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The Wahlquist—Estabrook method” ™%/ which yields the Inverse

Scattering Method equations/7£/ is considered. A short review
is presented on the interpretation of the prolongation forms

as connection forms 723/ and also on a possible extention of
the method for the case of two spatial dimensions’/58/. The pro-
Llongation structure approach of 'Wahlquist and Estabrook is
illustrated by its application to the sine-Gordon model”3/ and
to the nonlinear Schrédinger equation in two spatial dimensi-
ons/56/,

We share the belief of the authors of the method that the
differential—-geometric methods must lead to greater understand-
ing of a broad spectrum of nonlinear phenomena, including
completely integrable models of the classical field theory,
which have the solitary wave solutions (solitons).

Section | provides a brief introduction to the prolongation
structure approach of the Wahlquist and Estabrook studying the
nonlinear evolution equations with two independent variables L2/
In Sec. 2 it is shown how the prolongation structure for the
generalized sine-Gordon equation can be found”’3’ The generali-
zation of the prolongation structure approach of Wahlquist and
Estabrook to two spatial dimensions’®®/ is discussed in Sec.3
for the generalized nonlinear Schrddinger equation.

1. Let us discuss the main ideas of Wahlquist and Estabrook
method using a few nonlinear equations as an example. it 18
well known that useful information about the given equation can
be obtained if it can be presented as complete integrability
condition for some system of equations. For example, the
Burger's equations

ut"’“xx“'(uz)x:O (1.1)

can be presented as the integrability condition for the system
of equations

£y =u g, §t=-—(ux+u2)5. 1.2
£ =&y =, +u @®), =o. (1.3)

Then we come to the Koul-Hopf substitution
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Recall also the Korteweg-de Vries equation

Uy + 12Uuy +u gy =0,

(1.5)
Just the representation of this equation as integrability con-
dition for the system of equations
2
o= A-u-¢7,

2 1.6
£, =4l+)@u+ ¢ --,\)+-;2Luxx ~2u, £] (1.6)
/
made it possible to develop the Inverse Scattering Method for
solving a nonlinear evolution equations”’?/.
It can be shown that another system of equations

0 A-—2u --2ux 4u+A)Ru-)) +2uxx
gx = 'f' Eta
1 0

(1.7
-4(u+A) 2u x

also satisfies the same conditions, where & is a column-—

vector &

Both sf%tems contain the arbitrary parameter A, which appears
as eigen—-value parameter of the inverse scattering problem.
Notice that system (1.7) is yet linear one.

Returning to the idea of finding the system for which the
given nonlinear equation (or system of equations) represents
the integrability condition we come to the conclusion that so-
lution of the problem may be non-unique. Hence we must bear in
mind this uncertainty of the Wahlquist-Estabrook method.

Let us describe the basic idea of the method using differen-

tial form language. In the Wahlquist~Estabrook method the langua-

ge of differential forms, Pfaffian integrable systems and the
theory of Cartan-Ehresmann connections/10-13/ are widely used.
Every nonlinear evolution equation with two independent variab-
les = and t may be expressed in terms of second-rank differen-
tial forms (2-forms) la;},'i =1,..., N, such that there exists
the unique correspondence between the solutions of nonlinear
equation and the solution manyfold for the forms {a,} It is
supposed that the set of forms le;lon the corresponding manyfold
X is completely integrable, i.e., the set of forms constitutes
a closed ideal of differential forms {ai }

dicl. (1.8)

A prolongation structure
B=1,2,..., M on XxY,

doCr*li+aw,

represents the set of 1~forms P )
Y =1¢&l, 2., 6M, such that

(1.9)
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is the Cartesian projection of XxY onto X, i.e.,
m(X,y)= X. From (1.9) it follows that the system '
{rsa; yor} is integrable one on XxY and the prOJectlin_
of an§ solution manyfold of this system on X repregents a solu
tion manyfold of the set of formslajl. If I-formsw™ generate .
one-parametrical family, w'ua)(AL. Fhen the set of equations
for &,which follows from the conditionw™=0, .glves the linear
"inverse scattering" equations.

where n

2. Let us discuss a variant of the technigques, @eveloped
by Wahlquist and Estabrook’1/ for findi?g prolongation struc—
ture for generalized sine-Gordon equatlon.‘Below we follow to
Hermann’/3/, Let G be a Lie algebra of matrices; u,uy are va-
riables. Suppose that

A uAAl-l-uxAz.

) (2.1)

B~ B,
where A is a constant parameter and A;,A, are constant elj—

u

ments of G; u-B) is a map into G. Let u=u(xt) and Uy
The condition that maps u-(A,B) satisfy the prolongation
equation is .

ét —}}x_[é'l}]’uxt Ag-2 By -

- (2.2)

~MApu Ay, K BWl=u A,-[A,BWI-

- 1B, A, By, ,

where
At=uxt+A2 ’ aB
- By=—).
. (Bo Ju
BX-A Buux

We would like the right-hand side of (2.2) to vanish for each
value of A. Solution of the equation

B,=[4;,B(w)] ,
can be presented via a power series

B,u?
B(u)=By+ By u + -72?7-—\«

2.3)

u2

B
B, =B1+:Bzu +--.—-------32 4 eeey



(Ag B(u)]=[Ao»BO]+[AorBi]u+-[‘:(!)'82]u2+'...
Equating, we have:

[AgBgl=B, .-

[AO' B1 1= Bgr.[AO‘, [AO, BO]] .
and so forth. In other words

B, ~(AdAy), j=01,2, ...
Hence,

Bu)=3 _B.L"‘_i,.z Muj

iy i it

L3 Adagw
it

: ; (By)=expiAd(Aqu)i(By)= o

(2.4)
= Adtexp(Ayu)i(B ) = exp(Agu)B gexp(-Aqu).

This determined the A1 coefficient in (2.2) in the case of
(2.2) is set equal to zero. Equating to zero the coefficient
of A0, we obtain the following relation

Uy Ap=[A,, exp (Aqu)B  exp(~Agu)l. (2.5)
The requirement that u satisfies an equation

uXt -f(u) (2.6)
gives the condition to determine f:

f00A2=[A1,exp(Aou)Bexp(—Aou)]r' (2.7)

For example, if G=SL(2,R),. it is easy to .choose the elements

Ap ,A; , A, so that these equations reduce to the single sine-
Gordon equation”/4/

u__ =sinu,
xt

Another possibility is to allow u to be a vectorial funection
of (x,t).

3. Below we will show how to generalize the prolongation
structure approach of Wahlquist and Estabrook for an evolution
equation in two spatial dimensions. This strategy was developed
by Morris/5/ for a generalization of nonlinear Schriddinger equa-
tion to two spatial dimensions:

4

‘ o
19 A [ (9249294 —2A(®-W)], .
at 9x® gy® -

(3/0y- 8/ax)®=--:-12-(a/ax +3/3y) (AA%,
(0/3y+0/9%)¥ = 1/2(3/3y -3 /3 R)(AA*).

The first step is to construct prolongation structure for sta-
tionary Schrddinger equation and the second one is to extenﬁ
that prolongation structure into one for the evolution Schro-
dinger equation.

As was shown by Morris/5/, to determine a prolongation struc-
ture for the equations

32 a2 3.1
97 9 JA —2A(0-V), .
(ax2+ ay2) ( )

JERNEINY S W R S
5 e )b 2(6x +ay S1¢ )

5 5 L3 5 (3.3)
e o e YW = e (e e J(AAF ,
Gy e TGy A

we must first settle on an appropriate closed set of 2-forms.
Let us introduce the variables R and L defined by

=Ll 9 .9 (3.4)
R 2(ax"kay) ’
L = .1_(_.‘2...:_ ..‘2__)1\, (3.5)
2 dy 9Jx
and then write down the Eqs. (3.1)-(3.3) in the form 3.6)
NI IRY Y RA*4+ AR* ), - )
(ay Ix ) ( )
3 9 (3.7)
2 L)W (LA* 4+ AL*),
(ay +ax) (LA* + )
(3.8)
Ly =—Ry+A(@-¥),
(3.9)

R§=LX+A*(®-W).

where (3.9) is equivalent to the complex conjugate of (3.1).
The Eqs. (3.4)-(3.9) have an equivalent expression in terms
of the closed ideal of 2-forms, ;, i =l,...,6, defined by



a, =dAndy —( R-L)dxAdy,. (3.10)
a, =dAndx +(R+L)dxady, (3.11)
ag=d® A (dx+dy)—-(RA* +AR*)dx A dy, (3.12)
a, =AY A (dx-dy)(+(LA*+ AL*)dx A dy , (3. ]3)_
(3.14)°
ay = dLA dx —~dRAdy +A (9-¥)dx A dy ,
(3.15)
ag=dR*A dx+ dL*A dy +A*(D-W)dx dy \
To find a prolongation structure
}=df+F(A,A%R,R*L,L%®, ¥, £)dx +
. (3.16)
+G(A, A%, R,R*,L,L*, &, ¥, £)dy
we can choose F and G to be as follows:
Faxy+x,A+x5A%+ Lix, +R* +®xg+¥x, , (3.17)
G=x6+x9A+wa"‘ +L*x5 —Rx4+<bx6—¥l’x7, (3.18)
and the Lie bracket must be
[F,G)=(R-L)GA—(R+L)F, +(R*~L*)G px -
~®*+ L*)Fyx —(LA*+AL*)Fy + (RA*+ AR%) Fyq - (3.19)

N

~A* (O-¥)F ., —A(®-¥)F, ,.

where H =gH/sp for partial derivatives. Substitution of (3.17)
and (3.?8) into (3-19) leads to bracket relations of the vector
fields Xy '

Suppose that a two-dimensional evolution equation, which can
be expressed in terms of a closed set of 2-forms fay, 1 =1,...

3

N , possesses a linear prolongation structure {a;, 0 B}, i=1,
«» N, B=1,..., M, where the l-forms are expressed by
N
ef. Ei(F‘fdx+Gfdy)§a+ ag? (3.20)
a=
and suppose that
N 8; M
S N (3.21)
i=1 =1 Y
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The 2-forms (07} )

, M
ﬁ'BgQBAdt + 5 (GA-F‘B)/8 gYdxndy -
=1 Y

b

(3.22)
+@Pax +Blaymag”

provide a prolongation structure for a three-dimensional evolu-
tion equation defined by a set of 3~forms fay b, i=1,...N.

A ma A dt, ix1,..K, (3.23)
ay =ay A G+ By, j=K +1,..,N, (3.24)
where By are defined by the equation
N
z rB‘,g.=[(dGA_dFB).;‘-]BA dxAdy . (3.25)
A=K+1 !
The matrices A and B in (3.22) satisfy the conditions
{AB]wo0, ) (3.26)
[GA] +.[BF]=0. (3.27)

The forms la1 b =i,..., K, which are basically unaltered,
have been called the linearization forms’® and the remaining
forms !aj bij=K+1,..., N - the dynamic forms.

In our case the dynamic forms are ag tag and Eq. (3.27) can
be rewriten as follows

0 0
- )| = (GGA-dFB)A dzxAdy, (3-28)
BsBs 0
BG 64
where A and B satisfy the Egs. (3.26) and (3.27).
The matrices
0 0 0 0
i i —
A= and B =—.. (3.29)
> 1 0 0 ) 10 0
0 1 0 ~1
give
V4
By=0, B, =0,
(3.30)

Bs""iiz'dAAdx.Adyr' Ba“é“'dA*AdX/\@.



v

The corresponding. generalized dynamic forms

ES =a5/\dt---f§-=dA/\dX'/\dy,v
X i (3.31)
ag =aghdt +-!2.-dA*/\ dx A dy
yield to the generalized Schrddinger equations.
The prolongation structure is given by
0! =delad—(Ae*AEPreDax A dt - £% aynar,
4
02 2de®adt-(a*e! a2 -EHaxad - ay A,
N
2 2
0% = dtndt (0" +L €5 rreHdmmat—(@e ! —rREF-AE Yy dynat
(3.32)

+'i§{()\§1+A§2)dxAdy+(dX+dy)Ad61 1.
Qtudgindi—R*E+UER 4 aEHaxnat
_retowe? e Pyay adt s

+%‘2-[—(A*~fl+ )\fz)dx,\ dy + (dx-dy) Adfz].

Sectioning into a solution manyfold of nonlinear Schrddin-
ger equations gives

glanel vagt g, (3.33)
£ =& (3.34)
| elanrgl gt (3.35)
£x ¢t (3.36)
£ wgline®s ag- é“le , (3.37)
gy -0t -RgFoagt gl (3.38)

.

efarrg ! 4 we agt-de?, (3.39)

4 1.2 3 i e
fy=Lr-weiraxs +é"§t . (3.40)

If §g=0, than (3.33)-(3.40) reduce to the linear inverse
scattering equations

A O ¥y Rx
(1Y L &
é:-x: £
-1 0 A A* (3.41)
0 1 A A
0 A* ¥ L*
-A O -R &
= '3
-y 0 -
0
0
1f f;=0 the Eqs. (3.33)-(3.36) become
£} angtoagh ploargtaag? (3.42)
and Eqs. (3.37)-(3-38) become
Al L aa*aa®yelo LA 2
5 ft (2 +A° )€ +(2 y —AAYET,
i (3.43)

Lo (L aw aaxyety (doaak, (2 2R
gft (2 Ay+>\A Y3 +(2AA +A%)E,
These equations are equivalent to the standard Zakharov and

Shabat/7:8/ form of inverse scattering problem for the non-
linear Schrédinger equation

9 32 2
lé—rA#-b‘;'éA’leAl A=0Q. (3.[}4)

The case §§,=0 can be treated by the same method.

REFERENCES
1. Estabrook F., Wahlquit H. J.Math.Phys., 1975, 16, p. I;

b4

Wahlquist H., Estabrook F. J.Math.Phys., 1976, 17, p. 1293.

2, Shvachka A.B., Yanovsky A.B. JINR, P5-82-239; P5-82-242,

Dubna, 1982.
3. Hermann R. In: Solitons in Action, Ed. by K.Lonngren and
A.Scott. Academic Press, N.Y., 1978, p. 33.



4. Konno K., Wadati M. Prog.Theor.Phys., 1975, 53, p. 1652.

5. Morris H.C. J.Math.Phys., 1977, 18, p. 285.

6. Morris H.C. J.Math.Phys., 1976, 17, p. 1870.

7. Zakharov V., Shabat A. Zh.Eksp. Teor.Fiz., 1971, 61, p.118.

8. Ablowitz M. et al. Phys.Rev.Lett., 1973, 31, p. 125.

9. Gardner C. et al. Commun.Pure Appl. Math., 1974, 27,

. 97.

10. godbillon G. Géométric differentielle of méchanique analy-
tique, Hermann, Paris, 1969. ) )

11. Kobayashi S., Nomizu K. Foundations of differential
geometry, vol.l, Interscience, N.Y., 1969. .

12. Zulanke R., Wintgen P. Differential Geometry and Flbre )
Banles, "Mir", M., 1975. Sulance R., Wintgen P. Differential
geometrie und faserbiindel, VEB Deutscher Verlag
der Wissenschaften, Berlin, 1972. .

13. Hermann R. Interdisciplinary Mathematics, Math.Sci.Press,

Brooklyn, 1975, vol.10.

Received by Publishing Department
on July 12 1982.

10

- msan A

e, s

e

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the books listed below. Prices - in US 8,

including the packing and registered postage

D13-11807

D1,2-12450

D-12965

D11-80~-13

D4-80~-271

D4-80-385

D4-80-572

D2-81-543

D10,11-81-622

D1,2-81-728

D17-81-758

D1,2-82~-27

Orders for the above-mentioned books can be sent at the addressr:

Proceedings of the III International Meeting

on Proportional and Drift Chambers. Dubna, 1978.

Proceedings of the VI All-Union Conference on
Charged Particle Accelerators. Dubna, 1978.
2 volumes.

Proceedings of the XII International School on
High Energy Physics for Young Scientists.
Bulgaria, Primorsko, 1978.

The Proceedings of the International School on
the Problems of Charged Particle Accelerators
for Young Scientists. Minsk, 1979.

The Proceedings of the International Conference
on Systems and Techniques of Analytical Comput-
ing and Their Applications in Theoretical
Physics. Dubna, 1979.

The Proceedings of the International Symposium
on Few Particle Problems in Nuclear Physics.
Dubna, 1979.

The Proceedings of the International School on
Nuclear Structure. Alushta, 1980.

Proceedings of the VII All-Union Conference on
Charged Particle Accelerators. Dubna, 1980.
2 volumes.

N.N.Kolesnikov et al. "The Energies and
Half-Lives for the « - and B-Decays of
Transfermium Elements”

Proceedings of the VI International Conference
on the Problems of Quantum Field Theory.
Alushta, 1981

Proceedings of the International Meeting on
Problems of Mathematical Simulation in Nuclear
Physics Researches. Dubna, 1980

Proceedings of the VI International Seminar
on High Energy Physics Problems. Dubna, 1981.

Proceedings of the II International Symposium
on Selected Problems in Statistical Mechanics.
Dubna, 1981.

Proceedings of the International Symposium
on Polarization Phenomena in High Energy
Physics. Dubna, 1981.

Publishing Department, JINR

Head Post Office, P.0.Box 79 101000 Moscow, USSR

14.00

25.00

18.00

8.50

10.00

25.00

9.50

9.00

9.50

15.50

9.00



SUBJECT CATEGORIES
OF THE JINR PUBLICATIONS

Index Subject
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. lLow energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry _
7. Heavy ion physics
8. Cryogenics
8. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. .Experimental techniques and methods

14.
15

16.
17.

18.
19,

Solid state physics. Liquids

Experimental physics of nuclear reactions
at low energies

Health physics. Shieldings
Theory of condenced matter
Applied researches
Biophysics

i

llpauxa A.B., SnoBcku A.B. E2-82-546

Merog YonkBucra-3crabpyka H ero ONpHMeHeHHe K HCCJIefOBaHHIo
HGJIHHEeHHBIX MOZelleil TeOpHH Tomns

PaccMorper mpennoxeHHbli YOIKBHCTOM U 3CT&6pyKOM/1/ MeToJI
NoJIyueHHs1 ypaBHeHHII BClloMoI'aTel/IbHOH JiMHeilHOH 3amaum paccesHus
151 HeNHHeHHbx auddepennuanbHbx ypaBHeHHil. Hcnonbsys annmapar
oudbepeHnnanbubix GopM, MeTOl IMOSBOJAET HAXOOHUTH COJIMTOHHbIE
pemeHus HeJIMHEHHbHX 3BOIIONHOHHBIX YPABHEHHIl, 3aKOHB COXPAaHEHHS,
a rTakxe npeobpasoBaHusa BexnyHma. Ha npuMepe AByX HemHHeMHBIX
MOTleNled TeODpHH IIONA H3JIOKEeHA Ipouenypa Yonkpucra-Jdcrabpyxa Ha~
XOXOEHHS CTPYKTYPbl NPDOAOIDKEHHMsT B cjiydyae KakK OfHOH, TaKk U OBYX
IPOCTPAHCTBEHHBIX IIe€peMeHHbIX .

PaGora BrmonHeHa B Jla6opaTOPHH BbLMHCIHTEIIBHOH TEXHHKH H
asToMarusanuyn OHAH.

NMpenpunt 06BLEAUHEHHOTO MHCTUTYTA AQEPHBIX uccnegoranuii, flybHa 1982
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connection forms and also on a possible extention of the me-
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