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The comparison of QCD predlctlons with exper1menta1 data
(in particular the observatlon of 1ncre351ng <P?> oy With Q?
and three jet events’1’) has shown in any case QCﬂ legitimacy
as perturbative theory if not its correctness’2/ Since all
the calculations are made for free quarks and gluons, one
needs to be able to describe converting stage of colour ob-
jects (quarks and gluons) into actual hadrons to analyse hard
process in detail. At present we can describe this stage only
phenomenologically, assuming that large transverse momenta of
dressed colour fields are immediate source of large transverse
momenta of hadrons. However one succeeds in proving the exis-
tence’3/ of the parton order in a jet at any given stage of
its evolution in the leading logarithm approximation (LLA) as-
suming the validity of 1/N, expansion. Accordingly partons
group in a natural way into systems consisting of a quark, an
adjacent antiquark and gluons that are between them. Such sys-
tems are colour singlets in the N;+» limit forming clusters
with order Q, masses independent of initial Q. This result
makes it possible to suggest that only these colourless clus-
ters with tilnlte massSes Will CONVErL L1ILU LalLul®, Lete, wpun
perturbative confinement forces do not change essentially par-
ton momenta on a converting stage into hadrons. And then one
can derive features of hadron jets from multiparton distribu-
tions dependent on Q2 and hadronization functions independent
of Q2 considering their proper convolution. Naturally, multi-
parton distributions will play decisive role, if we compare
these hadron features with experimental data and receive in-
formation about mechanism of parton confinement,

In this paper we obtain the equations and solutions for the
multiparton distribution functions of deep-inelastic lepton-
hadron scattering and multiparton fragmentation functions pf
ete” -annihilation into hadrons using Lipatov”s parton 1nter—
pretation of perturbative QCD theory diagrams in the LLA
The obtained equations are not identical, but the solutlons
are the same on the definite initial conditions and coincide
with the jet calculus rules’5/, The principal difference of
these equations becomes clear when we generalize them for
description of parton fragmentation into hadrons.

In Part | we give necessary results for the single-parton
functions and obtain the equations for the multiparton distri-
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bution and fragmentation functions. The solutions of these
equations and their connection with the jet calculus rules
are discussed in Part 2. In Part 3 we consider the generali-
zation of the obtained results for hadron jets description.

1. The structure functions for ep -scattering and ete™+anni-
hilation were calculated in the LLA for vector and pseudosca-
lar theories in refs./®7?/, The same calculations were made in
QCD in ref.’8/, It was shown’4/ that the results of these cal-
culations allowed a simple interpretation within the framework
of the parton model with variable cut-off parameter A:_Q2for
the transverse momenta. Sets of wave functions '{’.1" » ¥ play
an important role in this interpretation. ‘I’;’(Br, k,,) is the
probability amplitude of finding a dressed parton of type i in
the state of n bare partons with Sudakov”s parameters §, ,
kjr ,r=1,...n /9/ lI’i"(Br,klr) is the probability amplitude
of finding a bare parton of type i in the state of n dressed
partons with Sudakov”s parameters B,, k, .These amplitudes

. . . . ir
satisfy the normalization condition

o n q 2 0
1=z, +n§2 fjl—gfe(ﬁr)d k¥ 12633 k, V8B, -1), 1)

where z; is the wave function renormalization constant of i -
type parton. The normalization condition for ¥ is the same.
The full expression for W{H,W? can be obtained by calculat-
ing the contribution of all the diasrame for transiticn i -u
in the infinite momentum frame. Feynman integrals for Wf‘, Wf
and k,-integrals in eq. (1) diverge logarithmically in renormali-
zable theories,they are regularized with the help of cut-off
parameter A.Then multiparton features of ep -scattering and
eé'e"—annihilation processes expressed through sets of wave
functions ¥" , ¥ accordingly become functions of this parame-
ter.And the equations for multiparton distribution and frag-
mentation functions are obtained by differentiating their de-
finition with respect to A and using the equations obtained by
differentiating the normalization condition.The differentiati-
on rules are described in ref./4/ in detail.One notes only that
in the LLA the main contribution for W;l, W? is given by tree
diagrams that do not interfere between themselves. It allows
a classical probability interpretation of each term in eq. (1).
Besides transverse momenta are strongly ordered along the bran-
ches of the tree: they increase along the tree diagrams for
€p -scattering and decrease for ete™ ~annihilation.

The left side is independent of A in normalization condi-
tion but functions ¥" (via the z-factors) and the k,-in-
tegration region depend on A in the right side. Therefore dif~-
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. . cos equa-
ferentiation of normalization condition leads to the eq

tions:
(2)
0= A%%:Z;1+ wj(ng). P
where
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m-(82 )=—-—~“l"‘"“‘~"“"" LA =y
AT S ma/ kB K 8n

n (A? is the one-loop self-energy part of | —type parton,
"

g is the running coupling constant.

Defining two-parton distribution functions
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state rgé obtain by differentiating with respect to A
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Differentiation of the same definition of fragmentation
functions leads to the equations

pitle 1
dD; (x.Xg) ﬁA (s ---50”2(—— _-..)P , (x7)+

dA 8772 l‘x+x
e (5.2)
1‘!2 , j J
+ 3 Bl p (x)Dl(l)Dz(.—.)}
igig x; X ‘1-x") > iyig 1-x*
where
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i1Sig 112.12
g2
A X X, )= - 2
5o % e & g EE)=84;, 80, Xp)o; (B ). (6.2)

mﬁwz(x»xl)dx 1? is as usual the probability that a parton
of type j with fraction x of the longitudinal momentum decays
into two partons of type j; , Jg. one of which has fraction x,
of the longitudinal momentum and the transverse momentum A,

’

W om 2w, b 2w
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W, = p w, . .
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j = . . . .
DJ x) , Dj(®) are the single-parton distribution and fragmen—
tatlon functlons accordingly. Their equations were obtained in
refs. /4,10/
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It is convenient to rewrite eqs. (5.1), (5.2), (7.1), (7.2)
taking moments of D.D

dMJlJ

%y .0 p,t) iig ifg
= X M; . h
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In these equations we pointed explicitly that the moments
of multiparton functions depended on natural variable t which
may be expressed through A using known in QCD expression for

A -dependence of the running coupling constant
tz—l—--ln[1+g(“ )bln( )1, b= 23220
2rd 127

where ;2 is the characteristic virtuality for which the running
coupling constant is small and perturbative theory is legiti-
mate.
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2. The obtained eqs. (8.1), (8.2) form a set of first-or-
der linear-differential equations with constant coefficients.
The equations for distribution functions bind the probabili-
ties of finding bare partons of different types in a dressed
parton of type i. The equations for fragmentation functions
bind the probabilities of finding definite bare partons of
type jq.Jp 1in dressed partons of different types.Naturally,
these equations have different solutions in a general case.
It is easy to verify directly that the particular solutions
of eqs. (8.1), (8.2) may be written as

iy ¢

M 2 = ’ J ’
(ny mg,t)= “;j,v ([; dt“M; (m+n,,t )[Pj_’ (nl'n2) +
12 (12.1)
P,*“ (n,.n, )]M (nl.t ~t” )M (n t=t”),
-j1j2
M' (nl'n2't) =
. (12.2)
-3 0[‘ dt* M} (nyeny t—t” Piayis, (nl,nz)M by t')M;“I (ng.t").
] A
U 2

One must use eqs. (9.1), (9.2) for the 51ng1e—parton functions
and their initial conditions Mf(nt =0)=8;, M (n,t=0) = 8j .
Ine ulrrerence petween these part1cu1ar solutlons 1s the addi-
tional term P in the expression for M Jiie However if we
introduce new functions

~j1j2 ] j
Dil7% (x.x,)=D 12 (x x, )"8111'28 ) -x D1 x;). (3.1

1112(x Xy )= D (xl'x2)"8jlj28(x1—x2)D?(x1)' (13.2)
the equations for moments of new fragmentation functions re-
main unchangeable and a term P vanishes in equations for mo-
ments of new distribution functions. And then the particular
solutions of type (12) for new functions will be the same.

One notes that these particular solutions satisfy zero ini-
tial conditions at t =0. They will be the only solutions of
corresponding equations if we are interested in solutions with
zero initial conditions. We can obtain the same or not the
same solutions for the distribution and fragmentation func-—
tions depending on the choice of functions M, % or M , M
for which we demand zero initial conditions. These initial con-

ditions are obtained unambiguously from definitions of multi-
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parton functions b Lipatov’s method: functions D , D and
their moments M , a' satisfy zero initial conditions. There-

fore the solutions for moments of two-parton distribution

ﬁjljz and fragmentation ﬁﬂllz functions may be expressed
through moments of single-parton functions by eq. (12.2) in
the same way. It coincides with the jet calculus rules.There
is the same situation in case of n-parton functions. The
equations for the multiparton d1str1but10n functions were ob-
tained also in ref./11/ by Lipatov’s method. However their
solutions were compared there with the jet calculus rules pro-
posed for the multiparton fragmentation functions. It is shown
in this paper that the distribution and fragmentation func-
tions satisfy essentially different equations but they have
the same solutions on the definite initial conditions. The
difference becomes crucial when we generalize these equations
for hadron jets description. This question is discussed in de-
tail in the next part. We only note that the solutions of the
jet calculus rules type may be obtained for correlation dis-
tribution and fragmentation functions:

111

2x,,1,)=DF 2(x,xp) -’ oy )D2 (xy) (14.1)

—=:jqd =4 =i =Jg

AV 2x,x)=D VEx ,x,) - D1 D "x,) (14.2)
It is easy to see that the moments of correlation distribu-

tion functions- A 1 @H'“2 ) satisfy the same eq (8.1) as mo-

ments of two-parton distribution functions M 1 2(“1’“2't)
The equatlons for moments of correlation fragmentatlon func-
tions Ai (n Mg t) _ differ from eq. (8.2) by appearance of
the add1t10na1 term P °

-4,
dAiljz(nrnz,n
dt

[ g
—
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-
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The direct substitution shows that the solutions for moments
of correlation distribution and fragmentation functions may be
expressed through the moments of single-parton functions in
the same way by eq. (12.1) unlike the above-considered case



of the two-parton distribution and fragmentation functions.
It differs from the jet calculus rules by replacement expres-

i ith one [P, (n{n,)+P
sion Pj»jljz(nl'nz) wi [ J_.1112( 10g)

Again zero initial conditions for correlation functions fol-
low from their definitions.

i (n1'n2)]'

3. As was noted a present level of our understanding
of QCD structure allowed one to work only with free quarks and
gluons but the conversion of colour objects into hadrons one
must describe phenomenologically using hypothesis of soft
colourlessness, i.e., one assumes that nonperturbative hadro-
nization process takes place under small virtualities of par-
tons and does not interfere with the hard process taking place
under large virtualities. Then hadron features are obtaingd
by convolution of QZ-independent phenomenological functions
with multiparton fragmentation functions. For example, two-
particle fragmentation functions for a parton of type i to
fragment into hadrons h, , h, are given by’5/

=hqh dx/dx, —=by x, =h, x, =iy
D2y )= B [ —d—BD MLoD 2 CR05 ! Bz 0+
’ hWie  %¥e Tl T2y (16)

_h h2 X X - —:j
v 3 BRI X20)D) k),
.z v

where we pointed explicitly t-dependence of multiparton func-
tions and introduced phenomenological t-independent fragmen-

—h ~h yhg
tation functions D; (x,0) » Dy (x4 ,X5,0) for a parto? of
type i to go (inclusively) into one or two hadrons according-
ly. '

It is easy to obtain the equations for these two-particle
fragmentation functions using the equations for functions of
parton level

h h
R )
dD; " (xy.Xp.t) fl x5 ELE%op L @y
at e T (17)

1-xp s =hq X =h, Xg ’
£ 3 _‘3.’.‘.....Dil(-;l-,t)Diz(———;—,t)Pi_,iliz(x ).
iyig x, x'(1-x7) 't x°- 2 1-x

We also used the expression of single-particle fragmentation
functions for a parton of type i to fragment into hadron h

’

T)?(x,t): 3 f ii.’.‘.’[-)}i'f(gx7 ,0)—Dii (X%t ). (18)
i X

Functions'-[')?lhz (%4,%5,0) introduced phenomenologically de-
fine initial conditions for the two-particle fragmentation
functions as well as functions Dj(x,0) define initial con-
ditions for the single-particle fragmentation functions.

Taking moments we obtain

_hsh
dM ;1 2, ,n,.t) =hie
:n Lt ] f_Aiz'.Mi,_ (ny,ng,t)Pyyie (ny4ng)+
(19)
<h ~h
1 2
* ifizMil (0, My, (HE’t)Pi"iﬂz @),
where
- hqh 1 ~fy h
e nyn 172
Mi (nl,nz,t)a‘ofx11x220(1—x1—X2)Di (xlyxzrt)d?{ldXE ’
(20)

wipy 1 ~h
M, (,t)= Or X' D; (x,t)dx.

Again the particular solutions of eq. (19) may be written
as __—vh1h9

™Mo (nlyn 2 o0) =

t — ~h —h (21)
= 2 [ dt'M] (@ +0,,t—t)P., . @0 M. ot )W 2 (0 t7).
J'J'ﬂ'zg i 140y Wioigi o @rl) i ® Mg @get?)

However now the fragmentation functions have non-zero initial
conditions therefore one must find solutions that satisfy the
homogeneous part of eq. (19) and have definite initial condi-
tions to obtain the solutions of eq. (19) with definite ini-
tial conditions

IR ST Th TR
i “(gng,t)=M,, @108 + ZM; (+mp,0M ;172 (0 1ny,0). (22)

The eqs. (17), (19) for multiparton fragmentation functions
were obtained also in refs/12:18/ tpyt from the jet calculus
rules. It was noted’'3/that equations obtained in ref./!! were
not applicable for description of parton fragmentation into
hadrons though these equations lead to the solutions coinciding
with the jet calculus rules. It is clear from the present con-
text that the equations for multiparton distribution functions
describe features of ep-scattering and the equations for
multiparton fragmentation functions describe features of ete™'-
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annihilation into hadrons. That %s yhy the last equatlon: i
are easily generalized for descrlpt}on of parton fr§gme? a

on into hadrons at standard assumption a?out.hadFon1zat10?.ns
The equations obtained for mglt}parton dlsFrlbutloglfungglzi_
may be generalized for description of mu}tlpartog 1§Er1.u

ons in hadrons using the proper convolution of distri gFlzn--
of parton level with t-independent phenomenologlca%b tiogl
butions of partons in hadrons. For example, the dlsFrldub -
functions of two partons jy,jp 10 hadron h are define y

volution
Jqd i ~iio, X o dx
Dr} 2(x1,x2,t)-. 2] [ Dy(x,0)Dj (-)g.,_x2,t)-.—-x2 +
(23)

e’ . : dx: dx,
120 x2 00D’ (B2 (22,1 222,

+ .12' (Dh (xlix2'0)DJ’l(xiv) jz_(x;') x, x'

1112 2 1 2

Again the equations for these functions are obta1ned'u51ng
the equations of parton level. We write only the equations

for moments

1) .
My (ny,05 1)

igdg
dt .2) Mh (nl'n 2’ )

I (24)

t)P"l"jl (n1)+

’ h

i1ig i
) miti2 (“1'"2't)Pj;34j2("2)+ % Mh(n1+n2,t)Pj4j1j2(n1,n2).
I2

The initial conditions are defined by phenomgnologlcal
functions as in the case of fragmentation functlons: As be
fore the particular solutions of eq. (24) may be written as

- t .
e ) . .,
Mo (ngmy,t) = 2’ [ dt’M, (m, +n, .t )Pj"'j1j2(n1'n2)x
JJ1J2 0 (25)

Mt t t')sz, (n_.t=t")
X Jrl(nl, — J2 2° .

One may find also the solutions that satisfy definite ini-
tial conditions introduced phenomenologically

PREY j i
M:IIJ2(111,n2 ) = M-ht:"‘2 (ny 0yt + (26)

A4 jl j2
+ j}lj, MJhlJE o 1,;12,0)Mj1' (nl't)Mj;a("z't)'
12
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In conclusion we emphasize once more that the equations
for the multiparton distribution and fragmentation functions
have essentially different structure though on the definite
initial conditions they lead to the same solutions which co-
incide with the jet calculus rules. The difference of these
equations becomes clear under their generalization for desc-—
ription of parton fragmentation into hadrons.

We are grateful to M.I.Gorenstein, 0.A.Mogilevsky, V.K.Pet-
rov for numerous and fruitful discussions.
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