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1. INTRODUCTION

The problem of infinite self-energy of the point charge is
normally regarded as resolved by the mass renormalization.But
exact solutions of the renormalized equation of motion of the
radiating point charge, i.e., the Lorentz-Dirac equation’Y
seem inevitably to show either of the two pathological pro-
perties, run—away (self-acceleration) or preacceleration. The
former represents that if the charge had once been given an
acceleration its velocity continues to grow even if the force
has ceased and it approaches asymptotically the one of light.
Such unphysical solutions can be eliminated by imposing ap-
propriate asymptotic conditions. Then a solution which satis-
fies the conditions is inevitably burdened by preacceleration,
i.e., the charge starts to accelerate before the force begins
to act, in contradiction with the causality. A detailed ana-
lysis of the situation with self- and preacceleration is given
by Rohrlich/?. For more recent papers on the problem we refer
to 1ntroductory sections of refs!/ 3% .
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electrodynamics does not concern the reality, since it beco-
mes essential for such intensities (forces) and wave lengths
of external fields, that should be considered in the frame-
work of quantum mechanics. But in the classical region it is
regarded as sufficient (and even as necessary) to treat the
radiation reaction as a perturbation (see, e.g., ref. 8/, §73).
Then there is no problem of the run-away and the preaccelera—
tion for the problem is related to exact solutions of the Lo-
rentz-Dirac equation and not to its iterations by radiation
reaction.

However, this is just the reason to investigate the origin
of the contradiction between physical expectations and mathe-

matical results. Indeed, in view of its relatively simple mathe-

matics the theory of point charge may serve asa dynamical model
for studying the consistency of a perturbative approach and of
the exact theory, i.e., the problem which is both important
and almost inaccessible in the quantum field theory. The prob-
lem of self-consistency of the classical electrodynamics does
not seem also to be purely academic.

In the present paper we attempt to trace and to surmount
the afore-mentioned difficulties of the classical charge dy-
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namics by giving a more strict mathematical definition to di-
vergent terms that arise in the course of solution of the Max-
well-Lorentz system for a point-like charge. In Sec.2 the es-
sentials of the problem are represented as we understand them.
In Sec.3 we introduce a regularization of the retarded Green
functions of the electromagnetic field which leads to a rela-
tivistic-invariant integro-differential equation, which

is apparently causai. We show that the Lorentz-Dirac
equation is the limit of our equation for a vanishing
regularization parameter. In Sec.4 we argue that if
non-run—away solutions of our equation exist, they do not
pre-accelerate.

2. MOTION OF A POINT CHARGE IN CLASSICAL ELECTRODYNAMICS

We start with the action, see, e.g., ref.’%/
S=myc® {d)\\/——zl —— ((dx)“{ B(X)F'aﬁ(x)—
_-—Aa(x)] (x)%;

mg being the (bare) mass of the charge, aB=0 Ag-9g A,
is the electromagnetic field tensor, z?(N) being a world
line of the charge and

a P4 dz ¢
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Variation of A and Z%® and choice of the proper time 7 as
a parameter A, i.e.,

7 =-c2, 2% = --:—;—Za(r), 2)

T

give the system of Maxwell-Lorentz equations (in the Lorentz
gauge) :

oA =—-4—g—ja(x). (3a)

a

my 2% () =%Fa/3 (z)iB . (3b)

If one considers the problem of charge motion in the (free)
external field Al"(ﬂ. then it is natural to represent the
solution of Eq. (3a) as a superposition of A "(X) and of the
retarded field

ret B

A () =AT (DA (=Al W+ (@i D B (4)



where

ret

G i (%) = -0, Do (x.l7,g (5)

is t?g{retarded Green function of the operator o, see, e.g
ref.

ret

G B(X, )""5 (X—- ;{‘)1] aB!

1,8 = diag(-1,1,1,1) is the Minkowsky metric tensor, 9(2(%),x")
is the function that "takes values" 1 if X’ is in the past and
0 if x” is in the future of a space-like hypersurface X, and

o (%, X) = %_(x"_i" WXy = Xy ) 6)

Subsequent substitutions of Eq. (1) into Eq.(4) and of Eq.
(4) into Eq. (3b) lead to a divergent term in the right-hand
side of the latter. There are several approaches to subtrac-

tion of the infinite term of the form lunfzzfﬁaz (7)
€

€-0
been transposed into the left-hand side this term in the sum

with an (infidite) bare mass myg 1is considered as the finite
observable mass m. The renormalized equation thus obtained is
called the Lorentz-Dirac equation (the LD equation) and has

tho form

Having

. —-9— in .B g- —-eE-... _ ——];_.. ..y .
mz , (7) = . F‘aB(z)(z + 3 03(za <3 z,2 z2,). @)

The force in the right-hand side proportional to e? is the

radiation reaction (radiation damping). As was noted in Sec.l,
exact solutions of Eq.(7) have pathological properties of run-
away or preacceleration except the trivial solution z () =0
for the trivial case of F 3(2) = One might suggest that
incompatibility of causallty and an acceptable asymptotic be-
haviour for r+»= 1s the cost for the charge being struture-
less and that the theory of finite-size charge would not meet
difficulties of this kind. At present, however, a sufficient-
ly strict relativistic—invariant formulation of the theory of
the finite-sized charge is available only in the form of a
complicated descriptive algorithm which does not seem to be
accessible to any calculation or study (see’?2/,Sec.7).

These considerations motivate a more careful investigation
of possible origins of the difficulties with the point charge
theory. It is known’?”/  that the divergences in the quantum
field theory originate actually from the mathematical fact
that products of singular distributions involved in the theory

4

are not in general distributions themselves. A strict removal
of the divergences consists in attaching a strict meaning to
such products via an intermediate regularization of factor
distributions.

The situation in classical electrodynamics seems to be si-
milar: according to Eqs. (4), (1) the expression for ATt
contains a product of five distributions (= (%),%) , 8[o(x}ﬂ

(4)(x z(s)) and has only the meaning of singular distribution
at best. To derive the LD equation from the system of Egs.(a, b)
one should regularize the distributions and to remove the re-
gularization after mass renormalization. However, if this is
the case, it seems to be more consistent to define an explicit
relativistic~invariant regularization of the retarded vector
potential and to remove this regularization only in solutions
of regularized motion equations. We will follow just this way.

3. REGULARIZED EQUATION OF MOTION FOR A RADIATING POINT CHARGE

It is well-known that distributions may be treated as im-
proper limits of sequences in approprlate functional spaces.
The most attractive way to regularize AL' (¥ in Eq. (4) is
to substitute a sequence from a space of test functions on
which the distribution G el (x, X) is well-defined instead
of i, (®¥. But if this were possible in a relativistic-inva-
riant way we would have got a theory OI a smeared ouc” charge.
The lack of such a theory was mentioned above.

An alternatlve possibility is to regularize the Green func-
tion G| ﬁ (x,¥). This end can be achieved by means of the fol-
lowing procedure:

1) replace &) by a sequence in the Schwartz space S of
test functions:

b (0) = ———s e (0 B/4R%) —8lo). ®)

V7 RZ R

2) Define a family of space-like hypersurfaces E(X)“CODSt
orthogonal to the charge world-line 2z%(s), 1i.e.,dz2(2)~ Z,
so that a point X, which is sufficiently close to the line be—
longs to one and only one hypersurface X; then one may write

(%), ¥ =0EZ(®, Z®).

It is worth noting that our restriction of arbitrariness
in the choice of 8y does not affect the generality of our re-
sults.

The above procedure leads to the following expression for
the retarded potent1a1

AR (xR = [ &9[S(® - S @5, lo(xPzg » 74 =040 (9)

5



Of course, AL (x;R) is not a solution of Eq.(3a) unless R=0

but it is remarkable that the regularization conserves the
Lorentz gauge
ret

P A, (xR =0,

Finally, we obtain

F"E‘ (x;R) = 2e {drO[Z(x) z(‘)]a {o(x, 'z)]z[ﬁ ]a(xz)

1 ’ d (10)
C[aﬁ] = ?(Caﬁ - C,Ba )y SR(G) E—d_a‘aR(G))

and substitution of this expression into Eq.(35) leads to the
following integro-differential equation

. ; . 2
me g () = SEB 2P S0, (R (11)
T
@, (r, R) = 2:P [ & zpgd,) 02285 [0(z 2. (11a)

—00

This equation is relativistic-invariant and has no divergences
if R is not zero. It is causal in the sense that the accele-
ration at a proper time r is determined only by positions
and velocities at this and preceding times. However, we have
to know the prehistory of the charge because effectively we
have "smeared out'" the region of interaction of the charge.
It is obvious that an essential contribution into the integral
defining the nonlocal radiation reaction is given by the clo-
sest past of an order of 2R/c.

We show now that, after renormalization, Eq.(10) is asymp-
totically the LD equation for R-+0. For this let us make N in-
tegrations by parts in @,

9 Muglr, 7)
¢, = nz_ 2(-—1) Vn+1(r, 7) ._(_::n—“ Fap t
(12)
a ua(fyj
+(—1) f dr VN+1(T S Jp— —,
ar
where
ng (r 9= 2P0 2 ‘g (ay ol4n, A7),
LB Tk—1
v, (G, 7= f dr, f dry ... [ dry S, ry) = (12a)
17 . k-1,
= (k—l)!—J;o drl(r—r1) BR (r,rl).

It is obvious that
0 < Vk(r,?')s Vk(r,r). (13)

- 1 .
if r <r. Define 'Ss\a]AZ /vgk and substitute here the expansion

N +1
Nop 0 Kk (=1) (N+1D N+1
- t el g t , (14)
0= 20 S % U Sy fe @
where
(n) d Za/dr , t=r-7, T <w <7.

Rever51on of this series gives

2R 1 2R 4, . 2R
0< t(s) = =S~ STrY Zy2 (———s) O[(-c-.s) 1< - s, (15a)
~ -y 2R 2R
05t'(s)=-205{1- Z—E'EZVZY("E") Lol E )3]}5——(-:--. (15b)

The upper restrictions arise: in Eq.(15a), from the fact that
the straight-line distance (=2Rs) between time-like situated
points z(r) , z(7) is the longest one (the time-like extre-
mal) and in Eq.(15b), as a property of triangle with three
time-like sides.

Thus, we have

-8

! fdm(gtkkﬁs e =

Vi RAk-11 0

S ERF ke Lo @R)* < (16)
v R k-1 © 4 c
k-4
<4 (2R &2
v RA k-1 ¢ 4

Using Eqs.(12a), (15a,b) we obtain, instead of Eq. (11),

m 7, - SES (2if - _\7—3 &1 o *z,
C
v 2 9—3-2 FOERD N (g - Lo 2y 2720 ¢ OB



and after renormalization

2
m=m0+8m =m0+—e——2~1:‘—(‘§-{2-)“' (]7)
C \777_R
we come to the LD equation, Eq.(17), in the limit R-0.

At the same time it is apparent that for validity of the
transition to the limit it is necessary for the function
g (r, D/ Pk to have no nonintegrable singularities i.e.,
a certain smoothness of the world-like, The most important
matter is, however, that the limit of a solution of Eq. (11)
could not generally be a solution of the limit equation (i.e.,
the LD equation) at all. Considerations of the following sec-
tion show that this seems actually to be the case.

4. EXISTENCE OF CAUSAL NON-RUN-AWAY SOLUTION

Suppose that the Lorentz force (e/c)}?‘;n iB acts a finite
time and the world line is of class C™, 1i.e.,

1(;)(1 (D < cp () <o (n=0,12,...), ¢,(n)= const (18)

N
and there is no self-acceleration

k
lim (Z)a(r) =0 k=23... (19)

T = oo
Renormalize Eq.(11) by the replacements
ren C i
mg-m @ P, =0, + -é—z-’o‘mza
® 5" has apparently the same form of Eq.(12) up to the rep-
lacement of V3(r, 7) by Véen (r, 1) = vg (s, 7) - omic/e?).
Under conditions (18), (19) the remainder (integral) term in
Eq.(12) vanishes for N+ sufficiently fast., To see. this, it
is sufficient to use Eq.(14) and the Taylor series for z,(7)
with the remainder for K=2 and the following inequality

expio? (r,r) /4R 4} < e {[o® (7) + o B(7, ] /4R *) <
< eml-[-0* + (-1 *] (/2R) 4,

that arises for the same reasons as the upper restrictions in
Eq. (15a,b). Consider now a sequence of truncated equations con-
verging to Eq. (11)

. 2
i, ) =SEg@iP s S0l N, (20)

where
. N 3" ualr, 7)
ren ren n a7,
Py mR=-vy ()2, (7 +n=23(—1) oy (7) ~—~—a—T:-n—————| po

Simple transformations give

n .gn—1 k+ 1) (n—k

e | . =(n—1){-—02(z)a v P k=2 . vk—i—-l—-(z)( zé( Za)i. 21)

The coefficients v§" , vy , k=45.. are restricted
functionals on C” -world lines. A further simplification of
the system under consideration comes from the rep&ﬁcement of
Vs (r,, the coefficient of the major derivative 'z, () by
the leading term of its expansion in powers of (2R/c), Eq.(16).
An integro-differential equation so obtained for Eq.(ZOP?_zis
equivalent to Eq.(11) up to terms of the order O[(2R/©) ]
and may be represented in the form

N—-2(N) . e oin .B
m[(—tN) Z,+ za]=E—FaB(z)z -
2 ren * 1 N1 n anua (r, 7)
-e“clv;®(n, Nz, - —2 n§3(—l) Voo ———é—;—n————} =~ (22)

- ) —k
g 3BET (0N o1 ew a0,
k=1 k+

&
c 2

where
2(N- -
(tN)N——z _ 4e?(N-1) F(N+3)(-2§—)N 3 ' (23)
my7 c2N! 4 ¢

Note that in view of Eq.(22 the right-hand side contains no
derivatives higher than(N—z ) (). Now we will take into account
the asymptotical conditions (19) explicitly by the method pro-
posed by A.A.Sokolov/S/_ for the nonrelativistic problem of the
"luminous electron"; the relativistic version is due to Rdhr-
lich/?, Sec.6-6.

Introducing an integrating mul tiplier one transforms Eq.(22)
to the form

N-2 _ .
m -4 —{-ty )N e—r/tN z, (D =
dr N-2
N-3 N-2 g k+¥2  ~r/ty =~
:{‘l‘a [r;z(.)]+k)il( K )(—tN) Z, le =Y,



After (N-2) -fold integration with allowing for the conditions
(18), (19), using Eq.(12b), and introducing a new integration
variable we obtain

s _ 1 < N-3 ¢ =

Mre) = g J %4 e Pl e 2O
The shift of the argument by a constant ty 1is just an evi-
dence of preacceleration, see’? sections 6-6, 6-7. However,

tN+0 fOI‘ N-Doo’

i.e., the preacceleration ceases as Eq.(22) approaches the
exact regularized equation (11). This is the case for arbit-
rarily small but nonzero values of R. If one sets R=0, then
the sequence of equations (22) is truncated by N=3 and accord-
ing to Eq.(23), t,#£0, i.e., nonvanishing preacceleration oc-
curs.

These considerations give a reason to think that Eq.(i1)
has solutions with no pre- and self-acceleration. It is very
significant that our arguments are valid only under keeping
a nonlocal character of Eq.(22) via the coefficients Vp4+1(rn7).
If they are expanded in powers of 2R/c to the same order of
O[(2R/c) V2] then one obtains a system of ordinary differen-
tial equations of order N”>N, and the higher derivatives
which arise from the expansion of Vgen and V4 enter into
the system nonlinearly.
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Wnwun C.B., Tarupos 3.A. E2-82-55
K Teopuu KNaccMuyecKoro penATMBMCTCKOrO TOYEUHOro 3apapaa

YcTpaHeHme pacxoaguMocTu cob6CTBEHHOM Macch TOYeYHOro 3apaja B Knaccu-
YeCKOM 3NEKTPOAMHAMMKE PaccCMaTpUMBAETCA KaK joonpepeneHue Npou3BeaeHns
o606ueHHBIX GYHKUWA NyTeMm perynapu3aunn 3anasguiBavuen ¢yHkuum puHa. Nonyudaio
weecA NPu 3TOM PeNATUBUCTCKOE WHBAPUMAHTHOE perynApu3oBaHHOE ypaBHeHuWe ABu-
HEHUA WM3NYyuanwero TOUEUHOro 3apARA NPUM CHATUW perynApu3aunu NepexoanT B
nasecTHoe ypasHeHue flopeHya-[lMpaka. NpuBORATCA apryMeHTH B NOnb3y TOro, 4ToO
cywecTByeT peweHue perynApu3oBaHHOro ypasHeHWA 6e3 Tex naTonoruvyeckux
CBOMCTB /HENPUUMHHOCTbL MINUM CaMoyckopeHhwe/, KoTopsle Heu3aGewmHs ANAR peweHun
ypasHennsn JlopeHya-Aupaka.

Pa6oTta BeinonHeHa B JlaGopatopuu TeopeTuueckon ¢mnauku OUAH.

Nannauor NRianuuALLAFA LLATLTUTA BAonuLY urcnannoavui  flvRua 1GR9
Hpeonpuar UByenuveunnen " 3 N S -

11"yn S.B., Tagirov E.A. E2-82-55
On the Theory of the Classical Relativistic Point-Like Charge

Removal of the self-mass divergence of the point in the classical
electrodynamics is treated as a more strict definition of a product of
singular distributions via regularization of the retarded Green function.
The regularized relativistic invariant equation of the radiating point
charge motion thus obtained under the removal of regularization changes into
the Lorentz-Dirac equation. It is known, that solutions of the latter neces-
sarily prove at least either of two unphysical properties - self-accele-
ration or preacceleration. We show that condition of simultaneous absence
of these properties is not contradictory for the regularized equation.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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