$$
5 \cos 8.2
$$

обьединениы
 ИНСТИТу
 ядерных

исследовании
дубна

E2-82-545
V.S.Gerdjikov, M.I.Ivanov

THE QUADRATIC BUNDLE

OF GENERAL FORM AND THE NONLINEAR EVOLUTION EQUATIONS.

EXPANSIONS

OVER THE "SQUARED" SOLUTIONS GENERALIZED FOURIER TRANSFORM

Submitted to "Bulgarian Journal of Physics"

§1. INTRODUCTION

In the last years the idea to interprete the inverse scattering method (ISM, see refs./1-4/) as a generalized Fourier transform ${ }^{5 /}$ has been further developed and validified $18-13 /$. The role of the generalized exponent is played by the "squared" solutions $\{\Psi(x, \lambda)\} \quad$ of the auxiliary linear problem $\mathrm{L}(\lambda) \psi\left(x^{*}, \lambda\right)=0$. Naturally there also appears the operator Λ, for which the elements of $\{\Psi(x, \lambda)\}$ are eigenfunctions.

An important property of $\{\Psi(x, \lambda)\}$, which ensures the applicability of the ISM is its completeness, first formulated in ref. ${ }^{18 /}$ and proved in ref. ${ }^{18 /}$ for the Zakharov-Shabat system $L(\lambda)=1 \sigma_{3} \frac{d}{d x}+Q(x)-\lambda$. The detailed considerations in refs./7.9, 1s/ showed, that the set of independent scattering data \mathfrak{T} of the problem $\mathrm{L}(\lambda)$ and their variations $\delta \mathcal{T}$ appear as coefficients in the expansions of the potential $Q(x)$ and $\sigma_{3} \delta Q(\mathrm{x})$, respectively, over the system \{ $\left.\Psi\right\}$.Starting from these expansions one is able to reproduce in a uniform way most of the important results for the nonlinear evolution equations (NLEE), including: i) the description of the class of NLEE through the operator $\Lambda^{/ 6 /}$; ii) their Hamiltonian nature and complete integrability $/ 14 /$ in proving this it is convenient to make use of the compact expressions for the conservation lows and their variations through the operator $\Lambda^{\prime 13 /}$; iii) the hierarchies of Hamiltonian structures, generated by the same operator $\Lambda^{/ 15 /}$; iv) the explicit calculation of the action-angle variables ${ }^{7,8,13}$.

The method of derivation of the completeness relation for the system $\{\Psi(x, \lambda)\}$ propozed in ref. ${ }^{\prime 8}$, has been applied also for other choices of $L(\lambda)$, see refs. ${ }^{110-12,16,17 / \text {; the same me- }}$ thod is used in the present paper also. For a number of problems $L(\lambda)$ the operators Λ are known explicitly and have been used for the investigation of the corresponding classes of NLEE, see refs. ${ }^{15,18-84 /}$. Thus one may conjecture, that: i) the abovementioned interpretation of the ISM as a Fourier transform is a general one and may be applied to a large class of problems $L(\lambda)$; ii)* for each $L(\lambda)$ one may construct an operator Λ, generating all the important quantities of the NLEE.

[^0]\square

Let us briefly discuss the Hamiltonian propertios of the NLEE; for concreteness let us choose $L(\lambda)$ as a 2×2 matrix polynomial bundle of general form:

$$
\begin{align*}
& L(\lambda) \psi(x, \lambda)=\left[i \sigma_{3} \frac{d}{d x}+\mathrm{U}(\mathrm{x}, \mathrm{t}, \lambda)-\lambda^{\mathrm{N}}\right] \psi(\mathrm{x}, \lambda)=0 . \\
& \mathrm{U}(\mathrm{x}, \mathrm{t}, \lambda)=\sum_{\mathrm{k}=0}^{\mathrm{N}} \mathrm{U}_{\mathrm{k}}(\mathrm{x}) \lambda^{\mathrm{k}}, \quad \lim _{\mathrm{x} \rightarrow \pm \infty} \mathrm{U}(\mathrm{x}, \mathrm{t}, \lambda)=0 . \tag{1.1}
\end{align*}
$$

The ISM applied to $L(\lambda)(1.1)$ allows one to solve a whole class of NLEE for the set of potentials $\left\{U_{k}\right\}^{*}$.

If they allow Hamiltonian interpretation, then the phase space \mathcal{F} should be parametrized by the independent elements of the potentials $\left\{\mathrm{U}_{\mathrm{k}}\right\}$, in $\mathrm{L}(\lambda)$. As a Hamiltonian H it is natural to choose on appropriate linear combination of the motion invariants $D^{(m)}$ of the NLEE, which can be constructed by the known methods (see refs. ${ }^{1-4}$) from $L(\lambda)$. Lastly, one should define a symplectic form Ω_{0} on \mathcal{F} such that the Hamiltonian equations of motion defined by $\left(\Omega_{0}, H\right)$ coincide with the corresponding NLEE. For a number of important particular choices of $L(\lambda)$ the explicit form of Ω_{0} and the global action-angle variables are well known, see the review paper by L.D.Faddeev in ref. ${ }^{(3 /}$, p. 339. Using the completeness relation of the system $\{\Psi(x, \lambda)\}$ it is easy to prove the existence of a hierarchy of symplectic forms Ω_{m}, $m= \pm 1,+2, \ldots$ on \mathcal{F}, pairwize consistent with Ω_{0} and between them-
 $\pi^{10,13,17 /}$.

A general approach** for the investigation of the Hamiltonian structure of the NLEE is known, based on the central extension of Lie algebras ${ }^{2} 25-28 /$. In our case for $L(\lambda)(1.1)$ the scheme starts by considering the Lie algebra \mathcal{A} of smooth 2×2 matrixvalued functions $U_{k}(x)$, vanishing fast enough when ${ }^{x} \rightarrow \pm \infty$. Studying an appropriate central extension of the algebra $\hat{\mathbb{Q}}=\mathbb{G}^{+} \oplus \mathbb{Q}^{-}$it is possible to write down the Lax representation of the NLEE in explicitly Hamiltonian form. Here the subalgebras $\mathbb{Q}^{ \pm}=\mathbb{Q} \otimes \mathrm{P}^{ \pm}(\lambda)$, $P+(\lambda)(P-(\lambda))$ being the algebra of polynomials over the nonnegative (negative) power of λ. The symplectic structure Ω_{0} is given by the Kirrilov-Kostant 2 -form. In order that Ω_{0} be nondegenerate, one is naturally led to choose as \mathfrak{F}. roughly speaking, the orbit of the co-adjoint action in \mathbb{Q}^{+}with respect to \mathcal{U}^{-}(see ref. ${ }^{/ 26 /}$). This requirements give us the form of $\mathrm{L}(\lambda)$

[^1]up to a gauge transformation ${ }^{\prime 31 /}$. Conveniently ${ }^{4}$ fixing the gauge and applying the natural restriction $\operatorname{tr} \sigma_{3} \mathrm{U}(\mathrm{x}, \mathrm{t}, \lambda)=0$, the bundle $L(\lambda)$ (1.1) may be cast into:
\[

$$
\begin{align*}
& L(\lambda) \psi(x, \lambda)=\left[i \sigma_{3} \frac{d}{d x}+\sum_{k=0}^{N-1} \lambda^{k} U_{k}-\lambda^{N}\right] \psi(x, \lambda)=0, \\
& U_{k}(x)=\left(\begin{array}{ll}
r_{k}, & q_{k} \\
p_{k}, & r_{k}
\end{array}\right), \quad k=0,1, \ldots, N-1 ; r_{N-1}=0 . \tag{1-2}
\end{align*}
$$
\]

In the present paper, applying the scheme of ref. ${ }^{/ 21 /}$ to the polynomial bundle (1.2) we outline the way by which one is able to construct an appropriate system of "squares" $\{\bar{\Psi}(x, \dot{\lambda})\}$ and prove its completeness. Thus an attempt is made to bring together the above-mentioned two approaches. The concrete calculations are made for the simplest nontrivial case $\mathrm{N}=2$, which exhibits all the peculiarities of the general construction. For $N>2$ the derivation is done analogically by the use of the Green function (3.10), in which $\psi * \phi=\psi^{\circ} \phi \theta\left(\begin{array}{c}1 \\ \lambda \\ \vdots \\ \lambda\end{array}\right)$ and $A_{0}=\left(\begin{array}{cc}0 & -i \sigma_{2} \\ \dot{\mathrm{~N}}-1\end{array}\right)$ see ref. ${ }^{16 /}$. However the corresponding formulae are very involved and we omit them.

If the operator Λ is not explicitly known, then all the considerations above acquire somewhat abstract character. Λ may be calculated using the fact, that the elements in $\{\Psi(x, \lambda)\}$ are its eigenfunctions, or by solving a certain system of recurrent relations, or as an operator transferring $\delta D^{(m)}$ into $\delta D^{(m+1)}$ and Ω_{m} into Ω_{m+1}. For the simplest and most important choices of $L(\lambda)$ all these definitions are equivalent and the corresponding Λ-operators are well known. The problem of explicit calculation of the Λ-operator for general polynomial bundles has been considered in ref. ${ }^{122 /}$ and reduced (using the first of the above-mentioned definitions) to the solution of an algebraic equation of power 2 N with matrix operator-valued coefficients. On these grounds it has been concluded in ref. ${ }^{\prime 2 / /}$, that there exist 2 N different operators Λ related to a bundle of the type (1.1). More detailed study of this algebraic equation for $L(\lambda)$ (1.2) based on the scheme of ref. ${ }^{21 /}$ allows one to calculate explicitly Λ as a $2 N \times 2 N$ - matrix integro-differential operator , see ref. ${ }^{16 /}$. From the completeness relation for $\{\bar{\Psi}(x, \lambda)\}$ it follows, that relations (3.15) uniquely determine $\Lambda=\Lambda_{+}$; all "the other Λ roperators" with the same system of eigenfunctions $\left\{\Psi(x, \lambda\}\right.$ are functions of Λ_{+}.

In the next $\$ 2$ of the present paper we present the necessary facts from the direct and inverse scattering problem for the system:
$L(\lambda) \psi(\mathbf{x}, \lambda)=\left[\mathbf{i} \sigma_{3} \frac{d}{d x}+Q_{0}+\lambda Q_{1}+r_{0}-\lambda^{2}\right] \psi(\mathbf{x}, \lambda)=0$,

$$
Q_{i}(x)=\left(\begin{array}{cc}
0 & q_{i} \tag{1.3}\\
p_{i} & 0
\end{array}\right) \quad, \quad i=0,1, \quad r_{0}=-\frac{1}{2} q_{1} p_{1} .
$$

which is obtained from (1.2) with $N=2$ and $r_{0}=-\frac{1}{2} q_{1} p_{1}$. This last restriction is not crucial for our considerations; its origin and importance for the NLEE will be discussed in ref. ${ }^{182 /}$. In $\S 3$ we prove the completeness relation for the "squared" so1ution $\{\bar{\Psi}(x, \lambda)\}$ of (1.3) and calculate the operator Λ_{+}. In the last, fourth paragraph compact expressions for the trace identities (see ref. /1/) of (1.3) through the operator Λ are obtained.

The application of these results to the NLEE are considered in our next paper ${ }^{132 \%}$.

The authors are grateful to Academicians Kh.Ja.Khristov and I.T.Todorov for their support. We thank P.P.Kulish, A.G.Reiman and M.A.Semenov-Tian-Shanskii for numerous usefull discussions.

§2. DIRECT AND INVERSE SCATTERING PROBLEM

Below we give the necessary facts from the direct and inverse scattering problem for the system (1.3). All of them are simple generalizations of the results, contained in refs. ${ }^{132,33 /}$. For simplicity we shall assume, that the potentials $Q_{i}(x)$ are complexvalued functions of Schwartz type and such, that the discrete spectrum of the system (1.3) consists of a finite number of simple eigenvalues. Under these conditions the Jost solutions, defined by:

$$
\begin{align*}
& \lim _{x \rightarrow \infty} \psi(x, \lambda) e^{i \lambda^{2} \sigma_{3} x}=1, \quad \lim _{x \rightarrow-\infty} \phi(x, \lambda) e^{i \lambda^{2} \sigma_{3} \mathrm{x}}=1, \tag{2.1}\\
& \psi(x, \lambda)=\left\|\psi^{-}, \psi^{+}\right\|, \quad \phi(x, \lambda)=\left\|\phi^{+}, \phi^{-}\right\|
\end{align*}
$$

exist, the columns $\psi^{+}(x, \lambda), \phi^{+}(x, \lambda),\left(\psi^{-}(x, \lambda), \phi^{-}(x, \lambda)\right)$ being analytic functions of λ^{\prime} in the regions $\operatorname{Im} \lambda^{2}>0(\operatorname{Im} \lambda<0)$. The transition matrix is introduced as usual:

$$
\begin{align*}
\phi(x, \lambda) & =\psi(x, \lambda) S(\lambda), \\
\operatorname{det} S(\lambda) & =1,
\end{align*} \quad S(\lambda)=\left(\begin{array}{rr}
a^{+} & -b^{-} \tag{2.2}\\
b^{+} & a^{-}
\end{array}\right),
$$

also being analytic functions of λ for $\operatorname{Im} \lambda^{2}>0$ $\left(\operatorname{Im} \lambda^{2}<0\right)$. The resolvent of the system (1.3) is expressed through the fundamental solutions

$$
\begin{equation*}
\chi^{+}(\mathrm{x}, \lambda)=\left\|\phi^{+}, \psi^{+}\right\|, \quad \chi^{-}(\mathrm{x}, \lambda)=\left\|\psi^{-}, \phi^{-}\right\| \tag{2.3}
\end{equation*}
$$

as follows:

$$
\begin{align*}
& R(x, y, \lambda)=R^{ \pm}(x, y, \lambda), \quad \operatorname{Im} \lambda^{2}<0 \\
& R^{ \pm}(x, y, \lambda)= \pm i \chi^{ \pm}(x, \lambda) \Theta(\pm(x-y)) \chi^{ \pm}(y, \lambda)^{-1} \sigma_{3}, \tag{2.4}\\
& \Theta(x)=\operatorname{diag}(\theta(-x),-\theta(x)) .
\end{align*}
$$

Obviously $R(x, y, \lambda)$ is analytic in λ for all im $\lambda^{2} \neq 0$ except the points, where $\operatorname{det}^{ \pm}(x, \lambda)=\mathrm{a}^{ \pm}(\lambda)=0$. The supposition that the discrete spectrum Δ is finite and simple means that $a^{\ddagger}(\lambda)$ have only finite number of simple zeroes:

$$
\Delta=\Delta^{+} \cup \Delta^{-}, \Delta^{ \pm} \equiv\left\{\lambda_{a \pm}, \operatorname{Im} \lambda_{a^{ \pm}}^{2}<0, \quad \mathrm{a}^{ \pm}\left(\lambda_{a \pm}\right)=0, a=1, \ldots, \mathrm{~N}\right\}
$$

The inverse scattering problem for the system (1.3) is readily formulated as Riemann problem for the solutions χ^{+}, x^{-}:

$$
\begin{align*}
& \check{x}^{+}(x, \lambda)=\ddot{\chi}^{-}(x, \lambda) G(x, \lambda), \quad \check{\chi}^{ \pm}(x, \lambda)=\chi^{ \pm}(x, \lambda) e^{1 \lambda^{2} \sigma_{3} x}, \\
& G(x, \lambda)=e^{-1 \lambda^{2} \sigma_{3} x} G_{0}(\lambda) e^{i \lambda^{2} \sigma_{3} x} \quad, \quad G_{0}(\lambda)=\frac{1}{a^{+}}\left(\begin{array}{cc}
1 & -b^{-} \\
-b^{+} & 1
\end{array}\right), \tag{2.5}
\end{align*}
$$

$\lim _{x \rightarrow \infty} \tilde{x}^{+}(x, \lambda)=1$.
$\mathbf{x \rightarrow \infty}$
with canonical normalization * for $\lambda \rightarrow \infty$. For our purposes it is somewhat more convenient to use the following representations** for the Jost solutions $\psi^{+}, \psi^{-182,33 /}$:

$$
\begin{aligned}
& \check{\psi}^{-}(x, \lambda)=\binom{1}{0}-\sum_{a=1}^{N} \frac{c_{a}^{+} e_{a+}^{2} \psi_{a}^{+}(x)}{\lambda_{a+}-\lambda}+\frac{1}{2 \pi 1} \int \frac{d \mu}{\mu-\lambda} \rho^{+}(\mu) \check{\psi}^{+}(x, \mu) e^{21 \mu^{2} x}, \operatorname{Im} \lambda^{2}<0 \\
& \breve{\psi}^{+}(x, \lambda)=\binom{0}{1}+\sum_{a=1} \frac{c_{a}^{-} \theta_{a-}^{2} \psi_{a}^{-}(x)}{\lambda_{a-}^{-\lambda}}+\frac{1}{2 \pi i} \Gamma \frac{d \mu}{\mu-\lambda} \rho^{-}(\mu) \psi^{-}(x, \mu) e^{-21 \mu^{2}}, \operatorname{Im} \lambda^{2}>0
\end{aligned}
$$

[^2]where $\quad \psi^{ \pm}(x, \lambda)=\psi^{ \pm}(x, \lambda) e^{\mp i \lambda^{2} x}, \quad \psi_{a}^{ \pm}(x)=\psi^{\ddagger}\left(x, \lambda_{a \pm}\right), \quad{ }^{\quad} a \pm=$ $=\exp \left(\pm \mathrm{i} \lambda_{a \pm}^{2} \mathrm{x}\right) \quad$ and the contour Γ is given on fig.l. If the set of scattering data
\[

$$
\begin{align*}
& T \equiv\left\{\rho^{ \pm}(\lambda), \lambda \in \Gamma, \quad \mathrm{c}_{a}^{ \pm}, \lambda_{a \pm}, \quad \operatorname{Im} \lambda_{a \pm}^{2} \geqslant 0, \quad a=1, \ldots, \mathrm{~N}\right\} \\
& \rho^{ \pm}(\lambda)=\mathrm{b}^{ \pm} / \mathrm{a}^{ \pm}(\lambda), \quad \mathrm{c}_{a}^{ \pm}=\mathrm{b}_{a}^{ \pm} / \dot{\mathrm{a}}_{a}^{ \pm}, \dot{\mathrm{a}}_{a}^{ \pm}=\left.\frac{\mathrm{da}^{ \pm}}{\mathrm{d} \lambda}\right|_{\lambda=\lambda_{a \pm}}, \tag{2.7}\\
& \mathrm{b}_{a}^{ \pm}: \phi_{a}^{ \pm}(\mathrm{x})=\mathrm{b}_{a}^{ \pm} \psi_{a}^{ \pm}(\mathrm{x}),
\end{align*}
$$
\]

is given, then from (2.6) one is able to obtain a system of singular integral equations for the functions $\psi \pm(x, \lambda), \lambda \in \Gamma$ and $\lambda \in \Gamma$. Solving it we can find $\psi^{ \pm}(x, \lambda)$ for all $\operatorname{Im} \lambda^{2} \geqslant 0$. Then the potentials $Q_{i}(x)$ are reçonstructed from the first few terms in the asymptotics of $\psi(x, \lambda)$ for $\lambda \rightarrow \infty$:

$$
\begin{align*}
& \frac{1}{2} \sigma_{3}\left\{\sigma_{3}, \ddot{\psi}(x, \lambda)\right\}=\bar{i}-\frac{1}{2 \lambda} \sigma_{3} u(x)+O\left(\frac{1}{\lambda^{2}}\right), \\
& u(x)=\int_{x}^{\infty} d y\left(q_{1} p_{0}+q_{0} p_{1}\right), \tag{2.8}\\
& \frac{1}{2} \sigma_{3}\left[\sigma_{3}, \breve{\psi}(x, \lambda)\right]= \\
& =\frac{1}{2 \lambda} Q_{1}(x)+\frac{1}{2 \lambda^{2}}\left[Q_{0}(x)-\frac{1}{2} Q_{1}(x) \sigma_{3} u(x)\right]+O\left(\frac{1}{\lambda^{3}}\right) .
\end{align*}
$$

In particular, for $\rho^{ \pm}(\lambda)=0(2.6)$ gives us a system of algebraic equations, which is easily solved explicitly. The corresponding solutions lead to the reflectionless potentials, the simplest of which has the form:

$$
\begin{aligned}
& q_{1}^{(1 s)}(x)=-\frac{2 c_{1}^{-} e_{1-}}{e_{1+} d(x)}, \quad p_{1}^{(1 s)}=\frac{2 e_{1+} c_{1}^{+}}{e_{1-} d(x)}, d(x)=\frac{1}{e_{1+} e_{1-}}-\omega_{1} e_{1+} e_{1-} \\
& q_{0}^{(1 s)}(x)=\frac{2 c_{1}^{-} e_{1-}}{e_{1+} d^{2}(x)}\left[\lambda_{1+} \omega_{1} e_{1+} e_{1-}-\frac{\lambda_{1-}}{e_{1+} e_{1-}}\right], \omega_{1}=c_{1+} c_{1-}\left(\lambda_{1+}-\lambda_{1-}\right)^{-2}, \\
& p_{0}^{(1 s)}(x)=\frac{2 c_{1+}^{+} e_{1+}}{e_{1-} d^{2}(x)}\left[\frac{\lambda_{1+}}{e_{1+} e_{1-}}-\lambda_{1-} \omega_{1} e_{1+} e_{1-}\right], e_{1 \pm}=\exp \left(\pm \lambda_{1+}^{2} x\right)
\end{aligned}
$$

The transition matrix $S(\lambda)$, is reconstructed from the set \mathcal{T} by the use of the dispersion relation:
(λ Fig. 1. The contour Γ.

$$
D(\lambda)=\frac{1}{2 \pi} \int \frac{d \mu}{\mu-\lambda} \ln \left[1+\rho^{+} \rho^{-}(\mu)\right]+
$$

$$
\begin{equation*}
+\sum_{a=1}^{N} \ln \frac{\lambda-\lambda_{a+}}{\lambda-\lambda_{a-}}, \tag{2.9}
\end{equation*}
$$

$$
\mathrm{D}(\lambda)=\ln \mathrm{a}^{+}(\lambda), \quad \operatorname{Im} \lambda^{2}>0
$$

$$
D(\lambda)=-\ln a^{-}(\lambda), \quad \operatorname{Im} \lambda^{2}<0
$$

The set, \mathfrak{J} corresponding to the simplest reflectionless potential is given by $\left\{\rho^{ \pm}(\lambda)=0, c_{1}^{+}, c_{1}^{-}, \lambda_{1+}, \lambda_{1-}\right\}$, and the transition matrix equals to $\mathrm{S}(\lambda)=\operatorname{diag}\left(\frac{\lambda-\lambda_{1+}}{\lambda-\lambda_{1-}}, \frac{\lambda-\lambda_{1-}}{\lambda-\lambda_{1+}}\right)$.
§3. THE INTERRELATION BETWEEN THE SCATTERING DATA AND THE POTENTIAL - GENERALIZED FOURIER TRANSFORM

Let us investigate in greater detail the interrelation between the set of potentials $\left\{Q_{1}(x)\right\}$ in (1.3) and the set of scattering data \mathfrak{T} (2.7). For this we start from the relations:

$$
\begin{align*}
& A^{ \pm}(\lambda)=\left.1\left(X^{ \pm}\right)^{-1} \sigma_{8} \chi^{ \pm}(x, \lambda)\right|_{x=-\infty} ^{\infty}= \\
& =-2 \int_{-\infty}^{\infty} \mathrm{d} x\left(X^{ \pm}\right)^{-1}\left(Q_{0}+\lambda Q_{1}\right) \chi^{ \pm}(x, \lambda), \quad \operatorname{Im} \lambda^{2} \gtrless 0 . \tag{3.1}
\end{align*}
$$

Using (2.1)-(2.3), the 1.h.s. of (3.1) is easily expressed by the transition matrix, and hence - by the scattering data \mathfrak{J}. The matrix elements in the r.h.s. of (3.1) are rewritten conveniently by using the following skew-scalar product in the space $X, Y \in S(C)^{4}$:

$$
\begin{align*}
& {[X, Y]=\int_{-\infty}^{\infty} d x X^{T}(x) A_{0} Y(x),} \\
& A_{0}=\left(\begin{array}{cc}
0 & -i \sigma_{2} \\
-i \sigma_{2} & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \tag{3.2}
\end{align*}
$$

in the form:

$$
\begin{align*}
& A_{12}(\lambda)=\frac{2}{a^{+}}\left[\bar{w}, \Psi^{+}\right], \quad A_{21}^{+}(\lambda)=-\frac{2}{a^{+}}\left[\bar{w}, \Phi^{+}\right], A_{12}^{-}(\lambda)=\frac{2}{a^{-}}\left[\bar{w}, \Phi^{-}\right], \\
& A_{21}(\lambda)=-\frac{2}{a^{-}}\left[\bar{w}, \Psi^{-}\right], A_{11}^{ \pm}(\lambda)=-A_{22}^{ \pm}(\lambda)=\frac{2}{a^{ \pm}}\left[\overline{\mathrm{w}}, \phi^{ \pm} * \psi^{ \pm}\right] . \tag{3.3}
\end{align*}
$$

Here we have used the following notations:

$$
\begin{aligned}
& \vec{w}=\binom{w_{1}}{w_{0}}, \quad w_{i}=\binom{q_{i}}{p_{i}}, \quad i=0,1, \quad \Psi \pm(x, \lambda)=\psi^{ \pm} * \psi^{ \pm}(x, \lambda), \\
& \Phi^{ \pm}\left(x, \lambda \lambda=\phi^{ \pm} * \phi^{ \pm}(x, \lambda), \quad \phi * \psi=\begin{array}{c}
\phi_{0} \psi \\
\lambda \phi_{0} \psi
\end{array} \equiv \phi^{\circ} \psi \theta\binom{1}{\lambda}, \phi^{\circ} \psi=\binom{\phi_{1} \psi_{1}}{\phi_{2} \psi_{2}}\right.
\end{aligned}
$$

The quantities (3.3) can be considered as Fourier coefficients of the potential $\underset{\sim}{w}$ with respect to the system of "squared" solutions $\Psi^{ \pm}(x, \lambda)$ or $\Phi^{ \pm}(x, \lambda)$. When investigating the NLEE and their Hamiltonian structure it would be important to find analogical relations between the variations of the potentials δQ_{i} and the corresponding variations of $\delta \mathcal{T}$. Such relations follow from:

$$
\begin{align*}
& \mathrm{B}^{ \pm}(\lambda)=\left.\mathrm{i}\left(\chi^{ \pm}\right)^{-1} \delta \chi^{ \pm}(\mathrm{x}, \lambda)\right|_{\mathbf{x}=-\infty} ^{\infty}= \\
& =-\int_{-\infty}^{\infty} \mathrm{dx}\left(\chi^{ \pm}\right)^{-1} \sigma_{3}\left(\delta \mathrm{r}_{0}+\delta \mathrm{Q}_{0}+\lambda \delta \mathrm{Q}_{1}\right) \chi^{ \pm}(\mathrm{x}, \lambda), \quad \operatorname{Im} \lambda^{2}<0 \tag{3.5}
\end{align*}
$$

Using (2.1)-(2.3) $\mathrm{B}^{ \pm}(\lambda)$ is easily expressed through the variations of the scattering data. The r.h.s. of (3.5), after some algebra, is cast into the form:

$$
\begin{align*}
& \mathrm{B}_{12}^{+}(\lambda)=-\frac{1}{\mathrm{a}^{+}}\left[\sigma_{3} \delta \overline{\mathrm{w}}, \quad \mathrm{~N}_{+}^{1} \Psi^{+}\right], \quad \mathrm{B}_{21}^{+}(\lambda)=\frac{1}{\mathrm{a}^{+}}\left[\bar{\sigma}_{3} \delta \overline{\mathrm{w}}, \mathrm{~N}_{-}^{-1} \Phi^{+}\right] \\
& \mathrm{B}_{12}^{-}(\lambda)=-\frac{1}{\mathrm{a}^{-}}\left[\bar{\sigma}_{3} \delta \overline{\mathrm{w}}, \quad \mathrm{~N}_{-}^{-1} \Phi^{-}\right], \quad \mathrm{B}_{21}^{-}(\lambda)=\frac{1}{\mathrm{a}^{-}}\left[\bar{\sigma}_{3} \delta \overline{\mathrm{~W}}, \mathrm{~N}_{+}^{-1} \Psi^{-}\right] \tag{3.6}
\end{align*}
$$

where $\bar{\sigma}_{3}=\operatorname{dag}\left(\sigma_{3}, \sigma_{3}\right)$ and the integro-differential operators $\mathrm{N}_{ \pm}^{-1}$ have the form:

$$
N_{ \pm}^{-1}=\left(\begin{array}{cc}
1, & 0 \\
Z_{10}^{ \pm}, & 1+Z_{11}^{ \pm}
\end{array}\right) \quad Z_{i k}^{ \pm}=-i w_{i} \int_{x}^{ \pm \infty} d y \tilde{w}_{k}(y)
$$

Taking into account the fact, that $\left[\bar{w}, N_{+}^{-1} X\right]=[\vec{w}, X]$ we choose more convenient "squares" of the from $\bar{\Psi}^{ \pm}(x, \lambda)=N_{+}^{-1} \Psi^{ \pm}(x, \lambda)$ and $\bar{\Phi}^{ \pm}(x, \lambda)=N^{-1} \Phi^{\ddagger}(x, \lambda)$.

The completeness relation for the systems of vector-functions

$$
\begin{align*}
& \bar{\Psi}\} \equiv\left\{\bar{\Psi}^{ \pm}(x, \lambda), \quad \lambda \in \Gamma, \bar{\Psi}_{a}^{ \pm}(x), \quad \dot{\bar{\Psi}}_{a}^{ \pm}(x), \quad a=1, \ldots, N\right\}, \\
& \{\bar{\Phi}\} \equiv\left\{\bar{\Phi}^{ \pm}(x, \lambda), \quad \lambda \in \Gamma, \quad \bar{\Phi}_{a}^{ \pm}(x), \dot{\Phi}_{a}^{ \pm}(x), \quad a=1, \ldots, N\right\}, \\
& \bar{\Psi}^{ \pm}(x, \lambda)=N_{+}^{-1} \Psi^{ \pm}(x, \lambda), \quad \bar{\Phi}^{ \pm}(x, \lambda)=N_{-}^{-1} \Phi^{ \pm}(x, \lambda), \tag{3.8}\\
& \dot{F}^{ \pm}(x, \lambda)=\left.\frac{d}{d \lambda} F^{ \pm}(x, \lambda)\right|_{\lambda=\lambda_{a \pm}},
\end{align*}
$$

has the form:

$$
\begin{aligned}
& \delta(\mathrm{x}-\mathrm{y})=-\frac{1}{\pi} \int \mathrm{C} \lambda\left[\frac{\bar{\Psi}^{+}(\mathrm{x}, \lambda) \bar{\Phi}^{+}(\mathrm{T}, \lambda)}{\left(\mathrm{a}^{+}(\lambda)\right)^{2}}-\frac{\bar{\Psi}^{-}(\mathrm{x}, \lambda) \bar{\Phi}^{-T}(\mathrm{~T}, \lambda)}{\mathrm{a}^{-}(\mathrm{x},)^{2}}\right] \mathrm{A}_{0}+\sum_{a=1}^{\mathrm{N}}\left(\mathrm{X}_{a}^{+}+\bar{X}_{a}^{-}\right)(\mathrm{x}, \mathrm{y}) \\
& \mathrm{X}_{a}^{ \pm}(\mathrm{x}, \mathrm{y})=\frac{2 \mathrm{i}}{\left(\dot{\mathrm{a}}_{a}^{ \pm}\right)^{2}}\left[\bar{\Psi}_{\alpha}^{ \pm}(\mathrm{x}) \dot{\bar{\Phi}}_{a}^{ \pm \mathrm{T}}(\mathrm{y})+\dot{\bar{\Psi}}_{a}^{ \pm}(\mathrm{x}) \bar{\Phi}_{a}^{ \pm \mathrm{T}}(\mathrm{y})-\frac{\ddot{\mathrm{a}}_{a}^{ \pm}}{\dot{\mathrm{a}}_{a}^{ \pm}} \bar{\Psi}_{a}^{ \pm}(\mathrm{x}) \bar{\Phi}_{a}^{ \pm \mathrm{T}}(\mathrm{y})\right] \mathrm{A}_{0}
\end{aligned}
$$

In deriving (3.9) we have applied the contour integration method to the integral

$$
\frac{1}{2 \pi \mathrm{i}}{\underset{\gamma}{1}}^{q^{\prime} \gamma_{3}} d \lambda \mathrm{a}^{+}(\mathrm{x}, \mathrm{y}, \lambda)-\frac{1}{2 \pi \mathrm{i}} \underset{\gamma_{2} \cup \gamma_{4}}{\oint} d \lambda \mathrm{G}^{-}(\mathrm{x}, \mathrm{y}, \lambda),
$$

where the contours $\gamma_{1}, i=1, \ldots, 4$ are given on fig. 2 , and the functions $G^{ \pm}(x, y, \lambda)$ for $\operatorname{Im} \lambda^{2} \geqslant 0$ are equal to:

$$
\begin{aligned}
& \mathrm{G}^{ \pm}(\mathrm{x}, \mathrm{y}, \lambda)=\frac{2 \mathrm{i}}{\left(\mathrm{a}^{ \pm}(\lambda)\right)^{2}}\left\{\Psi^{ \pm}(\mathrm{x}, \lambda) \Phi^{ \pm \mathrm{T}}(\mathrm{y}, \lambda) \theta(\mathrm{x}-\mathrm{y})+\right. \\
& \left.+\left[2\left(\phi^{ \pm}{ }_{*} \psi^{ \pm}\right)(\mathrm{x}, \lambda)\left(\phi^{ \pm}{ }_{*} \psi^{ \pm}\right)^{\mathrm{T}}(\mathrm{y}, \lambda)-\Phi^{ \pm}(\mathrm{x}, \lambda) \Psi^{ \pm \mathrm{T}}(\mathrm{y}, \lambda)\right] \theta(\mathrm{y}-\mathrm{x})\right\} \mathrm{A}_{0}
\end{aligned}
$$

Thus one obtains the completeness relation for the systems \{ $\Psi\}$ and $\{\Phi\}$, which differs from (3.9) by: i) in the l.h.s. one gets $\Lambda_{1}^{ \pm} \delta(x-y)$, where

$$
\Lambda_{1}^{ \pm}=M_{ \pm} N_{ \pm}=N_{ \pm} M_{ \pm}, \quad M_{ \pm}=\left(\begin{array}{cc}
1-\mathrm{z}_{11}^{ \pm}, & 0 \tag{3.11}\\
-\mathrm{Z}_{0_{1}}^{ \pm}, & 1
\end{array}\right)
$$

and ii) in the r.h.s. everywhere $\bar{\Psi}^{ \pm}(x, \lambda)$ and $\bar{\Phi}^{ \pm}(y, \lambda)$ should be replaced by $\Psi^{\ddagger}(x, \lambda)$ and $\Phi^{\ddagger}(y, \lambda)$, respectively. In order to obtain (3.9) one should use (3.11) and the relations:
$\left[X, M_{ \pm} Y\right]=\left[N_{\mp} X, Y\right], \quad X, Y \in S\left(C^{4}\right)$,
which follow from (3.2), (3.7) and (3.11) with integration by parts.

Let us write down also the symplectic form of the completeness relation:

$$
\begin{aligned}
& \delta(x-y)=\int d \lambda\left[Q(x, \lambda) P^{T}(y, \lambda)-P(x, \lambda) Q^{T}(y, \lambda)\right] A_{0}+ \\
& +\sum_{a=1}^{N}\left[Q_{a}^{+}(x) P_{a}^{+T}(y)-P_{a}^{+}(x) Q_{a}^{+T}(y)+Q_{a}^{-}(x) P_{a}^{-T}(y)-P_{a}^{-}(x) Q_{a}^{-T}(y)\right] A_{0}
\end{aligned}
$$

where $P(x, \lambda)$ and $Q(x, \lambda)$ are given by:

$$
\begin{align*}
& \mathrm{P}(\mathrm{x}, \lambda)=\frac{1}{\pi}\left(\rho^{+} \bar{\Psi}^{+}+\rho^{-} \bar{\Psi}^{-}\right)(\mathrm{x}, \lambda)=\frac{1}{\pi}\left(\sigma^{+} \bar{\Phi}^{+}+\sigma^{-} \bar{\Phi}^{-}\right)(\mathrm{x}, \lambda), \\
& \mathrm{Q}(\mathrm{x}, \lambda)=\frac{1}{2 \mathrm{~b}^{+} \mathrm{b}^{-}}\left(\sigma^{+} \bar{\Phi}^{+}-\rho^{+} \bar{\Psi}^{+}\right)(\mathrm{x}, \lambda)=\frac{1}{2 \mathrm{~b}^{+} \mathrm{b}^{-}}\left(\rho^{-} \bar{\Psi}^{-}-\sigma^{-} \bar{\Phi}^{-}\right)(\mathrm{x}, \lambda), \\
& \mathrm{P}_{a}^{ \pm}(\mathrm{x})=\mp 2 \mathrm{fi}_{a}^{ \pm} \bar{\Psi}_{a}^{ \pm}(\mathrm{x}), \quad \mathrm{Q}_{a}^{ \pm}(\mathrm{x})=\mp \frac{1}{2}\left[\mathrm{c}_{a}^{ \pm} \dot{\Psi}_{a}^{ \pm}(\mathrm{x})-\mathrm{d}_{a}^{ \pm} \dot{\Phi}_{a}^{ \pm}(\mathrm{x})\right], \tag{3.14}\\
& \sigma^{ \pm}(\lambda)=\frac{\mathrm{b}^{\mp}}{\mathrm{a}^{ \pm}(\lambda)}, \lambda \in \Gamma ; \quad \mathrm{d}_{a}^{ \pm}=\left(\mathrm{b}_{a}^{ \pm} \dot{\mathrm{a}}_{a}^{ \pm}\right)^{-1} .
\end{align*}
$$

It can be checked, that the systems $\{\bar{\Psi}\}$ and $\mid \bar{\Phi}\}$ are eigenand adjoint-functions

$$
\begin{align*}
& \left(\Lambda_{+}-\lambda\right) \bar{\Psi}^{ \pm}(x, \lambda)=0, \lambda \in \Gamma \cup \Delta ;\left(\Lambda_{+}-\lambda_{a \pm}\right) \dot{\Psi}_{a}^{ \pm}(x)=\bar{\Psi}_{a}^{ \pm}(x), \\
& \left(\Lambda_{-}-\lambda\right) \bar{\Phi}^{ \pm}(x, \lambda)=0, \lambda \in \Gamma \cup \Delta ;\left(\Lambda_{-}-\lambda_{a \pm}\right) \dot{\bar{\Phi}}_{a}^{ \pm}(x)=\bar{\Phi}_{a}^{ \pm}(x) \tag{3.15}
\end{align*}
$$

of the following integro-differential operators Λ_{+}and Λ_{-}:

$$
\Lambda_{ \pm}=\left(\begin{array}{cc}
-\mathrm{Z}_{10}^{ \pm}, & 1-\mathrm{Z}_{11}^{ \pm} \tag{3.16}\\
\hat{\mathrm{D}}-\mathrm{Z}_{00}^{ \pm}, & -\mathrm{Z}_{01}^{ \pm}
\end{array}\right) \quad \hat{\mathrm{D}}=\frac{\mathrm{i}}{2} \sigma_{3} \frac{\mathrm{~d}}{\mathrm{dx}}+\mathrm{r}_{0}(\mathrm{x})
$$

As a domain of definition of the operators $\Lambda_{ \pm}$we shall consider the space of complex-valued vector-functions of Schwartz type $\delta\left(C^{4}\right)$. Obviously if $X \in S\left(C^{4}\right)$, then $\Lambda_{ \pm} X \in S\left(C^{4}\right)$ also. The operators Λ_{+}and Λ_{-}satisfy conjugation-1ike relations with respect to the skew-scalar product $[$,$] (3.2) in \delta\left(C^{4}\right)$:
$\left[\mathrm{X}, \Lambda_{+} \mathrm{Y}\right]=\left[\Lambda_{-} \mathrm{X}, \mathrm{Y}\right]$.
(3.17) is derived like (3.12) with integration by parts.

Using (3.9) and (3.13) one is able to expand the potential \bar{W} and its variation $\sigma_{3} \delta \bar{w}$ over the systems $\{\Psi\}$ and \{ $\mathrm{P}, \mathrm{Q}\}$ (3.14). The expansion coefficients are explicitly calculated in terms of the scattering data $\mathcal{T}(2.7)$ and their variations by use of (3.3) and (3.6). Thus one obtains:

Fig. 2. The contours $\gamma_{i}, i=1, \ldots, 4$.

$$
\begin{align*}
& \left.\overline{\mathrm{w}}(\mathrm{x})=\frac{1}{\pi} \int_{\Gamma} \mathrm{d} \lambda \rho^{+} \Psi^{+}+\rho^{-} \Psi^{-}\right)(\mathrm{x}, \lambda)+2 \sum_{a=1}^{\mathrm{N}}\left(\mathrm{c}_{a}^{+} \Psi_{a}^{+}(\mathrm{x})-\mathrm{c}_{a}^{-} \Psi_{a}^{-}(\mathrm{x})\right)= \\
& =\mathrm{i} \int_{\Gamma} \mathrm{d} \lambda \mathrm{P}(\mathrm{x}, \lambda)+\mathrm{i} \sum_{a=1}^{\mathrm{N}}\left(\mathrm{P}_{a}^{+}(\mathrm{x})+\mathrm{P}_{\alpha}^{-}(\mathrm{x})\right) \tag{3.18}
\end{align*}
$$

and

$$
\begin{align*}
& \bar{\sigma}_{3} \delta \overline{\mathrm{w}}(\mathrm{x})=-\frac{\mathrm{i}}{\pi} \int_{\Gamma} \mathrm{d} \lambda\left(\delta \rho^{+} \bar{\Psi}^{+}-\delta \rho^{-} \bar{\Psi}^{-}\right)(\mathrm{x}, \lambda)-2 \sum_{a=1}^{\mathrm{N}}\left(\overline{\mathrm{U}}_{a}^{+}(\mathrm{x})+\overline{\mathrm{U}}_{a}^{-}(\mathrm{x})\right)= \\
& =\int_{\Gamma} \mathrm{d} \lambda[Q(\mathbf{x}, \lambda) \delta \hat{\mathrm{p}}(\lambda)-\mathrm{P}(\mathrm{x}, \lambda) \delta \hat{\mathrm{q}}(\lambda)]+\sum_{a=1}^{\mathrm{N}}\left(\overline{\mathrm{~V}}_{a}^{+}(\mathrm{x})+\overline{\mathrm{V}}_{a}^{-}(\mathrm{x})\right), \\
& \overline{\mathrm{U}}_{\alpha}^{ \pm}(\mathrm{x})=\delta \mathrm{c}_{a}^{ \pm} \bar{\Psi}_{\alpha}^{ \pm}(\mathrm{x})+\mathrm{c}_{\alpha}^{ \pm} \delta \lambda_{\alpha \pm} \dot{\bar{\Psi}}_{\alpha}^{ \pm}(\mathrm{x}) \text {. } \\
& \overrightarrow{\mathrm{V}}_{a}^{ \pm}(\mathrm{x})=\mathrm{Q}_{a}^{ \pm}(\mathrm{x}) \delta \hat{\mathrm{p}}_{a}^{ \pm}-\mathrm{P}_{a}^{ \pm}(\mathrm{x}) \delta \hat{\mathrm{q}}_{a}^{ \pm} . \\
& \text {In (3.19) we have introduced the notations: } \\
& \hat{\mathrm{p}}(\lambda)=\frac{1}{\pi} \ln \left[1+\rho^{+} \rho^{-}(\lambda)\right], \quad \hat{\mathrm{q}}(\lambda)=\frac{\mathbf{i}}{2} \ln \left(\mathrm{~b}^{+}(\lambda) / \mathrm{b}^{-}(\lambda)\right), \quad \lambda \in \Gamma, \\
& \hat{\mathbf{p}}_{a}^{ \pm}= \pm 2 \lambda_{a \pm}, \quad \hat{\mathbf{q}}_{a}^{ \pm}= \pm \mathrm{i} \ln \frac{ \pm}{a} . \tag{3.20}
\end{align*}
$$

Thus from (3.18) it becomes obvious, that the minimal set of scattering data $\mathfrak{J}(2.7)$ may be interpreted as Fourier expansion coefficients of $\bar{w}(x)$ over the system $\{\Psi\}$. Analogically one can
expand $\bar{w}(x)$ and $\sigma_{3} \delta \overline{\mathrm{w}}(\mathrm{x})$ over the system $\{\Phi\}$; the corresponding set of expansion coefficients consists of:
$\overrightarrow{\mathcal{J}} \equiv\left\{\sigma^{ \pm}(\lambda), \lambda \in \Gamma, \mathrm{d}_{a}^{ \pm}, \lambda_{a \pm}, a=1, \ldots, N\right\}$,
where the notations have been introduced in (3.14).
Making use of the dispersion relations (2.9) one readily verifies that the sets $\mathfrak{T}, \mathfrak{T}$ and $\{\hat{\mathrm{p}}, \hat{\mathrm{q}}\}$ (3.20) are mutually equivalent. As we have already noted in $\$ 2$, they uniquely reproduce both the transition matrix $S(\lambda)$ and the potentials $Q_{1}(x)$.

§4. TRACE IDENTITIES

The trace identities ${ }^{1 /}$ have been widely used in the literature to construct the conserved quantities of the NLEE, see refs $\mathrm{l}^{1-5 /}$, For polynomial bundles of general form, and also for rational bundles with finite rank divisors the recurrent formulae for calculating the conservation laws have been given in refs. ${ }^{\prime 2 R, 35 /}$.

In this last paragraph we shall derive compact formulae, expressing the regularized functional determinant of (1.3) through the operator Λ_{+}. Let us start by showing that:
$\eta(\lambda) \frac{d}{d \lambda} \ln \operatorname{Det}\left[L(\lambda) L_{0}^{-1}(\lambda)\right]=\frac{d}{d \lambda} D(\lambda)$,
$\eta(\lambda)=\left\{\begin{aligned} 1, & \operatorname{Im} \lambda^{2}>0, \\ -1, & \operatorname{Im} \lambda^{2}<0,\end{aligned}\right.$
where $D(\lambda)$ is introduced in (2.9), and $L_{0}(\lambda)$ is the operator (1.3) with $Q_{0}=Q_{1}=0$. To do this we represent the r.h.s. of (4.1) in the form:

$$
\begin{align*}
& \frac{d}{d \lambda} D(\lambda)=\left.\frac{1}{2}\left\{\operatorname{tr}\left[\left(\chi^{ \pm}\right)^{-1} \dot{\chi}^{ \pm}(x, \lambda) \sigma_{3}\right]+4 \lambda x\right\}\right|_{x=-\infty} ^{\infty}= \\
& =\int_{-\infty}^{\infty} d x\left\{\operatorname{tr}\left[\frac{1}{2}\left(\chi^{ \pm}\right)^{-1} \sigma_{3}\left(Q_{1}-2 \lambda\right) \chi^{ \pm}(x, \lambda) \sigma_{3}\right]+2 \lambda\right\} \tag{4.2}
\end{align*}
$$

by making use of (1.1), (2.1) and (2.2). For the 1.h.s. of (4.1) we have
$\eta(\lambda) \frac{d}{d \lambda} \ln \operatorname{Det}\left[L(\lambda) L_{0}^{-1}(\lambda)\right]=\eta(\lambda) \frac{d}{d \lambda} \operatorname{Tr} \ln \left[L(\lambda) L_{0}^{-1}(\lambda)\right]=$
$=\int_{-\infty}^{\infty} d x\left\{\operatorname{tr}\left[\eta(\lambda) R(x, x, \lambda)\left(Q_{1}(x)-2 \lambda\right)\right]+2 i \lambda\right\}$.

Incerting, in (4.3) the explicit formulae for

$$
R(x, x, \lambda)=\frac{1}{2}[R(x, x+0, \lambda)+R(x+0, x, \lambda)]
$$

from (2.4) it is easy to check that the last lines in (4.3) and (4.2) coincide. Thus (4.1) is proved.

Now by use of (1.1) and (2.3), we rewrite (4.2) in the form:

$$
\begin{align*}
& \frac{d D(\lambda)}{d \lambda}=4 \lambda \int_{-\infty}^{\infty} d x \int_{x}^{\infty} d y \bar{w}^{T}(y) A_{0} E(y, \lambda)-i \int_{-\infty}^{\infty} d x\left(\overparen{\sigma_{3}{ }^{W}{ }_{1}(x)}, 0\right) E(x, \lambda), \\
& \mathrm{E}(\mathrm{x}, \lambda)=\mathrm{E}^{ \pm}(\mathrm{x}, \lambda), \operatorname{Im} \lambda^{2} \geqslant 0, \quad \mathrm{E}^{ \pm}(\mathbf{x}, \lambda)=\frac{\phi^{ \pm} * \phi^{ \pm}}{\mathrm{a}^{ \pm}}(\mathrm{x}, \lambda) . \tag{4.4}
\end{align*}
$$

Applying the contour integration method to the integral

$$
\frac{1}{2 \pi \mathrm{i}} \gamma_{1} \cup \gamma_{3} \frac{\mathrm{~d} \mu}{\mu-\lambda} \mathrm{E}^{+}(\mathrm{x}, \mu)-\frac{1}{2 \pi \mathrm{i}} \gamma_{2} \cup \gamma_{4} \frac{\mathrm{~d} \mu}{\mu-\lambda} \mathrm{E}^{-}(\mathrm{x}, \mu), \quad \operatorname{Im} \lambda^{2} \neq 0, \lambda \bar{\in} \Gamma \quad \Delta
$$

one obtains:

$$
\begin{align*}
& E(x, \lambda)=-\frac{i}{2 \pi} \int \frac{\mathrm{~d} \mu}{\mu-\lambda}\left(\rho^{+} \Psi^{+}+\rho^{-} \Psi-\right)(\mathrm{x}, \mu)- \\
& -\sum_{a=1}^{N}\left[\frac{\mathrm{c}_{a}^{+} \Psi_{a}^{+}(\mathrm{x})}{\lambda_{a+}-\lambda}-\frac{\mathrm{c}_{a}^{-} \Psi_{a}^{-}(\mathrm{x})}{\lambda_{a-}-\lambda}\right]+\frac{1}{2}\left({ }_{\mathrm{w}_{1}}^{0}\right)(\mathrm{x})= \tag{4.5}\\
& =\mathrm{N}_{+}\left[-\frac{1}{2}\left(\Lambda_{+}-\lambda\right)^{-1} \overline{\mathrm{w}}(\mathrm{x})+\frac{1}{2}\left({ }_{\mathrm{w}_{1}}^{0}\right)(\mathrm{x})\right] .
\end{align*}
$$

The last line in (4.5) follows from (3.18) and (3.15). Incerting (4.5) into (4.4) one immidiately obtains:

$$
\begin{align*}
& \frac{d D}{d \lambda}(\lambda) \\
& d \lambda \tag{4.6}\\
& \left.\left.+\frac{i}{2} \int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d x \int_{x}^{\infty} d y \bar{w}^{T}(y) A_{0}\left(\Lambda_{+}-\lambda\right)^{-1}(x)\right)^{T}, 0\right) A_{0}\left(\Lambda_{+}-\lambda\right)^{-1} \bar{w}(x)
\end{align*}
$$

From the definition (2.8) there follows, that $D(\lambda)$ is an analytic function of λ, and therefore it has an asymptotic expansion in the neignbourhood of $\lambda \rightarrow \infty: D(\lambda)=\sum_{m=1}^{\infty} \lambda^{-m} D^{(m)}$. Expanding the r.h.s. of (4.6) over the inverse power of λ we get:

$$
\begin{align*}
& D^{(m)}=-\frac{\dot{2}}{m} \int_{-\infty}^{\infty} d x \int_{x}^{\infty} d y \bar{w}^{T}(y) A_{0} \Lambda_{+}^{m+1} \bar{w}(y)+ \tag{4.7}\\
& +\frac{1}{2 m} \int_{-\infty}^{\infty} d x\left(\left(\sigma_{3} w_{1}\right)^{T}, 0\right) A_{0} \Lambda_{+}^{m} \bar{w}(x)
\end{align*}
$$

i.e., $\mathrm{D}^{(\mathrm{m})}$ is expressed as a functional of the potentials of (1.3). Analogically from (2.8)

$$
\begin{equation*}
D^{(\mathrm{m})}=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \mu \mu^{\mathrm{m}-1} \ln \left[1+\rho^{+} \rho^{-}(\mu)\right]-\frac{1}{\mathrm{~m}} \cdot \sum_{a=1}^{N}\left(\lambda_{a+}^{\mathrm{m}}-\lambda_{a-}^{\mathrm{m}}\right) \tag{4.8}
\end{equation*}
$$

$\mathrm{D}^{(\mathrm{m})}$ is expressed as a functional of the scattering data \mathfrak{T}. Equating the r.h.sides of (4.7) and (4.8) we obtain the socalled trace identities for (1.3).

In our next paper ${ }^{/ 32 /} \mathrm{we}_{\mathrm{m}}$ shali also need analogicall expressions for the variations $\delta \mathrm{D}^{(\mathrm{m})}$. Their derivation is based on the rélations ${ }^{14 /}$:

$$
\begin{align*}
& \delta \mathrm{D}(\lambda)=\frac{1}{2} \operatorname{tr}\left[\left(\chi^{ \pm}\right)^{-1} \delta \chi^{ \pm}(\mathrm{x}, \lambda) \sigma_{3}\right]{ }_{\mathrm{x}=-\infty}^{\infty}= \\
& =\frac{1}{2} \int_{-\infty}^{\infty} \mathrm{dx} \operatorname{tr}\left[\left(\chi^{ \pm}\right)^{-1} \sigma_{3}\left(\delta \mathrm{Q}+\delta \mathrm{r}_{0}\right) \chi^{ \pm}(\mathrm{x}, \lambda) \sigma_{3}\right] \tag{4.9}
\end{align*}
$$

which is obtained from (1.3) and (2.1)-(2.3). We conveniently rewrite (4.9) in the form:

$$
\delta \mathrm{D}(\lambda)=-\frac{\mathrm{i}}{2} \int_{-\infty}^{\infty} \mathrm{dx} \delta\left(\mathrm{q}_{1} \mathrm{p}_{1}\right)-\mathrm{i}\left[\bar{\sigma}_{3} \delta \overline{\mathrm{w}}, \mathrm{~N}_{+}^{-1} \mathrm{E}^{ \pm}(\mathrm{x}, \lambda)\right]
$$

and incerting $E^{ \pm}(x, \lambda)$ from (4.5) find:

$$
\begin{equation*}
\delta \mathrm{D}(\lambda)=\frac{1}{2}\left[\bar{\sigma}_{3} \delta \overline{\mathrm{w}}, \quad\left(\Lambda_{+}-\lambda\right)^{-1} \overline{\mathrm{w}}\right], \tag{4.10}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\delta \mathrm{D}^{(\mathrm{m})}=-\frac{1}{2}\left[\bar{\sigma}_{3} \delta \overline{\mathrm{w}}, \Lambda_{+}^{\mathrm{m}-1} \overline{\mathrm{w}}\right] \tag{4.11}
\end{equation*}
$$

where the skew-scalar product [,] is given in (3.2).
Thus we have obtained compact expressions for $D^{(m)}(4.7)$ and $\delta D^{(m)}(4.11)$, which are convenient in the derivation of the Hamiltonian structures of the NLEE, see ref. ${ }^{182 /}$.

REFERENCES

1. Faddeev L.D. Sovremennie problemi matematiki. 1974, 3, p. 93.
2. ed. Calogero F. Nonlinear Evolution Equations, Solvable by the Spectral Transform. Res.Notes in Math., v.26, Pitman, London, 1978.
3. ed. Bullough R.K., Caudrey P. Solitons. Topics in Current Phys. 17, Springer, 1980.
4. Zakharov V.E. et al. Soliton theory: Inverse Scattering Problem. Nauka, N., 1980.
5. Ablowitz M.J. et al. Studies in Appl.Math., 1974, 53, p. 249.
6. Kaup D.J. J.Math.Ann.Appl., 1976, 54, p.849.
7. Kaup D.J., Newel1 A.C. Adv.Math., 1979, 31, p. 67.
8. Gerdjikov V.S., Khristov E.Kh. Mat.zametki 1980, 28, p. 501; Bulg.J.Phys., 1980, 7, p. 28.
9. Dodd R.K., Bullough R.K. Physica Scripta' 1979, 20 , p. 514.
10. Gerdjikov V.S., Ivanov M.I., Kulish P.P. TMF, 1980, 44, p. 342.
11. Gerdjikov V.S., Kulish P.P. Physica D, 1981, 3D, p. 549.
12. Khristov E.Kh. JINR, 11-81-414, Dubna, 1981.
13. Gerdjikov V.S., Khristov E.Kh. Bulg.J.Phys., 1980, 7, p. 119.
14. Takhtadjan L.A. Zapiski LOMI, 37, 1973, pp. 66-76. Flaschka H., Newe11 A.C. Lecture Notes in Phys., 1975, 38, p. 355, Springer, 1975,
15. Kulish P.P., Reiman A.G. Zapiski LOMI, 1978, 77, p. 134.
16. Gadjiev I.T., Gerdjikov V.S., Ivanov M.I. Zapiski LOMI 1982, 120, p. 77.
17. Gerdjikov V.S., Ivanov M.I. JINR, E2-80-882, Dubna, 1980; TMF, 1982, 52, p. 89.
18. Calogero F., Degasperis A. Nuovo Cim., 1977, 39B, p.l; ibid. 1976, 32B, p. 201.
19. Newell A.C.In:ref. ${ }^{3 /}$, p.125; Proc.Roy.Soc.London 1979, A365, p. 283.
20. Kulish P.P. Zapiski LOMI 1980, 96, p. 105.
21. Martinez-Alonso L. J.Math.Phys., 1980, 21, p. 2342.
22. Konopelchenko B.G. J.Phys.A: Math \& Gen., 1981, 14, p. 2342.
23. Bruschi M., Levi D., Ragnisco 0. Istituto di Fisica, Universita di Roma, preprint, No.271, 1981.
24. Dubrovsky V.G., Konopelchenko B.G. INP Novosibirsk, preprint No. 82-09, 1982.
25. Adler M. Inventiones Math., 1979, 50, p. 219.
26. Reinman A.G., Semenov-Tian - Shanskii M.A. DAN USSR 1980, 251, p. 1310.
27. Reiman A.G., Semenov-Tian-Shanskii M.A. Inventiones Math. 1979, 54, p. 81; ibid. 1981, 63, p. 423; Reiman A.G. Zapiski LOMI, 1980, 95, p. 3.
28. Gel'fand I.M., Dorfman I.Ja. Funktsionalny analiz i ego prilojenia 1980, 14, No.3, p. 71; 1979, 13, No.4, p. 13.
29. Magri F. J.Math.Phys., 1978, 19, p. 1156.
30. Fokas A.S., Fuchssteiner B. Lett.Nuovo Cim., 1980, 28, p. 299; Fuchssteiner B., Oevel.W. J.Math.Phys., 1982, 23, p. 358.
31. Zakharov V.E., Takhtadjan L.A. TMF 1979, 38, p. 26 ; Zakharov V.E., Mikhailov A.V. JETF, 1978, 74,p. 1953.
32. Gerdjikov V.S., Ivanov M.I. JINR, E2-82-595, Dubna, 1982.
33. Mikhailov A.V., Kuznetzov E.A. TMF 1977, 30, p. 303.
34. Kaup D.J., Newell A.C. J.Math.Phys., 1978, 19, p. 798.
35. Mel'nikov V.K. Mat. Sbornik 1979, 108, p. 378.

Received by Publishing Department on July 71982.

WILl you fill blank spaces in your librarý? You can receive by post the books listed below. Prices - in US $\$$, including the packing and registered postage

D13-11807 proceedings of the III International Meeting
on Proportional and Drift Chambers. Dubna, 1978. 14.00 Proceedings of the VI All-Union Conference on Charged Particle Accelerators. Dubna, 1978. 2 volumes.
D1,2-12450 Proceedings of the XII International School on High Energy Physics for Young Scientists. Hulgaria, Primorsko, 1978 .

D-12965 The Proceedings of the International School on the Problems of Charged Particle Accelerators for Young Scientists. Minsk, 1979.
D11-80-13 The Proceedings of the International Conference on Systems and Techniques of Analytical Computing and Their Applications in Theoretical
Physics. Dubna, 1979 .
D4-80-271 The Proceedings of the International Symposium on Few Particle Problems in Nuclear Physics. Dubna. 1979.
D4-80-385 The Proceedings of the International School on Nuclear Structure. Alushta, 1980.

Proceedinge of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 25.00

D4-80-572 N.N.Kolesnikov et, al. "The Energies and Half-Lives for the a - and β-Decays of Transfermium Elements"
D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981
D10,11-81-622 Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980

D1,2-81-728 Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981.
D17-81-758 Proceedings of the II International Synposium
on Selected Problems in Statistical Mechanics. on Selected Problems in Statistical Mechanics. Dubna, 1981.
D1,2-82-27 Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.

Горджиков В.С., Иванов М.И.
E2-82-545
Квадратичный пучок общего вида и нелинейные эволюционные уравнения. Разложения по "квадратам" решений - обобщенные преобразования Фурье

Доказано соотношение полноты для системы "квадратов" решений $\{\bar{\Psi}(x, \lambda)\}$ квадратичного пучка общего вида $L(\lambda)$. Явно вычислен интегродифференциальный оператор Λ_{+}, для которого элементы $\{\Psi(x, \lambda)\}$ являются собственными и присоединенными функциями. Показано, что отображение множества потенциалов $L(\lambda)$ на множество данных_рассеяния имеет смысл преобразования фурье по системе $\{\Psi(x, \lambda)\}$. Получены компактные выраження для формул следов через оператор Λ_{+}.

Работа выполнена в Лаборатории теоретической физики ОИЛИ.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982
Gerdjikov V.S., Ivanov M.I.
E2-82-545
The Quadratic Bundle of General Form and the Nonlinear Evolution Equations. Expansions over the "Squared" Solutions Generalized Fourier Transform

The completeness relation for the system of "squared" solutions $\{\Psi(x, \lambda)\}$ of the quadratic bundle $L(\lambda)$ of general form is proved. The integro-differential operator Λ_{+}, for which the elements of $\{\bar{\Psi}(x, \lambda\}$ are eigen and adjoint-functions is explicitly calculated. The interrelation between the set of potentials of $L(\lambda)$ and the set of scattering data is shown to have the meaning of a generalized Fourier transform over the system $\{\Psi(x, \lambda)\}$. Compact expressions for the trace identities of $L(\lambda)$ through the operator Λ_{+}are obtained,

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Препринт 0бъединенного института ядерных исследований. Дубна 1982

[^0]: * This has been conjectured earlier in ref. ${ }^{120 / .}$

[^1]: * Here and in what follows we shall omit the dependence of U_{k} upon the time t .
 ** Other approaches are presented in refs. ${ }^{/ 29,30 / .}$

[^2]: *The choice $r_{0}=-\frac{1}{2} \overline{q_{1} p_{1}}$ in (1.3) ensures the consistency of the Riemann problem normalization with the asymptotic of the solution $\chi^{+}(x, \lambda)$ for $\lambda \rightarrow \infty$.
 ** By performing Fourier transformation and introducing appropriate transformation operators one obtains from (2.6) the Gel'fand-Levitan-Marchenko equation for the system (1.3) ${ }^{\text {/32.33/ }}$,

