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The Wahlquist-Estabrook method 11 - 61 which yields the Inverse 
Scattering Method equations 17 •81 is considered. A short review 
is presented on the interpretation of the prolongation forms 
as connection forms 12·31 and also on a possible extention of 
the method for the case of two spatial dimensions/5,6/. The pro­
longation structure approach of·Wahlquist and Estabrook is 
illustrated by its application to the sine-Gordon model 131 and 
to the nonlinear Schrodinger equation in two spatial dimensi­
ons /&,6/. 

We share the belief of the authors of the method that the 
differential-geometric methods must lead to greater understand­
ing of a broad spectrum of nonlinear phenomena, including 
completely integrable models of the classical field theory, 
which have the solitary wave solutions (solitons). 

Section I provides a brief introduction to the prolongation 
structure approach of the Wahlquist and Estabrook studying the 
nonlinear evolution equations with two independent variables

1
1.

2
/ 

In Sec. 2 it is shown how the prolongation structure for the 
generalized sine-Gordon equation can be found 13~ The generali­
zation of the prolongation structure approach of Wahlquist and 
Estabrook to two spatial dimensions 16•6/ is discussed in Sec.3 
for the generalized nonlinear Schrodinger equation. 

I. Let us discuss the main ideas of Wahlquist and Estabrook 
method using a few nonlinear equations as an example. It is 
well known that useful information about the given equation can 
be obtained if it can be presented as complete integrability 
condition for some system of equations. For example, the 
Burger's equations 

2 
ut + uxx +(U ) x =0 

(I. I) 

can be presented as the integrability condition for the system 
of equations 

{X x·U ~, ~ t =·-(Ux+ u2 )~' (I. 2) 

~Xt 20 etx => Ut + UXX+ (U
2 

)X =0. (I. 3) 

Then we come to the Koul-Hopf substitution 

ex 
u = T- => e t + e xx = o. 

(I .4) 
i ~. 
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Recall also the Korteweg-de Vries equation 

Ut + 12UUx+U XXX =0. 

" 

(I. 5) 

Just the representation of this equation as integrability con­
dition for the system of equations 

2 
ex= A-2u-e , 

et = 4[ (U+A)(2u +of 
2 
-A)+ -tu xx - 2ux of] 

made it possible to develop the Inverse Scattering Method 
solving a nonlinear evolution equations 191. 

It can be shown that another system of equations 

A _,2u) 
of, 

0 
<.-(: (

-2ux 4(u+A)(2u-A) +2uxx) 
oft= 

-4(u+A) 2u x 

(I. 6) 

for 

(I. 7) 

also satisfies the same conditions, where of is a column-

vector ( ~1) . 
Both sy~tems contain the arbitrary parameter ,\,which appears 

as eigen-value parameter of the inverse scattering problem. 
Notice that system (1.7) is yet linear one. 

Returning to the idea of finding the system for which the 
given nonlinear equation (or system of equations) represents 
the integrability condition we come to the conclusion that so­
lution of the problem may be non-unique. Hence we must bear in 
mind this uncertainty of the Wahlquist-Estabrook method. 

Let us describe the basic idea of the method using differen­
tial form language. In the Wahlquist-Estabrook method the langua­
ge of differential forms, Pfaffian integrable systems and the 
theory of Cartan-Ehresmann connections/10-13/ are widely used. 
Every nonlinear evolution equation with two independent variab­
les x and t may be expressed in terms of second-rank dif~eren­
tial forms (2-forms) la 1 l.·i =!, ... , N, such that there exists 
the unique correspondence between the solutions of nonlinear 
equation and the solution manyfold for the forms Ia 1 I. It is 
supposed that the set of forms !a 11on the corresponding manyfold 
x is completely integrable, i.e., the set of forms constitutes 

a closed ideal of differential forms I a i I 
di c I. 

A prolongation structure 
f3 =I , 2, ••• , M on X x Y , 

d w c 1r * I +· w , 

2 

(I. 8) 

represents the set of !-forms w~ , 
Y ""I-f 1, of ~ ••• ,.fMI, such that 

(I. 9) 

.. 

l 

( . 

where 11 is the Cartesian projection of XxY onto X, i.e., 
11(x,y)= x. From (1.9) it follows that the system 
lrr * a

1
, w(3 I is integrable one on XxY and the projection 

of any solution manyfold of this system on X repregents a solu­
tion manyfold of the set of forms Ia 1 I. If !-forms w generate , 
one-parametrical family, wf3= w~(,\), then the set of equations 
for e.which follows from the conditionwf3=o, .. gives the linear 
"inverse scattering" equation's. 

2. Let us discus's a variant of the techniques, developed 
by Wahlquist and Estabrook111 for finding prolongation struc­
ture for generalized sine-Gordon equation. Below we follow to 
Hermann/3/. Let 0 be a Lie algebra of matrices; u,ux are va­
riables. Suppose that 

~ ., A A 1 + ux A 2" 
( 2. I) 

~ = ~-13 (u), · 

where A is a constant parameter and A 1,A 2 are constant ele-

0 
' . . 0 (Ju ments of ; u-+ B(u) 1s a map 1nto . Let U=U(x,t) and ux = -­ax 

The condition that maps u ... (~.~) satisfy the pro1ongation 
equation is 

-1 
~t -~x-[~.~]=Uxt A2-A Buux-

-{AA1+uxA 2 , A 1 B(u)]= uxt A 2-[ A 1 , B(u)]-

-.\ 1 (Bu -[A 1 .B(u)])ux, 

where 

At= u X t + A2 

-1 
Bx•A Buux 

(Bu= ~) au . 

(2.2) 

We would like the right-hand side of (2.2) to vanish for each 
value of A. Solution of the equation 

Bu·[At, B(u)] 

can be presented 

B(u)=Bo+ B1 u + 

via a power 
B u2 
~·+· •..• 

2! 

B u2 
B u = B 1 +:B2u + _Ji__,+ •.• , 

2 

(2.3) 

series 

3 



[AO,B2] 2 
[A0, B(u)] =[ A 0, B 0] + [Ao. B 1] U+ --u + .•• 

2! 

Equating, we have: 

[A0,B0 ]=B
1

, · 

[ A0, B1 ] = B2=[ A0~ [ A0, B
0
]]. 

and so forth. In other words 

Bi .. (AdA 0 )i, j =0,1,2, ... , 

Hence, 
B i . 

B(u) = ~ ..::J!,.,c ~ (AdA0 )
1
(B0 ) j 

J j! j i! u = 

... ~ 
j 

Ad(Aou)i 

j! 
(B 0 ) = explAd(A 0u)}(B

0
) = 

.. Ad I exp(Ao u) I(B 0) .. exp(A0 u )B 0 exp(-A0 u ). 

• (2.4) 

This determined the A-l coefficient in (2.2) in the case of 
(2.2) is set equal to zero. Equating to zero the coefficient 
of AO,we obtain the following relation 

uxt A2 ·[A1 , exp (A0u )B 0 exp(-A0u)] •. 

The requirement that u satisfies an equation 

uxt -f(u) 

gives the condition to determine f: 

(2.5) 

(2.6) 

f(u)A 2=[A1 , exp(A0u)Bexp(-A0u)], · (2. 7) 

For example, if GaSL(2,R), · it is easy to .choose the elements 
A0 ,A 1 , A2 so that these equations reduce to the single sine­
Gordon equation/4/ 

u .. .sin u. xt 

Another possibility is to allow u to be a vectorial function 
of (x,t~. 

3. Below we will show how to generalize the prolongation 
structure approach of Wahlquist and Estabrook for an evolution 
equation in two spatial dimensions. This strategy was developed 
by Morris/51 for a generalization of nonlinear Schrodinger equa­
tion to two spatial dimensions: 

4 

] 

) 

1 

::;:.., ... ~ - ... .. - ..... -.. _ _, -

. a a 2 a2 1-·A .. [(--·+-)A -2A(<l>-JII)],, at ax 2 ay 2 . 

(a/ay- a/ax)!f>,. -·Lea/ax +a/ay) (AA *), 
2 

ca!ay+ a/ax) 'P = 1!2( a;ay -a I a x)(AA * ). 

The first step is to construct prolongation structure for sta­
tionary Schrodinger equation and .the second one is to extend 
that prolongation structure into one for the evolution Schro­
dinger equation. 

As was shown by Morris/51, to determine a prolongation struc­
ture for the equations 

c1+L)A = 2Ac<~>-'P).. (3.1) 
ax2 ay2 

.a a .... 1 a a A*) (--·""'-)...,=--(.._+~-)(A ' ay ax 2 ax ay 
(3.2) 

a a 1 a a * (-+ -)'P = -(- _,.._)(AA ), 
ay ax 2 ay ax 

(3.3) 

we must first settle on an appropriate closed set of 2-forms. 
Let us introduce the variables R and L defined by 

R = LcJL+:L)A, 
2 ax ay 

1 a a 
L =-(----}A, 

2 ay ax 

and then write down the Eqs. (3.1)-(3.3) in the form 

(..l_,_,_Q_)<l>= -(RA*+ AR* ), , 
ay ax 

(3.4) 

(3.5) 

(3.6) 

a a ( _,__ + -) 'P= (LA*+ AL* ), ay ax 

Ly = -Rx+A(<l>-'P),, 

(3. 7) 

(3.8) 

(3.9) 
R;= Lx+A*(<l>-'P ), 

where (3.9) is equivalent to the complex conjugate of (3. 1). 
The Eqs. (3.4)-(3.9) have an equivalent expression in terms 

of the closed ideal of 2-forms, ai, i =1, •.• ,6, defined by 
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------------------------------------.r---~------~~n-~~~~;;-.~~m.ua~------- --------~.~7.~-~-~~.----------------------~-----------------------------------------------

a =dAA dy - ( 'R-L)dx A dy, · 1 

a = d AA dx + (R + L ) d x A dy , 
2 

al3 = d<l> A (dx+dY)-(RA* +AR*)dx A dy, 

a 4 =diJI/\ (dx-dy)(+(LA*+AL*)dxA dy, 

a 5 = dLA dx -dRAdy +A(<l>-IJI)dx A dy , 

a = dR*A dX+ dL*A dy+A*(o:Jl-IJI)dXAdy 6 

To find a prolongation structure 

0 ., d,; + F (A, A*; R, R *, L, L*, <I>, IJI, ,;) dx + 

+G(A,A*,R,R*,L,L*, <l>,IJI,,;)dy 

we can choose F and G to be as follows: 

F-x1 +x2A+x3 A*+ Lx 4 +R*x5 +<l>x6 +1Px
7

, 

Q .. x 6 +\A+x10A* +L*x5 -Rx
4

+<l>x
6

-'Px
7

, 

and the Lie bracket must be 

[ F, G] .. (R-L)GA-(R+L) FA +(R*-L* )G A* 

-(R*+ L*)FA* -(LA*+AL*)FIP + (RA*+ AR*)F<l> -

-A*(<l>-IJI)FR* -A(Ill-.IJI)FL, · 

(3. 10) 

(3. I I) 

(3. 12) 

(3. 13) 

(3. 14) 

(3. 15) 

(3. 16) 

(3. 17) 

(3. 18) 

(3. 19) 

where Hp-aH/ap for partial derivatives. Substitution of (3.17) 
and (3. 18) into (3-19) leads to bracket relations of the vector 
fields xi • · 

Suppose that a two-dimensional evolution equation, which can 
be expressed in terms of a closed set of 2-forms la

1 
I, i =I, ..• , 

N , posses~es a linear prolongat~on strugture !a 1,n ~1. i =I, 
••• , N , ~ -I, ••. , M , where the I forms 0 are expressed by 

o/3.. ~ (F,s dx +a~ dy) l + d .; ~ (3. 20) 
a=i a a 

and suppose that 
{3 N f3· M {3 y 

d{l = k f I a i +: k TJ i\•Q (3 • 21) 
i=-1 I=1 Y 

6 

~. 

~ ( 
i 
' 
1 

I 
l 
I 
l 
~· 

I 

l 
•.. 
I 

!; 

l. )j 

-'{3 
The 2-forma IO I 

5'{3,.. n {3 A dt + ~ (GA -FB){3 e dxA dy 
r-1 y 

+(ABdx +B{3dy)Ad.;Y 
a. a 

(3.22) 

provide a prolongation structure for a. three-dimensional evolu­
tion equation defined by a set of 3-forms r;;i I. i=-o l, ... ,N. 

a 1 ... a 1 A dt, i ,. 1, ... , K , (3.23) 

iiJ -aj A dt+ {3 1 , i·K +1, .•• ,N, (3.24) 
where {3J are defined by the equation 

N ~! {3 
l f {3. =[(dGA-dFB)(} A dx A dy . 

A•K+l I 
(3. 25) 

The matrices A and Bin (3.22) satisfy the conditions 

(A,B ] .. 0, · (3. 26) 

[G,A] +:[B,F]~ 0. (3. 27) 
The forms la 1 I, i =I, .•. , K, which are basically unaltered, 
have been called the linearization forms 161 and the remaining 
forms I a J I ,j ... K+ I, ••• , N - ·the dynamic forms. · 

In our case the dynamic forms are a 3 + a 6 and Eq. (3.27) can 
be rewriten as follows 

- [~'] = (dGA-dFB)AdxAdy, 
~3~{:16 1 o 
{36 {34 

(3-28) 

where A and B satisfy the Eqs. (3.26) and (3.27). 
The matrices 

A-~ [f:f.-] i ftt.-l (3.29) and B =-· 
2 

give 
/ 

{3 3 = o. {3 4- o. 
(3.30) 

13 .. -.LdAA dxA dy. · {36 "'.!_dA* A dx A dy • 6 2 2 
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The corresponding.generalized dynamic forms 

a 5 = a 5 " dt - ~ ,dA " dx /\ dy, . 

a 
6 

= a
6

A dt + {~dA*" dx" dy 

yield to the generalized Schrodinger equations. 
The prolongation structure is given by 

o, 1 =d.; 
1 

" dt - ( ,\.; 
4 A~ +,; ~ dx " dt - ( 

3 
dy" dt. 

0. 2 ... d,; 2 
I), dt-(A*t 1 +A.; 2 -~ 4 )dXAdt -t'

4
dy Adt, 

' n3 .. d,;
3
Adt-(<Pt'

1 +L~ 2 +A,;~dXAdt-(<P,; 1 :....Rt' 2 -A,; 4)dyAdt 

+ J._{(,\,;1 +At' 2)dxAdy +(dXHly)Ad( l], 
2 

0. 4~dt' 4 Adt-(R*e+1Jif 2 + A(
4

)dxAdt 

-(L*,;1_,1J1,;2 +A*t's)dy"dt+ 

i 1 2 2 
+-(-(A*(+ A,; )dxAdY+(dx-dy)Adt' ). 

2 

I' 

(3.31) 

(3.32) 

Sectioning into a solution manyfold of nonlinear Schrodin­
ger equations gives 

(;-"-el +Ae2+ .;s •· 
(3. 33) 

(~ •. fs, 
(3.34) 

2 1 2 4 (3.35) e - A* e + At -· e X - ~ , 

~-· ,;\ 
(3. 36) 

y 

3 1 2 3 . 1 
t'x = <P,; +L,; + ;..,; - tet • 

(3.37) 

,;:=<llt'l-R,;2-A,;4 _J..,;; • (3.38) 
2 

8 

. 
~ ~ 

.,, 

·.· j. . ' 
' 

(f~ ~: 
i 

' 

·I 

·; 

• !: 

I, 
; 
I 

() 
. . 

/ 

,;4 .. R*,; 1 + '1',;2+ .\,;4_J..,;2' (3.39) 
X 2 t 

4 1 2 3 i 2 
ey= L*e -we +A*e + 2 .;t . 0 .4o) 

If e: =0, than (3.33)-(3.40) reduce to the linear inverse 
scattering equations 

e = 
o. .\ L <ll 

f. -·X 

[ A 0 

-1 0 

• R• } 

A A* (3.41) 

0 1 A .\ 

0 A* -'I' L* 
-A 0 -R <ll 

e .. I 1 e -·Y 1 0 
0 

0 1 

I 
If e x=O the Eqs. (3.33)-(3.36) become 

e yl -a- .\,;1 -A ,;2, ,; ;=A* ( 1 + A(2 (3.42) 

and Eqs. (3.37)-(3-38) become 

i cl ..1... * 2 1 1 2 --._ •·-( AA +A ),; +(-,A -ItA),; 
2 t 2 2 y ' 

.!_~ 2 .. (l_A* +.\A*),; 1+ (1-AA*-r!t2),; 2, 
(3.43) 

2 t 2 y 2 

These equations are equivalent to the standard Zakparov and 
Shabat/7,8/ form of inverse scattering problem for the non­
linear Schrodinger equation 

a a2 2 
i-A +-A +2IA I A=O. (3 l14) 
at ay 2 • 

The case ,;~ =0 can be treated by the same method. 
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IUua,n<a A.B., 5!HOBCKH A.B. E2-82-546 
NeTop; YoJti<BHCTa-3cTa6pyKa H ero rrpxMeHeHHe K xccnep;oBaHmo 
IICJIHHeiifib!X MO,O:eJie(r TeOpHH IIOJI5I 

PaccMoTpeH rrpep;noJKeHHbiH YoJIKBHCTOM H 3cTa6pyKoM Ill MeTop; 
IIOJJY'IeHHH ypaBHeHHII BCIIOMOf'aTeJJbHOH JlHHeiiHOH 3ap;atiH paccenHHH 
wm HeJJHHeHHbiX p;x¢¢epeHI.J;HaJibHbiX ypaBHeHHH. HcrroJib3YH anrrapaT 
p;HclJ¢epeHIJ;HaJibHblX ¢opM, MeTOA II03BOJI5IeT HaXOAHTb COJJHTOHHble 
perne!{Hfl HeJIHHeHHb!X 3BOJI!O!J;HOHHbiX ypaBHeHHH, 3aKOHbl COXpaHeHHH, 
a TaKJKe rrpeo6pa3oBaHHH BeKnyHp;a. Ha rrpxMepe ABYX geJJHHe:il:HbiX 
MOAeJJeH TeOpHH IIOJIH H3JlOJ!CeHa rrpoJJ;ep;ypa YOJIKBHCTa-3cTaopyKa Ha­
XOJKp;eHHH CTpYKTypb! IIPOAOJIJKeHHH B CJiytiae I<aK OAHOH, Tal< H ABYX 
IIpOCTpaHCTBeHHblX nepeMeHHblX. 

p aoOTa BbiTIOJIHeHa B J1aoopaTOPHH BbltiHCJIHTeJI bHOH TeXHHKH H 
aBToMaTH3aiJ;HH OHRH. 

npenpHHT 061>eA11HeHHOro HHCTHTYTa RAePHbiX HCClleAOBaH\lH. Ay6Ha 1982 
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The Wahlquist-Estabrook method which yields the Inverse 
Scattering Method equations is considered. A short review is 
presented on the interpretation of the prolongation forms as 
connection forms and also on a possible extention of the me­
thod for the case of two spatial dimensions. The prolongation 
structure approach of Wahlquist and Estabrook is illustrated 
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linear Schrodinger equation in two spatial dimensions. 

The investigation has been performed at the Laboratory of 
Computing Techniques and Automation, JINR. 

Preprint of the Joint Institute for Nuclear Research. Dubna 1982 


