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§1. INTRODUCTION

In the last years the idea to interprete the inverse scat-
tering method (ISM, see refs.’/!"#/ ) as a generalized Fourier
transform’% has been further developed and validified 7813/
The role of the generalized exponent is played by the "squared"
solutions {¥(z, )} of the auxiliary linear problem
L)y (% A) =0. Naturally there also appears the operator A, for
which the elements of {¥(x,A)} are eigenfunctions.

An important property of {¥(x, A)l, which ensures the appli-
cability of the ISM is its completeness, first formulated in
ref.’%  and proved in ref.’® for the Zakharov-Shabat system

L) = io, Ed_.. + Q@ ~A . The detailed considerations in
refs./7-9, 18/ showed, that the set of independent scattering

data J of the problem L(A) and their variations 8 appear as
coefficients in the expansions of the potential Q(x) and
03 8Q(x) , respectively, over the system {W].Starting from these
expansions one is able to reproduce in a uniform way most of
the important results for the nonlinear evolution equations
(NLEE), including: i) the description of the class of NLEE thro-
ugh the operator A’%/; ii) their Hamiltonian nature and complete
integrability’/!4/ in proving this it is convenient to make use
of the compact expressions for the conservation lows and their
variations through the operator A’!%. iii) the hierarchies
of Hamiltonian structures, generated by the same operator A’
iv) the explicit calculation of the action-angle variables’7.8:18/
The method of derivation of the comyleteness relation for
the system (¥(%,A)} propozed in ref.’® has been applied also
for other choices of L()\), see refs, /10-12,18,17/ . the same me-
thod is used in the present paper also. For a number of problems
L) the operators A are known explicitly and have been used
for the investigation of the corresponding classes of NLEE, see
refs, /6. 1884/ Thys one may conjecture, that: i) the above-
mentioned interpretation of the ISM as a Fourier transform is
a general one and may be applied to a large class of problems
LA); ii)* for each L(\) one may construct an operator A,
generating all the important quantities of the NLEE.

* This has been conjectured earlier in ref. 729/,




Let us briefly discuss the Hamiltonian propertias of the
NLEE; for concreteness let us choose L{\) as a 2x2 matrix poly-
nomial bundle of general form:

up to a gauge transformation’3Y, Conveniently' fixing the gauge
and applying the natural restriction trog U(x,t, A) = 0, the
bundle L{A) (1.1) may be cast into:

% o am—— s S

LG x ) = [iaaai— FOEHA) - ANy @A) =0,

. d N-1 N
LAY EA) = [1035;—- +k=20 AU -2 lg(x, A) =0,

(1.1 i
N K ¥ (1-2)
U A = 2 U, (®A, lm U@, t,A) = 0. . q -
k=0 X+t 00 il Uk(X) - k k , k =0,1,...N~1; rN-1= 0.
. o T
The ISM applied to L(\) (l.1) allows one to solve a whole class an Py k
. * -
of NLEE for the set of potentials {U,}*. If they allow In the or . or lvine the sch £ ref.’® 1o th
Hamiltonian interpretation, then the phase space F should be 1 o1 the present paper, applying the scheme ol retf. O the
?%rar}net?izlefa)by the independent Is.lt_amer'lts of the potentials \ ’Pg}yn:mmi bléndli- (1.2) ‘;78 Ol}t;l:lne t:e Wa}f’ by which ?;}’,‘lef)}

k! AAn . As a Hamiltonian H it is natural to choose a able to comstruct an appropriate system ol “squares J
appropriate linear combination of the motion invariants D'" ; ‘znd Igll;ovettllts gompleteftl?ss-d'ﬂtms an attel;pt l'i‘hmade to’ Erlﬂgl
of the NLEE, which can be constructed by the known methods : ogether the above-mentioned two approaches. € concrete ca.-
(see refs. ”1"& ) from L(\). Lastly, one should define a symplec- i culations are made for the simplest nontrivial case N=2, which
tic form Qg on Fsuch that the Hamiltonian equations of motion | exhibits all the.z pe?uliz.arities of the'general construction.
defined by (Qy,H) coincide with the corresponding NLEE. For For N>2 the derivation is done analogically by the use of the
a number of important particular choices of L(\) the explicit - . . . 1 0 :’i"z
form of Qg and the global action-angle variables are well known, | Green function (3.10), in which ¢ + ¢=yo¢ @ A )and Aj= —io; 0
see the review paper by L.D.Faddeev in ref./S/, p. 339. Using 7 /187 . AN-1 .
the completeness relation of the system (¥ (x, A)} it is easy see ref. . }'Iowever the corresponding formulae are very invol-
to prove the existence of a hierarchy of symplectic forms Q, . vedlinihweogmittthex.' . Lieitly Kk o 11 the |
m=+1, +2,... on F,pairwize consistent with (, and between them— € operator A 1S not explicitly xnown, then a e con~
se/l_\ge; /IB/” and to construct their mutual Lagragge manifold I siderations above acquire somewhat abstract character. A may
a7 10,18,17/ be calculated using the fact, that the elements in {¥W(x, A)} are

A general approach** for the investigation of the Hamiltonian its eigenfunctions, or by solving a certain system of recurrent

L]

| e s . o rocy
structure of the NLEE is known, based on the central extension relatlor.ls, or as an operator transferring ‘SP ™ into SD'
of Lie algebras”/25-28/, In our case for L) (1.1) the scheme ‘ and {} into {Qp,;.For the simplest and most important choices

starts by considering the Lie algebra @ of smooth 2x2 matrix- of L(A)all these definitidns are equivalent and the correspon-

valued functions Uk(x)‘ vanishing fast enough when .X- *w. Studying ding A —operators are well known. The problem‘of explicit calcu-
an appropriate central extension of the algebra @ = Gted ™ it { lation of the A—operat?r for general polynomial bundles has

is possible to write down the Lax representation of the NLEE in ! been considered in ref.’?® and reduced (using the first of
explicitly Hamiltonian form. Here the subalgebras G% = @ @P(), . the above-mentioned definitions) to the solution of an algebraic
P+ Q)P ~(\) being the algebra of polynomials over the non- equation of power 2N with matrix operator-valued coefficients.

On these grounds it has been concluded in ref./ge/, that there

negative (negative) power of A. The symplectic structure {; 1is . 0
exist @N different operators A related to a bundle of the

given by the Kirrilov-Kostant 2-form. In order that (; be non-

PR

degenerate, one is naturally 1led to choose as ¥, roughly spea- type (1.1)., More detailed study of th/igsl/algebraic equation for
king, the orbit of the co-adjoint action in @% with respect to L) _(1:2) based on the scheme of ref. allows one to calculate
@~ (see ref. /26/). This requirements give us the form of L(\) . explicitly A as a 2Nx2N - matrix integro-differential opera-

tor , see ref.’!% From the completeness relation for{¥(x, A)} it
.}+ follows, that relations (3.15) uniquely determine A=A_,; all "the
" other A roperators'" with the same system of eigenfunctions

* Here and in what follows we shall omit the dependence of {¥ (x, A’} are functions of A, .
Uy upon the time t. . /20.30/ 1 In the next §2 of the present paper we present the necessary
** Other approaches are presented in refs. AN « } facts froh the direct and inverse scattering problem for the
¢ system:
%




L)Y (x,A) = [ias—dd;- +Q, 0@, +1o-2 1P A) =0,

0 qj _ 1 (1.3)
Q® = Y1, 1=01, 15 =-3qp,

pi O

which is obtained from (1.2) with N=2 and rom-Jqupl- This
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last restriction is not crucial for our considerations; its
origin and importance for the NLEE will be discussed in ref.’/82/
In §3 we prove the completeness relation for the "squared" so-
lution {¥(x, A)}of (1.3) and calculate the operator A,.In the
last, fourth paragraph compact expressions for the trace
identities (see ref. 'Y of (1.3) through the operator A
are obtained.

The application of these results to the
in our next paper _

The authors are grateful to Academicians Kh.Ja.Khristov and
I.T.Todorov for their support. We thank P.P.Kulish, A.G.Reiman
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NLEE are considered

-

§2. DIRECT AND INVERSE SCATTERING PROBLEM

Below we give the necessary facts from the direct and inverse
scattering problem for the system (1.3). All of them are simple
generalizations of the results, contained in refs. /32:3%/ por
simplicity we shall assume, that the potentials € (x) are complex-
valued functions of Schwartz type and such, that the discrete
spectrum of the system (1.3) consists of a finite number of
simple eigenvalues. Under these conditions the Jost solutions,

defined by:
i)\zosx i)tzasx
lim %(x,A)e = T, lim $(x A)e =1,
xe Xpoo0 (2.1)

v =g Tt e A =t 7

exist, the columns ¢ ¥ (x,A) , YA L (YT xR A, (XA
being analytic functions of A in the regions mA% >0 (ImA <0).
The transition matrix is introduced as usual:

Gz, A) = ¢ (x,A) 8\, -
SO at  -b
detS(\) = 1, aa bt AT ) 7
at (@~ () also being analytic functions of A for ImA%2 >0
(ImA®* < 0).The resolvent of the system (1.3) is expressed through

the fundamental solutions

4

(2.2)

-

Bk VR A tame mmemasr B ekl

()

\

+(X, A) =H¢+ 9¢,+Hs X—(X. )‘):H‘ﬁ_,(ﬁ—ll (2.3)
as follows:
R(xo Y- A)=Ri(x, y, A), Imkzz 0'
+ + + -1
RO, y,A) =2t ix” xAN)OE E-y)x ¢ A) o5, (2.4)

O (x) = diag(@(~x), —-6(x)).

Obviously R(x, y,A) is anagytlc in A for alllmh2£0 except the
points, where dety® (x, M) =aT () = The supposition that
the discrete spectrum A is finite and simple means that a~(A)
have only finite number of simple zeroes

A=AYUA, AT s D, ImE 20 at o +) =0,a=1,..N}j.

The inverse scattering problem for the system (1.3) is readily
formulated as Riemann problem for the solutions y* x~

2
)Y+(x. )\)zsz_(x, A)G(X, A), + (X,A)=Xi (X,)\) elA o3x )
"1/\20 b 4 ikgasx 1 1 -b—
G X, A)ne 3 G (A)e , a (A): . ) (2.5)
( 0 0 prall R

v+
lim xt(x, A)=1.
X 00
with canonical normalization® for A-e.For our purposes it is
someWhat more convenient to use the following representations **
for the Jost solutions ¢+t ,¢ — /32.33/ .-

N + 2 ,+

_ 3 Cafar¥e® 1 o & k0 (xu)ez“lg‘ mr%<0,
a=1 Aa+—A Reip u-A
‘ (2.6)

X v_ _
e = (O R “A 2 “A() i“;p W~ (e 2 s,
as= 1 -

a-—

iman- ()

1
= f
2mi

*The choice T, = —-%whpl in (1.3) ensures the consistency of

the Riemann problem normalization with the asymptotic of the
solution x*% (x, A) for Ao .

*«By performing Fourier transformation and introducing ap-
proprlate transformation operators one obtains from (2.6) the
Gel'fand-Levitan-Marchenko equation for the system (I. )/3233/



Vi F i zx vi v+ -
where l/l (X }\) (/1a (x)= l/’ (X,)\at ) , 0 g+ =

+ ik
=y (X, Ae ’
= exp(+ iA%: 'x) and the contour [' is given on

fig.1. If the set of scattering data
+ +
T=lp® W, AGT, ¢, , Ay » Iny 2 0, a=i, ., NI,
+ +,; * + + .0+ ot dai (2.7)
) pm M) =b"fa= Q) c, =b;/a;, a, = L S W .
IR
by ba W=Dy ¥ (), ,

-

is given, then from (2.6) one is able to obtaig a system of
singular integral equations for the functions l/l (x,A), AcT
and AeI@'.Solving it we can find (,/r (x, \) for all Im}\2>0 Then
the potentlals Q; (x) are regpnstructed from the flrst few
terms in the asymptotlcs of ¥(X,A) for A-»oo:

?1,3-03 {03 , l;(x. Mb=T1T- -éi)‘—asu(x) + O(-):lg—),
(2.8)
u(®= [ dy(q;py + 9oPy)
X

—;“0’3 log , gx, M =

5 Ql(x) + -———-[Q (x) - ——Q (®ogu®] + O(—-——)
In partlcular, for T =0 (2.6) gives us a system of algeb-
raic equations, which is easily solved "explicitly. The corres-
ponding solutions lead to the reflectionless potentials, the
simplest of which.has the form:

2c—e 2 .,.ct
(ls - 171~ (18) - 1+-1 dx) = .6, 8
kx) 1+ d(x) ’ p1 el_d(X) y ( ) e1+e 1— 1 1+ 1..,
g T A e . € A g mee Oy A
= 1+91°14 €1~ ~ » @ =C1 0 WMy ™)
do e1+d2 (x €14 84~
2cte A
1 (2
p(OIS)(x) - R ~Awye ey lieny = exp(2idyx).

el,_d2 (x) e(,e4-

The transition matrix 8(A),is reconstructed from the set T by
the use of the dispersion relation:

a
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@ Fig.1. The contour T.

DAY = = 1+ p%T ] +
2r [ K-
N A-A
+ ¥ In—0>-%t (2.9)
—— s " : o as= 1 A_Aa...
D) = Ina*(), mA®>o0,
DO = -lna” (), M’ <o0.
The set, J corresponding to the simplest reflectionless po-—
tential is given by {p¥(\) = 0, c’;,c; s App oA 1o and
the transition matrix equals to 8(A) = diag( '\1+ , A=A 1=),
X-A_ | A=Ay,

§3. THE INTERRELATION BETWEEN THE SCATTERING DATA AND
THE POTENTIAL - GENERALIZED FOURIER TRANSFORM

Let us investigate in greater detail the interrelation bet-
ween the set of potentials iQi(x)l in (1.3) and the set of
scattering data J (2.7). For this we start from the relations:

AT ) =i(x)! oxt@M|” -

X =—0o0

o - 3.1
= -2 [dx(x*)!? (QO+AQI)xt(x,A), mAr% 2o, G0

Using (2.1)-(2.3), the 1l.h.s. of (3.1) is easily expressed by
the transition matrix, and hence - by the scattering data J.
The matrix elements in the r.h.s. of (3.1) are rewritten con-—
veniently by using the following skew—scalar product in the
space X, Y € § (CY):

(X ¥1= [ axx"ma, Y(),

—00

(3.2)
0 0 i
A, = %), o, -
-ia2 0 i 0
in the form:



g =+ + 2~ 4. - g = -
A lz(h) = F[Wy ‘I’ ]9 AZL()\) = "F[w » (D ]. A 12()‘) L — [W, ‘I) ] s
2 - - + + ° 4 + (3.3)
Agl()\) = F[W. ‘I’ ], A;i(}\) ="Aé_2()\) = —a—f[w. ¢—* ‘lf ]-
Here we have used the following notations:
AR a4 t t %
W=l gy Wy = i ) i=0,1, Y (x,N=¢ * ¢ (xA),
0 y (3.4)

o

* gt
P (XA =@ %" (XA, Sy = Ao i

& Vo

The quantities (3.3) can be considered as Fourier coeffici-
ents of the potential w with respect to the system of '"squared"
solutions ‘Pi(x,)\) or ‘I)i(x.}\). When investigating the NLEE and
their Hamiltonian structure it would be important to find analo-
gical relations between the variations of the potentials 8Q; and
the corresponding variations of 8F. Such relations follow from:

BT = i) taxt @nI= -

bad + -1 + 2 (3.5)
= - [ &) o (r, +3Q  +23Q)x” (N, Im 20,

- 0Q

+
Using (2.1)-(2.3) B () is easily expressed through the varia-
tions of the scattering data. The r.h.s. of (3.5), after some
algebra, is cast into the form:

+ 1 - ly+
Bm()\)=-—a-ﬁ-[—036w, N, ¥ ],

+ 1 r= g =l g+
+ le(/\) =—a—+-_~[0'38w, N__ <D ],

- L =55 nlo- - s sz wotgmy 00
B, W =~—ls 8%, N"® L B, M) =——[o 0w N7¥7],

where o4 = diaglog,o4) and the integro-differential operators

N;!have the form:

+oo
+ - -~
Z. = ~iw, [ dyw, (y),
N_l _ 1, 4} ik i k (3.7)
r =
Zlg. 1+ ZJ-Il W, = wf (o, ), i,k =0,1

= oy 9(:),950‘/1-:'(951 ‘ﬁl\) ,

Taking into account the fact, that [W, N;l Xl=[{w, Xlwe choose
more convenient "squares" of the from gt nlwt
. . ‘i U™ (%, A) =N ¥ (x,X)
and @7 (x, A) = NJ"®~ (x,A).
The completeness relation for the systems of vector—-functions

W= @Een, rel ¥iw, viw, a=1..N1,

{0}

th

@y, rer, oW, 1@, a=1,..N1,

=4 + =4 + (3.8)
vEe ) = N R, efan=Nletin,

s+ _ i +

F2 (M) = ——F* (x, A)I)\:Aai ,

has the form:

VB o | ¥ aNE N
(at(\) 2 a~(x)) 2

) N 4 -
8(x~y) = -—;—I!d)\[ ]A0+a§1(Xa+Xa)(x,y),

+ 9 =+  =4T L4 4T Bh s -+ T (3-9)
Xaxy) = a-t-;-é-[‘l’; DT +¥, D0, ) - ;.—t—‘l‘;(x)Q(; oA, .
a a

In deriving (3.9) we have applied the contour integration
method to the integral

L ¢ adt@mny -t ¢ ad @),
where the contours y,;, i =l,...,4 are given on fig.2, and the

functions GX(x,y, A) for ImA® % 0 are equal to:

8wt oy, ox-y) +

G i(x, y, )‘) =
(a* )2

(3.10)
s et v Ha Ny e - ot Env T 0-0la,.

[

Thus one obtains the completeness relation for the systems {¥]

and {(Dl,+ which differs from (3.9) by: i) in the 1.h.s. one
gets A 8(x-y), where

. 1-zf, o©

A =N =My M = e (3.11)

and 1i) in the r.h.s. everywhere .";’i(x, A) and 5i(y,/\) should be

replaced by ¥~ (x, A)and @ (y,A) ,respectively.. In order to obtain

(3.9) one should use (3.11) and the relations:

9



(X, M:Y] = IN.X, Y], XY eS(c?), (3.12)

which follow from (3.2), (3.7) and (3.11) with integration by
parts.

Let us write down also the symplectic form of the complete~-
ness relation:

5(x - y) =FrdA[0(x.A>PT(y.A> - PxNQTy, A e e

. : L e (3.13)
+ 3 10,008 0 - P 0 ) + a; wr] ) - BT o] Tya,,
a=
where P(x,A) and Q(x,A) are given by:

P(x,A) = %(,,*Ty’" +p T )N = —:—(0+5++ oD T)(x, A),

Qx, ) = @ Bt = pt TN EA) = (T ~oT8 (&, M),
2b* b~ 2b*b”
Py =72t ¥ ), ot (-3 Sleg ¥ @ - a0 ), (3. 14)
F
GEM = 2, Ael; af - @fat)7!.
+
a~ ()

N\

It can be checked, that the systems (¥} and {®] are eigen-
and adjoint-functions

Ay =NTE@A) =0, A €TU A; (A, -A ¥ () - vim,

. . -, (3.15)
A_=MO7@A) =0, AeTUA: (AL -2, )0, (® =3, (x
of the following integro-differential operators A, and A_:
* *
At = A_Zlf’ ,—Z:I 5:—1-0 -—d—+r x. (3.16)
) D-Z5, -Zg 2% ax 700

As a domain of definition of the operators A+ we shall consider
the space of complex~valued vector-functions of Schwartz type

S(c4). Obviously if X € §(C%), then A+X € 8(€*) also. The ope-
rators A, and A_ satisfy conjugation-like relations with respect
to the skew-scalar product [ , ] (3.2) in S(c*): '

(X, A+ Y] =[A_X,Y].
(3.17) is derived like (3.12) with integration by parts.

(3.17)

10
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Using (3.9) and (3.13) one

} ® is able to expand the poten-—
- ~ tial w and its variation
.62 // ,} {\ ® 54 ;33W over the systems {¥} and
\ iP, @1} (3.14). The expansion
/ I \ coefficients are explicitly
/ | l \ calculated in terms of the
L-—————J L ——J > scattering data J (2.7) and
\""_—‘—"] [ 71 their variations by use of
1 / (3.3) and (3.6). Thus one
\\ | l }{ obtains:
~ 1_,/

Fig.2. The contours Yol =l,...,4.
- - - N - e
w(x) = L faptet +p ¥ )N +2 2 (c:\P:(x) ~c, ¥, (®) =
™ a=1

N, _
=1 [AP(A) +1 3 (P, ®) + P ()
a=1

r (3.18)

and

o 8w Loraneo vt 5 7)) S @t T
a W(x)=-;—lj P ~3p (%, =22 U+ U () =

(3.19)
~ N - -~
- = [OMAE MEPW) - P(x, M)EAW] + 3 (V0 + V] W) ,
r a=1
Ug@ =008 5 + ofon,, 0 (o)
Ve = Qi mspt - Pimsgt .
In (3.19) we have introduced the notations:
PW = Lmlt+ot ], AW - Lmetayseay, aer,
" 2
(3.20)

~+ ~+ +
T =12\ ~ = *ilnb~ .,
pa at qa a !

Thus from (3.18) it becomes obvious, that the minimal set of

scattering data J(2.7) may be interpreted as Fourier expans‘ion
coefficients of W(x) over the system {¥}. Analogically one can

11



expand W(%)and 0g8W(x)  over the system {®}; the corresponding
set of expansion coefficients consists of:

§ =to™W, 2el, ¢, A, , a=1,..NI, (3.21)

where the notations have been introduced in (3.14).

Making use of the disjpgrsion relations (2.9) one readily
verifies that the sets J,J and Ip, q} (3.20) are mutually
equivalent. As we have already noted in §2, they uniquely
reproduce both the transition matrix S8(A) and the potentials
Q,;(x).

§4. TRACE IDENTITIES

The trace identities /1!’ have been widely used in the literature

to construct the conserved quantities of the NLEE, see refs/1-5/,
For polynomial bundles of general form, and also for rational
bundles with finite rank divisors the recurrent formulae for
calculating the conservation laws have been given in refs./22:85/

In this last paragraph we shall derive compact formulae, ex-
pressing the regularized functional determinant of (1.3) through
the operator A .Let us start by showing that:

d -1 d
r,(A)-a_mDe:[L(A)LO W] = E\—D(m,

. (4.1)
1, ImA® > 0,
nA) =

-1, ImA% < o0,

where D(A) is introduced in (2.9), and Lp(A) 1is the operator
(1.3) with Q, =Q, =0. To do this we represent the r.h.s. of
(4.1) in the form:

d 1 41 ¢ ¢ o0

~——DQ) = ~fte[(~ - (x, =

Py (A) 2§ (™) "% “x Mog] +41/\x¥[x=_w

oo (4.2)
= faxtel L) og @1 -2 (@ M) 0y] s anl

by making use of (1.1), (2.1) and (2.2). For the l.h.s. of (4.1)
we have

d -1 d -1
U(A)-a—A—lnDet[L(A)Lo W] = TI(A)E\"T”‘“[L('\)LO Wl = (4.3)

= f dx{tr[r]()\)R(x,x,A)(Ql(x) - 2] +2iAl.

- 00

"12

- o

Incerting, in (4.3) the explicit formulae for
R(x, %)) = -;-[R(x,x+0.)\) +RE+0, x,M)]

Brom (2.4) it is easy to check that the last Tines in (4.3)
and (4.2) coincide. Thus (4.1) is proved. .
Now by use of (1.1) and (2.3), we rewrite (4.2) in the

form:

DN _ gy fax fay W) AE®F,A) - i [ax(@3w, (0, 0BG ),
a —00 X —00
(4.4)

1+

t

¢ (x A).

¢

+ *
E(x,A) = EX(x, ), a2 0, EF()) = 2—

a

Applying the contour integration method to the integral

L5 Fpten -t ¢ EETxw, m*40, AED A
i YU vg B i Youvy H-

one obtains:

X etYY w7V (k) -

r [ op—-A
— - 4.5)
N cTwt ¥~ (x) (
_ 3 [Ca a(x) Ca a( ]+%_( O)(X) -
a=1 " rgp -2 Ago =X W1

1 -1 1,0
=N+[——2—-(A+—-)\) w(x) + -é-(wl)(x)].

The last line in (4.5) follows from (3.18) and (3.15). Incerting
(4.5) into (4.4) one immidiately obtains:

DY oo Jax Fay s agh, AT ) +
-—00 X

(4,6)

1 [ ax(ogw, )%, 04, N7 W)

From the definition (2.8) there follows, that D(\) %s an ana}y—
tic function of A, and therefore it has an asymptotic expansion
n D(m)

in the neignbourhood of X » w: D) = EIA-K Expanding
m=

the r.h.s. of (4.6) over the inverse power of A we get:

* o0 o0 _ 1-
D™ - -2 fax fay&Tpma AT W) + (4.7)
m e x
A ax(e,w) T, 08 AT W),
n 13



i.e.,

(1

D(m)

pm™ is expressed as a functional of the potentlals of

.3) Analoglcally from (2.8)

(m i 00 - N
p™ . -5 ] aup™ a4 ot G - Tln“f Mgp=An), (4.8)

is expressed as a functional of the scattering data 5-

Equating the r.h.sides of (4.7) and (4.8) we obtain the so-
called trace identities for (1.3),

sions for the variations 8D

Inh our next paper 32/ m)shall also need analogicall expres-
«Their derivation is based on the

rélations

-

which is obtained from (1.3) and (2.1)-(2.3).

Il

5D() = %u[(x 87 st (x, Moy 17

X==00 /
(4.9)

S amulle 7 og (6 4 Bro)x * (x, Moy ],

]
N!M

We conveniently

rewrite (4.9) in the form:

DN = -5 [dx8(q,p,) - ilo; 8w, N'E*(x, 1)

and incerting Ei(x,h)from (4.5) find:

1

frm o -1 =
DM = =5y 8%, (A, -1 §], (4.10)
i.e.,
(m) | = o= m—-1 -
5D =—§—[038w, AT wl, (.11

where the skew-scalar product [, ]

and 8D

is glven in (3.2).
Thu?mwe have obtained compact expre551ons for D(mké 7)
(4.11), which are convenient in the derivation of the

Hamiltonian structures of the NLEE, see ref. /32
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