the corresponding Poisson brackets:

(F,.0} =[VFo,, A A" &,A, Va],

V, F
VF = (v

L

Vo F 59y dpy

(4.12)

Incerting F=Q =% M (4.12) we obtain the corresponding Pois-
son brackets between the elements of the potentials Q in

14

- - - = m
(Ggw @ogaowl, =A"8(x~y), (4.13)
where the i ,j—th element of the matrix {F ? Gl, is equal to
[Fl v Gy } me Now it is easy to check, that the Hamiltonian equa-
tions of motion:

(4.14)

with H=-4D® directly lead to the system (4.1). In order to
impose the involutions (4.2), (4.5) on the Poisson brackets

{, }{ one should calculate the corresponding Dirack brackets,
which_in our case is difficult. Therefore we shall. only write
down QI

-~ ifl had
Q= —L raxfsqy A d

a . 2 *
5 04 e lapldat A,

which together with H =-4p® generates (4.3). .

In terms of the scattering data the expression for _; has
the same form as that of Q,, given in ref. , and we omit it.
Thus the NLS eqs. (1.3), and (4.7) have an equivalent sets of
action-angle variables.

Let us give one more example of a NLEE, generalizing the
Mikhailov system:

¥

w + 1(111)10'3“)lt

. 2 . .
ixt + 2a WII—201W =0,

' (4.15)
I, +(ap), = 0.

This system is obtained from (3.3) with F () = A2 and Fo(d) =
= ¢ = const, after imposing the involution (4.5); (4.14) sur-
vives also the involution (4.2). The Hamiltonian structure of
(4.14) may be given, e.g., by = ﬁs and H = ¢D @,

In conclusion letus make a few remarks.

i) Considering block bundles of the form (1.2), (1.3), (1.6)
it .is possible to solve the multicomponent (vector and matrix)
analog of the NLEE's, considered above, see refs.’/418/ | The
corresponding expansions over the "squared" solutions may be
derived analogously to ref.”/®5 . The difficulties with the ex-
plicit calculation of the operator A have been noted in ref./22/,

ii) The polynomial bundles (1.8) are easily written down as

~
e a

N . ~T
eigenvalue problems of the type [J—aq--+ U-Al¢ =0,, where ¢ =
X

N-1, T . .
= (i T, )\l/fT yesey A ¥ ),J is a degenerate constant matrix
and the potential Uis a specific 2Nx2N matrix, whose matrix

15



elements are expressed by those of U,, see, e.g., ref./ls/.
Thus the study of the polynomial bundles and their possible in-
volutions is directly related to the reduction problem of the
NLEE, ref./?3/, ‘

iii) Other variants of the modified NLS equations have been
considered in refs. /28247,
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l'epmiikos B.C., Usanop M.H. E2-82-595
KBagpatuuneit nyuok ofmero BuUOA M HesnMHeliHble 3BOIOLHOHHbIE
YpaBHeHHs. HepapXust raMHMBbTOHOBCKUX CTPYKTYP

llpy Hucnonb30BaHHM METOmA pASMOREHHST MO "kBagparam" pememnuii
OMHCAaH KIacC HEIMHEHHHX 9BOJNONHOHHBIX YDPADHEHHMI, CBRSAHHLX C
KBaApPaTUYHEM [YYKOM Obumero Bupa. JIoKasaHo, UTO 3TH ypaBHeHMs:
ABNAWTCA BNOJHE HHTEIDHPYEMBIMH T'aMMJIIBTOHOBCKMMH CHCTEMaMM M 06—
JANA0T HepapXKel IaMMIIbTOHOBCKHX CTDYKTYD.

PaGora BemoOJSiHeHa B JlaGopaTopun Teoperuueckoit dusuxn OMSIHU.

NpenpunT 06BbEAUHEHHOrD MHCTUTYTa AZEPHWX uceneposanmit, flybna 1982

Gerdjikov V.S., Ivanov M.I. E2-82-595
The Quadratic Bundle of General Form and the Nonlinear
Evolution Equations. Hierarchies of Hamiltonian

Structures

Using the method of expansions over the "squared" solutions
of the auxiliary linear problem, the class of nonlinear evolu-
tion equations related to the quadratic bundle of general form
is described. It is proved, that these equations are completely
integrable Hamiltonian systems, possessing hierarchies of
Hamiltonian structures.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982




