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I. INTRODUCTION 

The application of the inverse scattering method (ISM) 111 

to quadratic bundles of special type allowed one the integrate 
some physically important nonlinear evolution equation (NLEE). 
The first in this direction was the paper/2/, where starting 
from a bundle of the type~: 

Lt (>.)r/J(ll "" (ia3 :x +; lur I+ >.Q< 1l - >.2 ]r/JO>cx, >.) = o, 

( 
0 * Ut) 

-ul 0 / 

( l. 1) 
Q~l) 

an exhaustive study of the massive Thirring model has been pre
sented. In the papers 1 3, 41 it has been shown, that the bundle: 

dx p 0 
L2(,\)r/J (2) "" [ia3 ~ + ,\Q(2) - ,\2)r/J (2) (x, ,\) = 0, Q(2) =(0 qJ( 1. 2) 

allows one to solve the modified nonlinear Schrodinger equation 
(NLS eq.): 

iqt + qxx + idlq 2 1 q)"' 0, P=fq*. ( 1. 3) 

The complete integrability and the construction of the hierar
chy of Hamiltonian structures /5,6/ for the NLEE, related to 
(1.2), has been proved in 171 • The considerations there have 
been based on the method of expansions over the "squared" solu
tions /

7
-
101 

• Another NLEE, related to (l. 2) is the Mikhailov 
model: 

hht - 2ihth 2 hh + m 2 h1 = 0, h 1 ~ qx • 

h2xt +2ihlh2 h2x + rn2h2 = 0, h2 = Px' 
( 1 • 4) 

a relativistically invariant field theory model, equivalent to 
the massive Thirring model 171 • In refs. 111·l3/ the following 
bundles have been considered: 

-K Here we have used 
L1 (,\) e~uals the summ 
in ref. 2~ 

characteristics variables; thus the bundle 
T (,\) + X(,\) of the bundles, introduced __ , -----·~--1 

I 0 f,bfLJ.V1H:}lflt<l;; Vi·C H-1~·\ ' 

~J.:,::'·Hb.IY vr ' ~ " . 
1..t 
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L3(A),P(S) = [ia3 ~·+ AQ(2) -·(A2 + l)].p(S) (x, A)- 0, 
dx 

L 4 (,\) .p (4) = [i a3 ~ + Gi~ + ,B)Q (2) + (aA 2 +2.8.\ll,P (4) (x, ,\) .. 0. 
dx 

(I. 5) 

(I. 6) 

They allow one to obtain the Lax representation for another va
riant of the NLS eq.: 

iqt+ qxx+2i3lq
2

iq -ia2...(1q
2
iq)x•O. ax (I. 7) 

Note, that both variants of the modified NLS equation are appli
cable in plasma physics 114·17/ , 

On the other hand, the standard ways of tho tSM have boon 
applied to the polyno~ial bundle of maximally gonaral typo 1181 

which in the 2x2 case has the form: 

(5) . d N k (5) 
L 5 (.\),P =[ta3-+ :£,\ Uk(x)]t/r (x,.\)•0. 

dx k=O 
(I. B) 

The analysis, based on the study of the central extonolona of 
Lie algebras (see refs! 18,19/ and the references therein) land to 
explicitly Hamiltonian form of the NLEE. Unfortinataly tho cor
responding Kirillov-Kostant syplectic form is degenerated. The 
natural solution of the problem consists, roughly speaking, in 
the following: one should somewhat restrict the form of tho li
near problem (1.8) so, that the phase space of the corresponding 
NLEE coincides with the orbit of the co-adjoint action in our 
algebra (more rigorously- see ref.1181 ). In particular, for 
the quadratic inA bundles this ~~?triction, together with an 
appropriate choice of the gauge/20/ and the co-adjoint action, 
leads to: 

d (0 q') L(A),P = [ia
3
-·+ Q0 +.\Q

1 
+r0 -A2 },P(x,A) =0, Q 1• • 

~ ~0 
(I. 9) 

Therefore, from general arguments it follows, that the NLEE, 
related to (1.9) possess a hierarchy of Hamiltonian structures, 
the corresponding symplectic forms nm, rn =0, ~1, ~2, ..• being 
nondegenerate. But generically both the NLEE and even the sim
plest of the forms n0 depend nonlocally on q 1, p1, r 0 . 

As a conjecture, allowing one to obtain local NLEE we propose 
the following. It i~ well known, that the solution of the inver-
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se scattering problem for a large number of linear problems 
L(A) is equivalent to the solution of a Riemann problem/11. 
This last problem has an unique solution with fixed norm, i.e., 
with fixed value of the solution for A~~. Obviously the norma
lization of the Riemann problem should, correlate with the asym-

·ptotics of the solutions L(A),P = 0 of the linear problem for 
A~~. Our conjecture consists in that one should require cano
nical normalization for the Riemann problem. In particular, for 
the system (1.9) the corresponding Riemann problem is written 
down in ref. 1211 , and the requirement of canonical normalization 
is fulfilled if: 

1 ' 
ro a-•2q1p1. (1.10) 

As we shall see below, the "restriction" (1.10) leads to local 
NLE~, and the simplest symplectic form n0 becomes canonical. The 
same conjecture, applied to the 2x2 p·olynomial bundles o'f power 
N > 3 also allows one to obtain local NLEE and simple 2-form 
0 0./22~ In this case from 'the 4N initially independent elemets 
of L 6(A) (1.8) there remain only ·.2N-2 independent ones!: i.e., 
this conjecture has the sence of reduction for the NLEE 231 • 

Let us now explain why the condition (1.10) is not essential
ly a restriction for the system (1.9). Really, applying the 
gauge transformation/20/: 

00 

f(x) ~ f dy(r'o- ro) • 
X 

L .. L'(A.) .. e-1Uut(x)L(.\)e1uaf(x) 
(I.J.I) 

·the system (1.9) goes.into the 
instead of Q.1 and r 0 , where: 

system (1.9'), with Ql and ro 

Q' .. ( 0 q;) q' .. q e -21. t 
1 . ' • 1 1 • p; .. P 1 e21t (I. 12) 

p' 0 1 . 

Obviously the transformation (1. II) is equivalent to the change 
of variables (1. 12) in the NLEE. 

-· (w1) (q1) In the present paper the expansions of w = Wo , w 1 .. _ P 
1 

and ;;
8
sw·, ~· .. diag(u

8
, u ) over the "squared" solutions 1'1' l 

of (1.9), (I. 10) obtalne9 in ref. 1211 are applied for the study 
of corresponding NLEE. The main result. consists in the explicit 
construction of the Hamiltonian structures of th~se NLEE and the 
calculation of their action-angle variables. The appropriate 

• II II ,-·~ • /21/ cho1ce of the system of squares 'I' • 1n ref. makes all the 
proofs in Sec. 3 analogical to the simpler cases /7,9/ . This once 
more leads up to the conjecture, that the expansion over the 
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"squares" method is of more universal character and may be ap
plied to a much larger class of linear problems L(A) , see /2::!~'in 
Sec.4 we display a new 2-component variant of the modified NLS 
eq. Equations (1.3) and (1.7) may_be obtained from it by speci
al reductions, after which the symplectic forms n

2
k with even 

indices become degenerate. Therefore the corresponding action
angle variables are calculated using one of the forms 0 2k+ 1 , 

e.g., 0_1 or 01. We also give a generalization of the Mikhai
lov model (1.4). In Sec. 2 we formulate some of the results in 
ref. 1211 

, which .are ~eeded in Sees. 3 and 4. 
The authors are grateful to Academicians Kh.Ja.Khristov and 

I.T.Todorov for their support. We thank P.P.Kulish, A.G.Reyman 
and M.A.Semenov-Tian-Shanskii for numerous stimulating discus
sions. 

2. PRELIMINARIES 

Let the potentials Qi(x) in L(A.) (1.9), (1.10) be complex
valued functions of Schwartz type such, that the discrete spect
rum~ of the operator L(A) is simple and finite. The Jost so
lutions are given by their asyrnptotics: 

lim 1/f(x, .\) e iA2u3 x 
1 ' 

!A2 a3 x 
lim cP (x, A) e = 1 , 

X-> oo X -+ -=OCl 
(2. I) 

1/I(x, A)= III/I-~ 1/I+II, cP(x, A) = llcP +, cP -·11 

their columns 1/I +, cP + (!/I-, cP -') being analytic in ,.\ for lmA 2 > 0 
( lmA2 < 0), The transfer matrix is introduced by: 

cP (x, A) = 1/f (x, A.) S (A) , 

(
a+, -b-) 

S(A)= b+,, a- · (2.2) 
detS(A.) = 1. 

The diagonal elements a ±(A) are also analytic in ,.\ for IffiA 2 ~ 0, 
and satisfy the dispersion relations: 

. df.L N A-Aa+ 
D(A.) == 2.... f -- ln[l + p+p -(Jl)] + l: ln ·, 

2rr r IJ.-A a=l A.-Aa-· 

+ D (A) = · ± ln a- (,.\) , 
(2.3) 

ImA.
2 ~ 0, r = R siR, 

where p ± (,.\) = b ±;a±, A a+ ~ ~ are the discrete eigenvalues of 
L(A) and the contour r is introduced in fig. I of 1211 

" 

lJ 
I 

•I 

The main result of ref. 1211 consist§. in the_proof of the com
pleteness relations for the systems 1:'1'1 and 1<1>1 of "squared" 
solutions of L(A.) , where: 

-·+ -+ -·+ 
Ill' I = 1'1' - (x, A), A. t;;. r, 'I';; (x), '~'aix), a= l, •.. ,NI , 

-• -·± - ± ;_± I 

{<Ill= {<I> (x, A.), .\ G r, <I> a (x), <I> a(x), a= l, ••• ,N}, 

-+ + -+ + w- = N_;:-1w-cx • .\), w- = N=~-cx. A.) • 

-· + d -+ + + + + + + 
'1'-(X)=-'1'-(x, ;\)j, , IJ!-=1/f-* cP-(x, A.), <1>-=¢-*cP-(X,A), 

a dA "a+ 

(
!/I 

0 

cP) (1/Il ¢1) 
~_:~("'_,Al/fo¢ o_'lfi)o~ ·, ~.~. ~· - -
N+ = ± ± , Zik =--iw1 f dywk, Wk= (qk,-pk). 

- zto • ' + z 11 X 

Here we shall write down only the symplectic variant of the 
completeness relation: 

B(x -·y) .. f <L\[Q(x, A.) PT(y,A.)- P(x,A)QT(y,A.)]A
0 

+ 

r (2.4) 
N 

+ I [Q: (x)Pa+T(y)- P;(x)Q:T(y) + Q~(x) P:T(y) -P:(x)Q~T(y)]A 0 , 
aal 

where 

P(x, .\) = .l.(p+qj+ + p-'l')(x,A.) 
1T 

.l.(a+~+ + u-;-) (x, A), 
1T 

Q(x, .\) 
1 - - 1 - - (2.5) 

--(u+ w+ -l w+)(x, A.)= --(p_'l'_- a-clll(x, A), 
2b+ b- 2b+b-

. . 
+ - + -+ + 1 + - + + -+ P - (x)-= + 2ic-IJ!-(x), Q -(x) = +-[ c- 'I'--d- ell- (x)] , 
a aa a 2 aa aa 

+ - + u- (.\) = b +I a- • .\ ~;; r, + + • + -1 + d- = (b- a-) c-
a a a ' a 

b±; a± 
a a • 

+ + + + 
b-: ¢-(x)=b-1/f-(x), 

a · a a a Ao 
( 

0 -iu ) ( 0 
= -iu 

2 
0 

2 
' u 2 = i 

-i ) 

0 . 
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These relations allow one to_expa.D,d any function CT ... (r 
1

, ... , r
4
) 

~· S (C 4) over the sys terns I 'I' I, IIlli or IP, Q I • The correspon
ding expansion coefficients have the form: 

-+ - + 
['1'-, f), [Ill-, f], [P, !], [Q, C], 

where [ , ] is the following skew-scalar product in S(C 4 ): 

( 
0 -ia2) 

= -ia
2 

0 

"" T J dx r (x)!A 0 g(x). [C • g] Ao (2.6) 

In particular, for f "' w(x) and f = ;sa w·(x) the ·corresponding 
expansion coefficients are expressed through the scattering 
data of the system L(.\) and their variations: 

-+ -
[<I>-, w] = + ia± b ± , 

-·+ -· ['I' - , w] + + 
= ± ia- b- , 

-+ _, -· +2 + 
[Ill-, a

2
8w] = -ia- 8p- , 

- + -· -· + 2 + 
['I'-, u38 w] = -ia- aa-

(2. 7) 

The expansions themselves have the form: 

and 

w(x) ~..!.. f<L\(p+\ii++p-qi'-) (x, .\) + 
"r 

N - N 
(2.8) 

+ 2 }; [c: 'I' ~(x)- c~'l';(x)] 
a=l 

i ( <L\ P (x, .\ ) + i }; [P \x) + p- (x)], 
r a=1 a a 

-· - i +- + - -- N -·+ -:.. 
a 3 8w(x) = - -·f d.\(8p 'I' -.fip 'I' )(x,.\) -·2}; [U (X)+U (x)]..,. rrr a=l a a 

,... A N - + --~ 
f <L\ [Q (x, .\) 8 p (.\) - P(x, ..\) 8 q (..\)] + }; [ V a (x) + V a (x)], 

r a=1 
(2.9) 

- + + -+ + .:.. + 
U- (x)=8 c- 'I' -(x)+ c-8.\ +'I' - (x). a a a a a_ a 

-+ + .... + + .... + 
v-(x) =Q-(x)8p- -·P-(x)8q-. 

a a a a a 

In (2.9) we have introduced the following notations (compare 
with (2.5) and (2.7)): 

lip(.\) = [P, a3 liw], liq(.\) = [Q, aa 8w], 

p(.\) = J...ln[l + p+p-(.\)], 
1T 

A • b+ 
q(.\) = ..!..In-(..\), ,\ ~.r , 

2 b-

(2. 10) 

6 

r 
I 

I 

A± + 2.\ + ' Pa =- a_ 
"'+ + 
q~~±ilnb~ 

Note, th,ii.t the set of expansion coefficients for w(x) over the 
system {qtj coincides with the set of scattering data T introduc
ed in ref. 1211 , formula (2.7). Thus the formulae (2.8) and (2.9) 
allow one to interprete the transfer from w(x) to T and the 
ISM itself as a generalized Fourier transform. 

Let us give also the explicit form of the operators A±: 

( 

+ 1 + ) -ZlO' -Zl1' A i d 1 
A= A Oa-a-·-·-qp, (2.11) 

± 0 - z ± - z ± 2 3 dx 2 1 1 
. 00 • 01 

for which the elements of IWI and 1~1 are eigen- and adjoint
functions: 

-+ 
(A +-·..\)'1' -ex . .\) ... o . ..\Gru~; 

-+ -+ 
(A+ - .\a± ) 'I'~ (x) "' 'I' ~ ( x) , 

-·+ 
(A_ -..\)<I> -ex,.\) = o. ..\Gru~; 

..:+ -+ (2.12) 
(A_-..\a±)tll;(x) =Ill; (x) . 

Analogically the operator * A =.!...(A +A ) is naturally related 
to the system IP, Q}, since: 2 + -

(A - ..\) P (x, A) = 0, (A - ..\) Q (x, A) "' 0, .\ G r u !!. • ( 2. 13) 

The operators A± and A sati~fy conjugation-like relations with 
respect to the skew-scalar product (2.6): 

[!, A+ g) = [A_t, g], 

[t, Ag] • [AC, g], 
f,g G S(C 4 ). (2. I 4) 

With the help of the operators A+ and A one is able to ob.tain 
compact expressions for the expa~sion coefficients o(m) of 0(..\) 
(.2.3): 

0(..\) = .I A-m o<m) , IAI » 1; 
m=1 

O(A) =- I Amo(-m), IAI « 1. 
m=O 

and their variations as functionals of w(x): 

o(m) ,_!_ {dx rdywT(y)A0 A~+ 1 w(y) + 
m-oo x (2. IS) 

i "" _____. -
+ - f dx (a 

3 
w 

1 
(x), 0) Am w (x) , 

2m -oo · 

il·The authors are grateful! to S.V.Manakov, who called their 
at tent ion to the operator A. 

7 'j 



.,0 (m)_ i c "'w-· Am-1-w·] 
u - - 2l0' 3 u • + • (2. I6) 

It is also easy to check, that from the expansion of w(x) over 
the sympletic basis {P,Q! and from (2.I2), (2.I3) there fol·
lows: 

F (A +) w = F (A _,) w = F (A) w . 

Thus in the formulae (2. I4) and (2.I5) one may replace 
rator A+ by A_. or A. This we shall use below, and here 
down the explicit form of the first few D (m): 

o<l) = l_. j dx(q 0p 1 + q1po) • 
2-oo 

0(
2

) = t j dx [qopo + ! q~p~ + 1 (p1 qlx -· ql plx )] ' 
-oo 

(2. I7) 

the ope-
we write 

(3) 1 "" . 
D = - 4 _! dx (p o q h - q oP 1x) ' ( 2. I 8) 

( 4) i 00 
• 2 

D =sJ. dx[plxqh: +l(Poqox-·qoPox) + (p1qo+Poq1)-

i 
- -4 ql p 1 (p 1 ql - ql p 1 )]. 

X X
1 

3. THE DESCRIPTION OF THE NLEE AND THEIR HAMILTONIAN 
STRUCTURES 

Sta~ting from the results, listed in Sec.2, it is not diffi
cult to construct the theory of the NLEE related to L(~)- (I. 9). 
(I. 10) .In the proofs below we shall follow the ideas of ref :/9,7~ 
but will prefer to use the expansions over the symplectic basis 
{P, Q} rather than those over the system {WI , because the ope
rator A is "selfadjoint" with respect to the skew-scalar pro
duct, see (2. 14). 

Tqeorem. Let the potential of the linear problem (I. 9), 
(J.Tor-w(x~t) and the meromorphic function F(,\) are such that 

0 f. F (,\a+) f."" and the integrals J d\ dp(,\) and fdA[i dq(,\) -F(,\)] 
- r dt r dt 

are absolutely convergent· for all 0 < t < oo • Then w(x, t) satis
fies the NLEE: 

8 

~ 

1: 

~ 
''· 

- dw -iu3 -- + F(A)w .. 0 
dt 

( 3. I) 

if and only if the set {p(,\), q(,\) I' (2. IO) satisfies the follo
wing linear ~quatiohs: 

ctP " dq 
--·= 0 i-· = F(,\) dt • dt • 

"+ "+ (3. 2) 
dpa- dqa-
-- ~ 0, i-- = F(,\a+). 

dt dt -

The proof is obtained directly, incerting in the l.h.s. of 
(3. I) the expansions (2.8) for w(x, t) and (2.9) for the varia-

tion of the form ;;~ Bw = ;
3 

dw Bt + 0(8t) 2 over the system {P,Q}. 
dt 

Remark I. If F(,\) = .F2 (A)/F1 (,\), , where F2 (A) and F 1(A), are 
polynomials in,\, then the NLEE (3. I) should be understood as 

- dw <A>-iF 1 (A)a3 dt + F 2 . w = 0. (3.3) 

Remark 2. From (2. 16) it is obvious, that the NLEE (3. I) may 
be written in two more forms, equivalent to (3. I): 

- dw -
ia3 - + F(A+)w = 0, 

dt 
- dw -ia

3
- + F(A )w == 0. 
dt -

Remark 3. From the expansions of w(x,t) and ;;
3

wt over the 
system {WI there follows, that the NLEE (3. I) is equivalent to 
the following set of linear equations for the scattering data T: 

dp± · de± + 
i-- = ± F(,\) p ± (,\, t), i--a == ± F(.\a+ )c;; (t), 

dt dt -

From (3.2) and (2.3) ir follows, that: 

dO(,\).= 0. 
dt 

d\a± = 0. 
dt 

(3.4) 

(3.5) 

i.e., the quantities o(m) are integrals of motion for the NLEE 
(3. I). 

Let us go now to the Hamiltonian structures of the NLEE (3. 1). 
The corresponding phase space is naturally parametrized by the 

9 i 



independent elements of the potentials of w. The Hamiltonian H 
should be constructed as a linear combination of the integrals 
of motion o(m). One should also find a symplectic form 0 such, 
that the Hamiltonian equations of motion, given by H and 0 

n <o:-8 d w . . ) = a H < • ) 
dt ' (3.6) 

coincide with the NLEE (3.1). Let F(.\)==IFk.\k be a polynomial 
over the positive and negative powers of.\ , 

H F = i I .F k D (k+ 1)' (3.7) 

and 0 = 0 0 , where 0 0 is a canonical 2-form: 

1 -· - -· -· 0 0 ~- 2 ra
8

aw-; a
8

ow] (3.8) 

Here the sign A means exterior product. From (3.7), (2. 16) and 

(2.17) there immidiately follows that oHr = ~ [;~aw, F(A)w]. 

Thus it is easy to check that (3.6) with H=HF and 0 =0
0 

co
incides with the NLEE (3. I). 

Note, that the choice of the pair 0 0 , HF leading to eq.(3.1) 
or to an eq. equivalent to (3. I) is by no means unique /4,5/ • 
Thus the choice: 

i- - m- -
0=0m=- 2 {a3 ow'iA a3 8w] 

H = H(m) -= liFk n(k+m+l) 
F ' 

(3. 9) 

(3. 10) 

leads to equations, differing from (3 .. 1) by a left multiplica
tion with the operatorAm. The corresponding linear equations 
for the scattering data may differ from (3.2) only for·.\ = 0, 
i.e., on a manifold with measure zero. Thus the pairs Om, H~) 
m= 0,+1,+2, .•. give us a hierarchy of Hamiltonian structures 
for the NLEE (3.1). Sometimes for the NLEE in the form (3.3)' 
it is convenient to choose: 

0 F2 

HFl 

= -l..tu3 aw-:- ·F2 <A);;~awJ • 
2 

= i I F D(k+ l), F (.\) = I F .\ k . 
l,k 1 l,k 

( 3. II) 

(3. 12) 

The pairwise compatibility of the 2-formsO is most ea~ily 
establis~ed by recalculating them in terms of ~he scattering 
data variations. This is conveniently done with the help of the 

10 
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symplectic completeness relation (2.4). Incerting in in~o (3.8) 
and (3.9) and using the first line in (2. 10) we readily obtain: 

m ,.. " 
Om"' i fd.\A op(.\)Aoq(.\) + 

r 
(3. 13) 

N m """'+ """+ .... _ A_ +ii [.\ Bp A8q +.\map Aoq ]. 
a=l a+ a a a- a. a 

Thus in terms of I p(A.), q(.\) I all 0
111 

simultaneously become ca
nonical, and therefore allOm are pa1rwise compatible between 
themselves. 

Let us express now the Hamiltonian HF in terms of the scat
tering data. From (3.9) and (2.3) ~e obtain, that: 

H 
.... ~ p ,..., p 

J diLF(IL) p (IL)- i I [F(~)- F (- --E::.)], 
2 r . a=l 2 2 

(3. 14) 

F(A) = IX d.\'F(A.')' 

i~e·~ HF depends only on the half of the canonical variables 
lp, qJ (2. 10). Thus the complete integrability of all the NLEE 
(3.1) is established; the corresponding action-angle variables 
are given by (2. 10). 

Let us finish this paragraph by the remark, that the symplec
tic basis IP, Ql allows one to define explicitly the Lagarange 
manifold of the NLEE m by: 

'«=If~·'«; [f,P]=O, + 
[f,P;l=OI. (3. 15) 

We list without proofs all the important properties ofm ,see 
refs / 9.71: · 

i) If t ~ m , then A f = A f "' A f ~ '«: 
ii) w Go!· and therefore F(A+) +w = .F(A_) w .. ~(A) w' G ,rr, 

iii) if w(x, t) satifies the NLEE (3. I), then i7a w t G· m. 
iv) dimm = codimm. 

Let us only verify that'« is indeed the Lagrange manifold, i.e., 
thatOmlm=O. Indeed, from 0:3 ow·~mand (3.15) we have 

[a~ aw·, P] "'8p(.\) = 0, , .\ GTu 6., and from (3.13) it is ob
'!'ious' that 0 ml m = 0. 

11 



4. EXAMPLES OF NLEE 

Here we shall consider some interesting from our point of 
view NLEE (3.1). Choosing F~)=-4..\ 4 in (3.1) we obtain the 
system: 

iu 3 w1t + w1xx + iB 1 + u1 w1 -·2u0 w0 = 0, 

iu8 w0 t + won -·iB 0 -2iu0 u3 w1x+ u 1w0 + q1 p1 u 0 w1 = 0 

( q! plx) 
.-P qlx ( 

2- ) 
q 1 Pox 

~-P1 Qox 
Bo B1 

"o = QoPt +QtPo• ul = i q~Pf- 2qopo • 

which after the involution 

* q* Po=foqo • P1 "'£1 1' (2>=(2 f*=f 
0 1 ' I I 

goes into the following 2-component modified NLS eq.: 

i q 1t + q1xx + i c 1 q ~ q ix + v 1 q 1 - 2V 0 q 0 .. 0 • 

i . 2 * 2" qOt + qou- 1£0 q1 qOx - lVoq 1x 

2 
+!1lq11 v0q1 +V1q0oc0, 

v 0 = l 1 q 0 q t + (0 q 1 q ~ ' v 1 

+ 

2 21 ~~q~l- 2(olqo · 
2 

(4. I) 

(4.2) 

(4.3) 

This system contains as particular cases the NLS equation, and 
also the modified NLS eqs. (1.3) and (1.7). Indeed the NLS equ
ation iqot + q 0 xx -2£ 0 lq~lq 0 =0 is obtained from (4.3) with 
Q1 = 0. This ii to be expected, since for q 1 = 0 the linear 

problem (1.3) goes into the Zakharov-Shabat system, which has 
be.en investigated in detail earlier, see refs. /1,6·10/. 

For q0 = 0 (4.3) is reduced to the NLEE: 

. i 2 * 
l q 1 t + Q 1 XX + f 1 q1 q X 

(2 4 
+ ~ lq I q = o. 

2 1 1 
(4.4) 

which after the change of variables (1.12) with t(x) .. .:J..jdylq~l 
2 X 

goes into the modified NLS eq. (1.3). This change of variabl~s 
is closely related to the gauge transformation (1. II), after 
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(! 

.I 

which the linear problem (1.9), (I. 10) with Q0 = 0 becomes 
equal to L 2(>..) (I. 2). This may be used to check, that in this 
way all the results related to the system (1.2) are reproduced, 
see ref. 171 • 

Another possible reduction, leading to equations of NLS'type 
has the form: 

q 0 = a q1 ' Po= -ap 1, 

Then (4.3) becomes: 

lQ 
a =-TJa*, 17 = .--= ±1. 

l 1 

(2 

iqlt +q1xx+ if1 q~q*1x -·2la21( olq~ lq 1 + +·lq1lq1 =0 

(4.5) 

(4.6) 

and after the change of variables (I. 12) with t(x) = ~1 fdy lq~l 
one obtains the following modified NLS eq.: x 

iut + "xx ·de 1 (iu
2 1u\ -2a 2 f 0.1u 2 1u =· 0, 

u = q
1 
(x)e-lf 

-·2 
This with E

1
,-ti", fo=_f!._. coinsides with (1.7). 

a2 

(4. 7) 

The involution (4.2) imposes the following restrictions on 
the set of scattering data T: 

p+ (.\) <=·-( p- *(>..*., ), 
0 

b+ =-f b-'* 
a · 0 a ' 

>.. = T/A * ' Tf _l 
a-· a+ 

f 1 

(4.8) 

Analogically (4.5) leads to 

+ + r (>..) =-p -(->..), ..\ G r 

a± (.\) =.a± (-.\ ), 1m..\ 2 
(4.9) 

> 0 
< 

Note, that the restrictions (4.9) do not depend ona and coin
cide with the properties of the scttering data for L2 (>..) (I. 2); 
the former is gauge equivalent (see (1.11)) to L(..\) withQ0 = 0. 

The Hamiltonian structure of the NLS'eq. (4.3) is most sim
ply given by 0 =0 0, H =-40(5),, which after taking into consi
deration the involution (4.2) are equal to: 

00 

o
0 

=i I dx[E 0 oq*0;..oq 1 -£ 1 8q 0r..8q~] = 
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= i J clASp'(.\) Bq'(.\) + 
r 

N 
+ 2i(l + ,.,) I. [8.\ 0 1\ 8{3° -·lJ.\ 1 

1\ 8(3 1 ] + 
a=l a+ a a+ a 

N 
+ 21 (1 -17) I. [8.\ 

1 
1\ 8 {3 ° + 8>. 0 1\ 8{3 1 ] 

a=l a+ a a+ a 

". I 
p'(A) .. ..!..ln[l -·£ p+ (A.) p + *(17A. *)] 

1T 0 

q'(>..) = ~-In [b+ (A.) /b + *(>..* 71 )], >. <:r, 

Aa+ =A~+ + iAd+, ln b + = t:JO +in 1 
a ""'a ~-'a ' a= 1 , ••• ,N , 

1 00 

H "'2..£dxi-(EOq1:rq~x + Elq;x qox) + 

3i E 1 I 21 ( • • ) I 
+ -5-'q1 l0q1xq0-ilq0q1x + VOV1 "' 

" 4i N 6 6 
= 2ifdJ.L1J. 4 p'(J.L) +-I [(A.a+) -·(17X*+)] 

n /l a=l · a 
1 

(4.10) 

(4. II) 

From (4.3) it is easy to obtain the explicit form of the action
angle variables. 

As it has been noted, the modified NLS eq. (4.7) is obtained 
from (4. I) by imposing the two involutions (4.2) and (4.5). From 
(4.9) and (3.13) it follows, that all 2-forms 0 2k:O;analogical
ly oC2k+ 1 ~ 0 , see (3.14). The Hamiltonian structure of (4.7) 
may be given, e.g., by 0 =0_1 , H ·-4f><4> or by 0 .. 0

1 
, H = 

.. -40(6), where the sign- here means, that in the expressions 
for 0 k and 0 (m) one should impose the involutions (4. 2) and 
(4.5). The explicit calculation of 0_, m>Oin terms of the 
potential vi(x, t) is related to the ca1~ulation of the inverse 
operator A. -·1 , which for a f.. 0 is difficult. In thi~ case we 
can make use of the corresponding Poisson brackets: 

IF,.Olm =[VFa~ AoA.m asAo VG], 

-· (V1 F) V F = , 

V0 F 

(4. 12) T 8F 8F 
< vk F) .. <-·, ->. k .. o,L 

8q k 8pk 

Incerting F .. 0 = w in (4.12) we obtain the corresponding Pois
son brackets between the elements of the potentials Q

1 
in 
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~ 
I 
I'' 

- _, ~ -· -· m 
{a 3 w , a 

3 
A 0 w l m ~ A. 8 (x - y) , (4. 13) 

where the i ,'j - th element of the rna trix IF ~ Gl m is equal to 
IF 1 , G jIm. Now it is easy to check, that the Hamiltonian equa
tions of motion: 

ia3 w.t .. I0: 3 w', H 11 (4. 14) 

with H =<-40(4) directly lead to the system (4.1). In order to 
impose the involutions (4.2), (4.5) on the Poisson brackets 
{, } 1 one should calculate the corresponding Dirack brackets, 
which_in our case is difficult. Therefore we shall. only write 
down 0 1 

iE ~ d 
n 1 = -

1
-· f dx[8q* A -8q - E Jq 2 \Bq* A Bq ] , 

2 _"" 1 dx 1 1 1 1 1 

which together with H =-40(6 ) generates (4.3). 
In terms of the scattering data the expression for 0_1 has 

the same form as that of 0 0 , given iri ref. 171 , and we omit it. 
Thus the NLS eqs. (1.3), and (4.7) have an equivalent sets of 
action-angle variables. 

Let us give one more example of a NLEE, generalizing the 
Mikhailov system: 

' 
w lxt + iq1 p 1 a 3 w 1t + · 2a 2 w 1 I - 2c 

1 
w 1 = 0 , 

(4. 15) 
1x + (qlp1)t = 0 • 

This system is obtained from (3.3) with F 1 (A)=A. 2 and F 2 (A)"' 
= c = const, after imposing the involution (4.5); (4.14) sur
vives also the involution (4.2). The Hamiltonian structure of 

. - - (2) (4. 14) may be g~ven, e.g., by 0 = 0 3 and H =cO . 
In conclusion letus make a few remarks. 
i) Considering block bundles of the form (1.2), (1.3), (1.6) 

it.is possible to solve the multicomponent (vector and matrlx) 
analog of the NLEE's, considered above, see refs. /4,13/ • The 
corresponding expansions over the "squared" solutions may be 
derived analogously to ref. 1261 • The difficulties with the ex
plicit calculation of the operator A. have been noted in ref /22/. 

ii) The polynomial bundles (1.8) are easily written down as 

~igenvalue problems of ~~; type [ J ...!.. + U - ,\] ,;: = 0 , where ((, T 
dx ~ ' 

= (t/J T, A.rfr T , .•. , A N-lrfr T), J is a degenerate constant matrix 
and the potential U is a specific 2Nx2N matrix, whose matrix 
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/13/ elements are expressed by those of Uk, see, e.g., ref. 
Thus the study of the polynomial bundles and their possible in
volutions is direct~y related to the reduction problem of the 
NLEE, ref. 1231 • 

iii) Other variants of the modified NLS equations have been 
considered in refs. 123 •241 . 
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rep~KOB B.C., l!BaHOD M.H. E2-82-595 
KBa,[\paTIIt!HhiH TIY'lOI< Ooll(ero BH,[\a H HeJIHHeHHhTe 3DOJ110l.\HOHHhie 
ypaBHeHHR. HepapxHR raMHJibTOHODCI<HX CTPYI<TYP 

llpH HCIIOJlb30BaHHH MeTO,[\a paSJlOJKeHHfl riO 11KBa,[\paTaM11 pemermj:j: 
OIIHCaH KJiacc HeJIHHeHHblX 3DOJ110l.\HOHHblX ypaDHeHHH, CDf!SaHHblX C 
KBa,[\paTH'lHbiM IIY'lKOM OOII(ero DH,[\a . .noKasaHO, 'ITO 3TH ypaBHeHHH 
HBnJIIOTCH BTIOJIHe HHTerpHpyeMbiMH raMHJibTOHODClCHMH CHCTeMaMH H o6-
Jia,[\aiOT HepapxH:eH: raMHJibTOHOBCKHX CTPYKTYP· 

Pa6oTa BhiiTOJIHeHa B Jia6opaTopmr TeopeTHt!ecrcoi1 ljJHSHI\H OHJIH. 

npenpHHT 06oeAHHeHHOro HHCTHTyTa RAePH~X HCCfleAOBaHHH. Ay5Ha 1982 

Gerdjikov V.S., Ivanov M.I. E2-82-595 
The Quadratic Bundle o~ General Form and the Nonlinear 
Evolution Equations. Hierarchies of Hamiltemian 
Structures 

Usi~g the method of expansions over the "squared" solutions 
of the auxiliary linear problem, the class of nonlinear evolu
tion equations related to the quadratic bundle of general .form 
is described. It is proved, that these equations are completely 
integrable Hamiltonian systems, possessing hierarchies of 
Hamiltonian structures. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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