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The comparison of QCD predictions with experimental data 
(in particular the observation of increasing <Pf>jet with Q

2 

and three jet events 111 ) has shown in any case QCD legitimacy 
as perturbative theory if not its correctness/2~ Since all 
the calculations are made for free quarks and gluons, one 
needs to be able to describe converting stage of colour ob
jects (quarks and gluons) into actual hadrons to analyse hard 
process in detail. At present we can describe this stage only 
phenomenologically, assuming that large transverse momenta of 
dressed colour fields are immediate source of large transverse 
momenta of hadrons. However one succeeds in proving the exis
tence131 of the parton order in a jet at any given stage of 
its evolution in the leading logarithm approximation (LLA) as
suming the validity of 1/Nc expansion. Accordingly partons 
group in a natural way into systems consisting of a quark, an 
adjacent antiqu~rk and gluons that are between them. Such sys
tems are colour singlets in the Nc~oo limit forming clusters 
with order Q0 masses independent of initial Q. This result 
makes it possible to suggest that only these colourless clus
ters W1th t1n1te masses wi1.i converL iuLu tlduLuu::., .:..c., uuu 
perturbative confinement forces do not change essentially par
ton momenta on a converting stage into hadrons. And then one 
can derive features of hadron jets from multiparton distribu
tions dependent on Q2 and hadronization functions independent 
of Q2 considering their proper convolution. Naturally, multi
parton distributions will play decisive role, if we compare 
these hadron features with experimental data and receive in
formation about mechanism of parton confinement. 

In this paper we obtain the equations and solutions for the 
multiparton distribution functions of deep-inelastic lepton
hadron scattering and multiparton fragmentation functions of 
e+e-' -annihilation into hadrons using Lipatov#s parton inter
pretation of perturbative QCD theory diagrams in the LLA 141. 
The obtained equations are not identical, but the solutions 
are the same on the definite initial conditions and coincide 
with the jet calculus rules 151, The principal difference of 
these equations becomes clear when we generalize them for 
description of parton fragmentation into hadrons. 

In Part I we give necessary results for the single-parton 
functions and obtain the equations for the multiparton distri-
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bution and fragmentation functions. The solutions of these 
equations and their connection with the jet calculus rules 
are discussed in Part 2. In Part 3 we consider the generali
zation of the obtained results for hadron jets description. 

I. The structure functions for ep -scattering and e+e-"-anni
hilation were calculated in the LLA for vector and pseudosca
lar theories in refs/6 •71• The same calculations were made in 
QCD in re£. 181. It was shown141 that the results of these cal
culations allowed a simple interpretation within the framework 
of the parton model with variable cut-off parameter A-Q 2for 
the transverse momenta. Sets of wave functions IJI.n , qif play 
an important role in this interpretation. IJir(fJ/ku) is the 
probability amplitude of finding a dressed parton of type i in 
the state of n bare partons with Sudakov~ s parameters f:Jr , 
k 1 191 IJI-·n · h b b '1' 1' d .J.. r , r = , ... ,n • i ( {:J r, k ) 1 s t e pro a 1 1 t y amp 1 tu e 

• • .J.. r • 
of f1nd1ng a bare parton of type i 1n the state of n dressed 
partons with Sudakov~s parameters {:Jr, k .These amplitudes 
satisfy the normalization condition .J..r 

"" n df:J n 
1= zj +! r n ...:.t:.!{:J O({:J )d

2
k I 'Pi !2o

2
(! k )o(!{:J -1) (I) n•2 r-1 r r .J.. r .J.. r r ' 

where z 1 is the wave function renormalization constant of i
type parton. The normalization condition for ff is the same. 
The full expression for IJiin ., tiif can be obtained by calculat
ing the contribution of all thP rli~~r~mc f~~ t=~~~iti0u i 1U 
1n the infinite momentum frame. Feynman integrals for IJI1n, lflt 
andk.J..-integrals in eq.(l) diverge logarithmically in renormali
zable theories,they are regularized with the help of cut-off 
parameter A. Then multiparton features of ep-scattering and 
e+e-~annihilation processes expressed through sets of wave 
functions IJif , 'r accordingly become functions of this parame
ter.And the equations for multiparton distribution and frag
mentation functions are obtained by differentiating their de
finition with respect to A and using the equations obtained by 
differentiating the normalization condition.The differentiati
on rules are described in ref. 14/ in detail.One notes only that 
in the LLA the main contribution for IJI~ , ~~ is given by tree 
diagrams that do not interfere between themselves. It allows 
a classical probability interpretation of each term in eq. (1). 
Besides transverse momenta are strongly ordered along the bran
ches of the tree: they increase along the tree diagrams for 
ep -scattering and decrease for e+e- -annihilation. 

The left side is independent of A in normalization condi
tion but functions IJiln (via the z -factors) and the k .J.. -in
tegration region depend on A in the right side. Therefore dif-

2 

' 

ferentiation of normalization condition leads to the equa

tions: 

dzj -1 ( 2 ) 
(2) 

0 = A --,z i + w i g A • 
dA 

where 

• 

w/g~) = _i llj (A/k
2

) 
a ln(A/lk'2i)\k :::.,A 

g2 
A-

:a::-~w' 
(3) 

8rr 2 i 

n.(il) is the one-loop self-energy part of j -type parton, 
J k2' 

g A is the running coupling constant. 
Defining two-parton distribution functions 

. . n df:J 
D~1J2(x 1 ,x 2 )=Zi8ij 8j j o(xcx2 )o(xc1)+! ~ ! ( fl --!x 

1 1 1 2 n=2r{J1)r{J2) r=l f:Jr 
(4) 

2 n 2 2 x(J({:Jr)d k.J..r ]IJii 1 8 (!k.l.r)B(!{:Jr -1)o({:Jr(j
1
)x 1)o({:Jr(j 2 )- x 2), 

where ! is the sum only over j -type partons in n -parton 

state, we obtain by differentiating with respect to A 
r(j) 

jlj2 2 
A dDi _ _2J~~)-~ l 

dA Srr
2 

t-x2 dx' ·'. 
I r _!.oJ1 J 2 (x' ,X )P_, .(.!.!)+ 

x; I 1 2 lt1Jtx; 
it J:l 

+ ! 
j~ 

. ·' X 
1-:.:1 dx2 DJ1J 2 (X x ')P , . ( ..:g_)+ r ----;- i t· 2 j21J 2 x~ 

J: X 2 
2 

. , 1 X 

+ !,01
1 

(x
1 

+X
2
)- P., . . (__:.j,._) + 

j X1+X2 J->Jll2 X1+X2 

1 d , ·' X 
+ 8 . . 8 (x 

1
- x

2
) ! ( ~DJi (x ') P . , . ( J)-

ltJ2 j' xl x J ->Jt x' 

it 1 x., j2 1 
-D. (x 1)-~ . (-)-D. (x )-P. 

I Xl J1-> J 2 X 1 I 2 X 2 J 2-+ J 1 
(Xt)l. 
x2 

(5. I) 
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Differentiation of the same definition of fragmentation 
functions leads to the equations 

-j j 2 
dD. 1 2 (x ,x ) iA 1 dx'--i'li2 X1 x2 

A-.!--~,.-,( I. ( ~D., (-, -)P. ·' (x')+ 
dA 8 2 i' X'~ 1 X' X ' 1 ... I 17 x1+x2 

(5.2) 
1-x2 

+ I. r dx' 'P ... (x')D~l (x1)5~2 (-~)1. 
i1 i 2 x1 x'(1-x') I-+ 1112 11 x' 12 1-x' 

where 

2 
g A 1 x1 
-·-•P ... (-)•w ... (X-+Xl) + w . .. (X-+X 1), 
8 2 X J-+J1J2 X J-+J1J2 J-+JlJ 2 

17 

j l~.j 2 j1~j2 
(6. I) 

2 
gA 1 X 2 
-- -P. . (.!.1)., w. . (X-+X1 )-oJ·J· o(x1 -x2)wJ. (gA)' 8 17 2 X J-+Jt X J-+Jt 1 (6.2) 

w j .... j')j 2(x .... x 1)dx 1 ~· is as usual the probability that a parton 
of type j wi~h fraction x of the longitudinal momentum decays 
into two partons of type j1 , j 2 , one of which has fraction x 1 
of the longitudinal momentum and the transverse momentum A, 

w . . -J .... J 1 .z: w. . ,,+ ~ w. ·'· • . <·' J .... JtJ ·'<· J-+J lt J 1-J J _,J1 

w.... I. w. . . 
J it.$)2 J-+ J 1J 2 

(6.3) 

o{ (x) , [)~ (x) are the single-parton distribution and fragmen
tation functions accordingly. Their equations were obtained in 
refs ! 4 •10/ 

. 2 
dO~ (x) gA 1 dx, j, , x 

A ·=-I. (-·D. (x )P .•. (-), 
dA 8 17 2 j' x X' 1 J .... J X' 

(7. I) 

-j 2 1 
dDiCX) gA dx'-j X 

A -------...'.t- I. ( -·D., (-)P. . , (x '). dA 8 17 2 i, X X , I X, 1-+ 1 
(7.2) 

It is convenient to 
taking moments of D, D. 

j 1j 2 
dMi (n 1 ,n 2 ,t) 

rewrite eqs. (5.1), (5.2), (7.1), (7.2) 

j;j2 J1J2 
-------··----------= dt 

I.Mi (n 1,n 2 ,t)P., .(n 1)+IM. (n 1,n2
,tW, .(nl 

J·' lt .... J1 ·' I J .... J Z 
1 J 2 2 2 

4 

, 

f 

j' -
+ ~Mi (nltn2,t)[Pj'->jlj2(nl,n2)+P( ... iti2(nl,n2)], 

-j1j 2 
dMi (n 1,n 2 ,t) - iti 2 
-------------- = I M .• (n 1 ,n 2 ,t)Pi ... i'(n 1+n 2)+ 

dt ·' 1 1 

I MJ1 (n1 ,t)M; 2 (n 2 ,t)Pi->i
1
i

2 
(n1,n2), 

. 1 1 2 111 2 
+ 

j . , 

_ _;l~f.S.n.tl. ,. I M\ (n,t) pi ~j (n), 
dt j, 

-j . 

dM i (n,t) I M J ,( n,t) p _, i, (n), ____ _. __ 21: • , 1 1 

dt 1 

where 

. . 1 . . 
J1J2 °1 °2 J1J2 

Mi (n 1 ,n 2 ,t)= Jx 1 x 2 8(1-x 1-x2 )Di (x
1

,x
2
)dx

1
ctx 2 , 

-J1i2 . 1 0 1°2 -j1j2 
Mi (n 1,n 2 ,t)., J x 1 x 2 8(1-x 1 -x

2
)Di (x1,x

2
)dx

1
dx

2
, 

j 1 n j 
M. (n,t)"' { x Di (x)dx, 

1 0 

-j 1 n-j 
M i (n,t) = { x D i (x)dx, 

0 

1 n 
P. . (n) "" { x P. . (x) dx, 

1-> 1 1 0 1... 1 1 

1 n1 n 
P ... (n 1,n 2 ) ... {X (1-x) 2 P ... (x)dx, 

1 ... 1112 0 1 .... 1112 

(8. I) 

(8. 2) 

(9. I) 

(9.2) 

(I 0) 

P .•.. (n 1 ,n 2
),..o .. P .•. (n 1 +n 2)-oJ .• J. P _,J· (n 2 )-o.,. P .. (n

1
). 

J ->J1J2 J1J2 J -+J 1 1 J1 2 J J2 J2 ... J1 

In these equations we pointed explicitly that the moments 
of multiparton functions depended on natural variable t which 
may be expressed through A using known in QCD expression for 
A -dependence of the running coupling constant 

1 2 2 
t =- ln [1+ 2_~.b ln(~)], b = 33-2n r. 

217'b 417 112 1277 , 
(I I) 

where 112 is the characteristic virtuality for which the running 
coupling constant is small and perturbative theory is legiti-
mate. 
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2. The obtained eqs. (8. 1), (8.2) form a set of first-or
der linear-differential equations with constant coefficients. 
The equations for distribution functions bind the probabili
ties of finding bare partons of different types in a dressed 
parton of type i. The equations for fragmentation functions 
bind the probabilities of finding definite bare partons of 
type j 1,j 2 in dressed partons of different types.Naturally, 
these equations have different solutions in a general case. 
It is easy to verify directly that the particular solutions 
of eqs. (8.1), (8.2) may be written as 

t 

M:1J2 (n 1 ,n 2 ,t)= .l, ( 
JJ1J2 ° j t ') [ P ' ·' (n 1 ,n 2) + dt' M 1 (n 1 +n 2 ' ,t. j 1 J 2 (I 2 • I ) 

- j 1 , j2 , 
+ Pj-+j1J2 (n 1,n2 )] Mjl (n 1,t-t )Mj 2(n 2 ,t-t ), 

-M j tj 2 
i ( n 1 ,n 2 ,t) = 

t -· . . (12.2) 
= .. ~.- r dt' M~ (nt+n2 ,t-t')Pj-+j'j' (nl ,n 2)M~! (nl ,t')M~~ (n2 ,t'). 

JJ lJ 2 0 ~ 1 2 J 1 J 2 

One must use eqs. (9. 1), (9.2) for the single-parton functions 
and their initial conditions M/ (n,t=0):8 ij, Mf (n, t = 0) = 8 1.i • 
1ne ciiiierence oecween cnese part1cu1ar. ~o1ut1ons 1s the add1-
tional term P in the expression for M~tJ 2 . However if we 
introduce new functions 

1 

- j j j lj 2 D j 1 ( n1t 2 (x1 ,x 2) .. D 1 (x 1,x 2 )-'8 j
1
j
2
8 (x 1-x 2) 

1 
x

1 
), ( 13. I) 

=· j j -;llJ 2 _,.i-t n
1 

12(x1,x2 ) .. D1 (x 1 ,x 2 )-~j 1 j 28(x1 -x2 )D 1 (x 1 ), (13.2) 

the equations for moments of ~ew fragmentation functions re
main unchangeable and a term P vanishes in equations for mo
ments of new distribution functions. And then the particular 
solutions of type (I 2) for new functions will be the same. 

One notes that these particular solutions satisfy zero ini
tial conditions at t.o. They will be the only solutions of 
corresponding equations if we are interested in solutions with 
zero initial conditions. We can obtain the same or not the 
same solutions for the distribution and fragmentation func~ 
tions depending on the choice of functions M, ~, or M , ttl 
for which we demand zero initial conditions. These initial con
ditions are obtained unambiguously from definitions of multi-

6 

\ 
J 

) 

parton functions b¥; Lipatov~ s method: functions D , 5 and 
their moments M , M' satisfy zero initial conditions. There
fore the solutions for moments of two-parton distribution 
i'!.jlj2 . •hJ2 . 
M 1 and fragmentat1on M 1 funct1ons may be expressed 
through moments of single-parton functions by eq. (12.2) in 
the same way. It coincides with the jet calculus rules.There 
is the same situation in case of n-parton functions. The 
equations for the multiparton distribution functions were ob
tained also in ref,/11/ by Lipatov~s method. However their 
solutions were compared there with the jet calculus rules pro
posed for the multiparton fragmentation functions. It is shown 
in this paper that the distribution and fragmentation func
tions satisfy essentially different equations but they have 
the same solutions on the definite initial conditions. The 
difference becomes crucial when we generalize these equations 
for hadron jets description. This question is discussed in de
tail in the next part. We only note that the solutions of the 
jet calculus rules type may be obtained for correlation dis
tribution and fragmentation functions: 

j j jlj Jt j2 AJ 2(x 1,x 2)-D 1 
2(x 1,x 2) -D 1 (x 1)D 1 (x 2 ), (I 4. I) 

-jlj2 _,jlj2 -Jl _j2 
A

1 
(x1,x2)=D

1 
(x

1
,x

2
)- D

1 
(x 1 )D 1 (x 2). (14. 2) 

It is easy to see that the moments of correlation distribu

tion functions· ~Y 2 (n 1 ,n 2 ,t) satisfy the same eq, (8.1) as mo

ments of two-parton distribution functions Mj11j 2(n1 ,n 2 ,t ) • 
The equations for moments of correlation fragmentation func-

_,j. 
tions A

1
tJ 2(n1 ,n 2 ,t) _differ from eq. (8.2) by appearance of 

the additional term P · 

- j j dA 1t 2(n
1
,n2 ,t) 

dt 

_jlj 2 
.I A , (nl,n2 ,t)Pi-+i' (nt+n2)+ 

i,. i 

(I 5) 

+ 
-j -j2 -

I M.l(nl,t)Mi (n2,t)[Pi ... i i (nl,n2)+Pi-+i i (n1,n2)]. 
i i '1 2 1 2 1 2 1 2 

The direct substitution shows that the solutions for moments 
of correlation distribution and fragmentation functions may be 
expressed through the moments of single-parton functions in 
the same way by eq. (12.1) unlike the above-considered case 
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of the two-parton distribution and fragmentation functions. 
It differs from the jet calculus rules by replacement expres
sion P ... (n ,n2) with one [Pj->J·J· (n 1,n 2)+PJ .... J. J. (n ,n )]. 

J .. J 1 J 2 1 1 2 1 2 1 2 
Again zero initial conditions for correlation functions fol
low from their definitions. 

3. As was noted a present level of our understanding 
of QCD structure allowed one to work only with free quarks and 
gluons but the conversion of colour objects into hadrons one 
must describe phenomenologically using hypothesis of soft 
colourlessness, i.e., one assumes that nonperturbative hadro
nization process takes place under small virtualities of par
tons and does not interfere with the hard process taking place 
under large virtualities. Then hadron features are obtained 
by convolution of Q2-independent phenomenological functions 
with multiparton fragmentation functions. For example, two
particle fragmentation functions for a parton of type i to 
fragment into hadrons h 1 , h 2 are given by /5/ 

-h h dx'dx' -hl x1 -h2 x2 ::i1i2 , , 
D. 1 2 (x ,x ,t) = l { -:::1;-:;.L- D j ( -;.O)D j (-:,O)D i (x1,x2 ,t) + 

I 1 J. jl j 2 X1 X 2 1 X1 2 X 2 ( 16) 

dx -h1h2 x1 x2' -j 
+ l { -::--;; Di ( 7 , 7 • O)Di (x,t), 

where 
tions 

we pointed explicitly t-dependence of multiparton func
and introduced phenomenological t-independent fragmen-

tat ion 
type i 
ly. 

-h -h 1h2 
functions Di (x,O) , Di (x1 ,x 2 ,0) for a parton of 
to go (inclusively) into one or two hadrons according-

It is easy to obtain the equations for these two-particle 
fragmentation functions using the equations for functions of 
parton level 

_h1h2 
dDi (x1,x2 ,t) 
--------- ... l dt i' 

1 dx '-h1h2 c!t ~ t)P . . , 
{ --;-20 i, X"' X, • 1->J 

X1+X2 X 

1-x2 dx' -·h1 x1 -h2 x2 
+ l { ----Di (-;-.t)Di (--,t)Pi->i i (x'). 

i1i2 x
1 

x'(l-x') 1 x · 2 1-x' 1 2 

(x, )+ 
(17) 

We also used the expression of single-particle fragmentation 
functions for a parton of type i to fragment into hadron h 

-h dx'-h x -i' 
D1. (x,t) = l ( ---Di '(-; ,0) D i (x ',t ). 

i' x" x 
(18) 
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Functions o~th2 (x1,x 2,0) introduced phenomenologically de
fine initial conditions for the_two-particle fragmentation 
functions as well as functions D~(x,O) define initial con-
ditions for the single-particle fragmentation functions. 

Taking moments we obtain 

-hth2 
dM i (nt,n2,t) -hth2 
-·, - •• ; M i , ( n 1' n 2 ,t) P i->i, ( n 1 + n 2) + 

I 

(19) 

+ 
-h1 -112 

I. M. (~,t)M 1 {n2,t)P1_, 1 1 (n 1,n2), 
it !2 1 t 2 1 2 

where 

- hth 2 t "1 "2 -hl h 2 
M, (nt.n2 ,t),. (x t x2 0(1-xt -x 2 )D 1 (x1 ,x 2 ,t)dxt dx

2
, 

0 

-•h 1n-h 
M 1 {n,t)= (x D 1 (x,t)dx. 

0 

(20) 

Again the particular solutions of eq. (19) may be written 
as :-:h1h? 

tYI io tn1,n 2 ,t) •· 

t -j , -ht ,-h2 , (21) 
. ~ . ( dt 'M1 (n 1 +n2 ,t-t )PJ ..... J. J. (nt,n2)MJ. (n1,t )M . (n2 ,t ). 
J J 1J 2 0 1 2 1 J2 

However now the fragmentation functions have non-zero initial 
conditions therefore one must find solutions that satisfy the 
homogeneous part of eq. (19) and have definite initial condi
tions to obtain the solutions of eq. (19) with definite ini
tial conditions 

-hlh2 -hth2 -j -h h 
M1 (n 1 ,n 2,t)=M 10 (n1,n2,t)++M 1 (n1+ng,t)Mi12(n1 ,n2 ,o). (22) 

The eqs. (17), (19) for multiparton fragmentation functions 
were obtained also in refs/12,13/ but from the jet calculus 
rules. It was noted 1131 that equations obtained in ref.1111 were 
not applicable for description of parton fragmentation into 
hadrons though these equations lead to the solutions coinciding 
with the jet calculus rules. It is clear from the present con
text that the equations for multiparton distribution functions 
describe features of ep-scattering and the equations for 
multiparton fragmentation functions describe features of e+e--

9 



annihilation into hadrons. That is why the last equations 
are easily generalized for description of parton fragmentati
on into hadrons at standard assumption about hadronization. 
The equations obtained for multiparton distribution functions 
may be generalized for description of multiparton distributi
ons in hadrons using the proper convolution of distribution 
of parton level with t-independent phenomenological distri
butions of partons in hadrons. For example,the distribution 
functions of two partons jt,j 2 in hadron hare defined by con
volution 

it i 2 
Dh (xt,x2,t)- ~ 

J 

i - iti 2 x1 X9 dx 
Dh (x,O) D J. (- ; -·, t) - + 

X X x2 

+ l 
i{i~ , , it x i2 x dxl dx2 

( Dh (xt;x2 ,O)D., C-+,,t)D., (-:.2-,t)---. 
i{ j; J 1 X t J 2 X 2 Xl X2 

(23) 

Again the equations for these functions are obtained using 
the equations of parton level. We write only the equations 
for moments 

iti 2 dM h (n 1,n2 ,t) 

-----~-----------:= l, Miji 2(nt,n 2,t)PJ·' ... j (n 1 )+ 
. , 1 1 
J 1 (24) 

iti2 ~ i p ( ) + l Mh (nt,n2,t)P., . (n2)+ ~ Mh(n 1 +n2,t) ... nt,n 2 . 
i2 J2 ... J2 i J->JtJ2 

The initial conditions are defined by phenomenological 
functions as in the case of fragmentation functions. As be
fore the particular solutions of eq. (24) may be written as 

. . t . 

M~~ 2 (n 1 ,n 2 ,t) =,,I_, ( dt'M~ (nt+n2 ,t')Pi ... iti~ (n 1 ,n 2)x 
JJ 1 J2 ° 

it , j2 , 
x M., (nt,t-t )MJ.' (n 2,t-t ). 

J 1 2 

(2S) 

One may find also the solutions that satisfy 
tial conditions introduced phenomenologically 

definite ini-

iti2 i~2 M h (n 1 ,n2 ,t) = Mho (nt ,n 2 ,t) + (26) 

it i2 (n 1,n 2,0)M., (n 1 ,t)M., (n 2,t). 
Jl J 2 

+ .~., MiJi2 
Jl J 2 

10 
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In conclusion we emphasize once more that the equations 
for the multiparton distribution and fragmentation functions 
have essentially different structure though on the definite 
initial conditions they lead to the same solutions which co
incide with the jet calculus rules. The difference of these 
equations becomes clear under their generalization for desc
ription of parton fragmentation into hadrons. 

We are grateful to M.I.Gorenstein, O.A.Mogilevsky, V.K.Pet
rov for numerous and fruitful discussions. 
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WenecT B.n .• CHHrHpea A.M., 3HHOSbeB r.M. 
YpaBHeHHR AflR MHoronapTOHH~x pacnpeAeneHHH a KXA 

E2-82-57 

Hcno~b3YR naproHHY~ HHrepnpera~H~ AHarpaMM reopHH B03My~eHHH KXA 
a rnaBHOM norapH$MH4eCKOM npH6nHmeHHH, Mbl nony4aeM ypaaHeHHR AflR MHOronap
TOHH~x $yHK~HH pacnpeAeneHHR H $parMeHTa~HH. 3TH ypaBHeHHR HMe~T cy~eCTBeH
HO pa3Hy~ CTPYKTypy, OAHaKO, npH OnpeAeneHH~X Ha4anbH~X ycnOBHRX npHBOART 
K OAHHaKOB~M peWeHHRM, COBnaAa~~HM C npaBHllaMH HC4HCflCHHR CTpyH. npHH~H

nHanbHOe pa3flH4He 3THX ypaBHeHHH npORBnReTCR npH HX o6o6~eHHH AflR OllHCaHHR 
aAPOHH~X CTpyH. 

Pa6ora B~nonHeHa B na6opaTOPHH TeopeTH4eCKOH $H3HKH OHRH. 

npenpHHT 06DeAHHeHHOrO HHCTHTyTa RAePH~X HCCfleAOBaHHH. Ay6Ha 1982 

Shelest V.P., Snigirev A.M., Zinovjev G.M. E2-82-57 
The Multiparton Distribution Equations in QCD 

The equations for multiparton distribution and fragmentation functions 
are obtained by using parton interpretation of the leading logarithm diag
rams of perturbative QCD theory. These equations have essentially different 
structute but the solutions are the same on the definite initial conditions 
and coincide with the jet calculus rules. The difference is crucial when 
we generalize these equations for hadron jets description. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 

Preprint of the Joint Institute for Nuclear Research. Oubna 1982 


