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1. INTRODUCTION

The Higgs effect is the relativistic (and sometimes non-
Abelian) version of the Meissner effect (dynamical gauge
invariant generation of the photon mass inside the superconduc-
tor) described within the phenomenological Ginzburg-Landau
theory of superconductivity’/1/. If the scalar fields of the GWS
model, which seem unlikely at present’/?/ are to be compared with
the order parameter of the Ginzburg-Landau theory, then what are
the primary objects, i.e., "electrons' of this phenomenological
"superconducting'" medium? It is natural to identify them with
leptons and quarks.

If we take analogy with superconductivity seriously, then the
correct procedure is to ask a physical question, such as what is
the primary force which makes the fermion vacuum unstable with
respect to the formation of Cooper-like fermion-antifermion
pairs. We suggest to introduce for this reason the massive
Abelian vector field C as an analog of the phonon field *. Our
basic view is then the following. This Abelian theory, being not
asymptotically free, becomes the strong coupling theory at small
distances, A ~ TeV. If the interaction is attractive, the non-
perturbative formation of the fermion-antifermion condensate is
quite p1ausib1e’3/. As a consequence, the symmetry SU(2)LxU(1)Y
is broken by the fermion mass terms to U(l),, . In the absence
of standard electroweak interactions (both QCD and the electro-
weak interactions can be treated perturbatively at the considered
momenta) three Goldstone bosons should appear as physical
particles. The inclusion of the electroweak interactions in the
perturbative way eliminates the "would be" Goldstone bosons in
accordance with the general Schwinger mechanism/4/. Unfortuna-
tely, it is beyond our ability to solve the strong coupling
Abelian theory, so we carry out the analysis phenomenologically
in the spirit of the works of Nambu and Jona-Lasinio 5%/ and
Freundlich and Lurie 7%/.

The paper is organized as follows. In Sec.2 we solve the
problem of the dynamical mass generation for one family. In Sec.3
we discuss the conditions imposed on the model by the requirement
of the cancellation of the triangular anomalies. The mechanism
.of the dynamical mass generation is described for the case of

* For brevity we call the corresponding hypercharge heaviness.
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three families including the fermion mixing. Section 4 is devoted ]
to the discussion of the physical implications, as well as of the
limitations, of the present approach.

2. ONE FAMILY

The Lagrangian density,we suggest to treat instead of the
standard GWS one with the cannonical Higgs doublet,has in the ‘t
case of one family the following form:
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The model (2.1) is clearly SU(2)L>< Uy gauge 1nvarlant. It
is also renormalizable’?/ (off mass shell). The renormalizability
is not spoiled by the massive Abelian vector field coupled to
the conserved current 8/ provided 79/ the Adler-Bell-Jackiw (ABJ)
anomalies are cancelled. Since the SU(2)L><U(1)Y quantum
numbers are assigned to fermions in a standard manner, the usual
GWS model follows for very large M provided the particles do
get dynamically proper masses.'Quarks are assumed to be fractio-
nally charged and colored and interact via colored vector gluonms.
Both the color of the quaxks and gluon vertices are considered
when treating the ABJ anomalies.

For the momenta squared <<M? our system is governed by the
effective Lagrangian density*
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* The Lagrangian density (2.2) is to be compared with the Gorkow ?
microscopic Lagrangian density of superconductivity. The effects l
of the "phonon" field C are replaced by the contact four-fermion
interaction and the fields A and B will be treated as weak ;
external perturbations. See ref./10/, Chapter 13. ;
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where J: is the current of heaviness. Although from the
naively perturbative point of view the Lagrangian densities
(2.1) or (2.2) describe the SIK2)Lx Uy gauge invariant
interactions of massless fermions and massless vactor bosons

. and B, we know7”%8.6.11,12/ that this needs not be the
case.

We proceed to the possibility of the dynamical symmetry
breakdown of the 8SU®)pxUQ)y symmetry of the Lagrangian
den31ty (2.2) down to U(l)y, . It is clear that only those terms
in JC JC a can contribute to the condensation (hence to
the fermlon masses), which contain fields of opposite chirali-
ties, namely

) n® , n? : -
Sare - oo W)Y )Ty v, Yy v y?vg == VE Ty o Bryey
he P 2 . -
piber A RO A L Opfug 2%{5’ (Q )y (dqy a,-dpyedp = (2.3)
2 - 2 -
WY('/’L)Y GpWopvr ¥y, + LMéy(‘/’x)y(e ) ¥y ep Ep ¥y +

h& - - 12 _ -
+ my(qL)y (uR)a; v peupa, + m,y(qL) y(gra;dpdoq;
For neutrinos, also the following terms are allowed:
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The mechanism of the dynamical fermion mass generation/s/
demands Y(W)Ywg) » Y ($1)Y (g ), vy, Jy(ug )
and Y(qp)y (dg) be all positive (see Eq. (2.7) below).
Here y are the eigenvalues of heaviness Yy.It is important that
anomaly free solutions Yy with the required properties do
exist 713/ (for the detailed discussion see Sec.3). Thus, the
Dirac fermion masses can be dynamically generated Majorana
neutrino masses cannot be dynamlcally generated in this one-
family approach since, obviously, Y%t ) and ¥ G/R)ln Eq. (2.4)
cannot be made negative. Notice that the Lagrangian density
(2.3) does not contain the potentlally dangerous lepton-
quark terms, e.g. y(¢ L)y (ug )¢L -uRwL, which
could give rise to the charged condensates <pjup> or <& n B
They would break, against our wish, also the symmetry U(ﬁem-
These condensates are all prohibited by the opposite signs of
lepton and quark heaviness (see Sec.3). .

In rearranging £y;; we have used the Fiertz transforma-
tion to make the correspondence with the standard Higgs mecha-



nism transparent. We ident

—tﬂg) w1th two Higgs doublets with the weak hypercharge y =1
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conjugated Higgs doublets with ¥y =-1.
To illustrate the dynamical symmetry breakdown of the La-

grangian density (2.2), it is enough to consider only that

part of the interaction (2.3); which contains the composite

doublet &1
s
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is taken positive. Other parts of the Lagrangian density (2.3)
are treated quite analogously.
The Lagrangian density (2.5) gives rise to the dynamical

appearance cf the electron mass m, which is "calculable

the gap equation /5/
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as a self-consistency condition of
the Hartree-Fock-Bogolubov approximation. This mass breaks

symmetry of the Lag-

rangian density (2.2). Consequently, three Goldstone bosons,,
which would be phy51ca1 in the absence of the gauge ‘fields A
and B, must arise. We will find them as .massless .poles in the
fermlon—antlfermlon scatterlng matrices calculated with the
Lagrangian density (2.5) in the chain approximation.

The vé (~ ®(1) in the standard Higgs approach) scattering

matrix is glven as
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in accordance with Fig.1.
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Fig.l. The chain of graphs which gives rise to the
charged Goldstone boson.

Here™
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With the help of (2.9) and (2.10) the ve scattering matrix
(2.8) acquires the desired form

(2.10)

M_ = 1 1
ve (1+y5)i [ (2) q2

Thus the phenomenologlcal fermion-charged Goldstone boson coup~
ling constant is

A=y, - (2.11)
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Analogously the ee (~ @(U ®(u+ in the standard Higgs ap-
proach) scattering matrix 1s glven as

2g
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in accordance with Flg.Z. Here
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*The neutrino is taken massless here, since the interaction
(2.5), which is iterated in the chain approximation, does not
give rise to the neutrino mass.
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Fig.2. The chain of graphs which gives rise to the neutral
Goldstone boson.

where i
1 Az\/.1—4m2/;<2 . 2
Im;m (q?)= [ 5 P (2.15)

472 4m? q2+',<
Thus, the ee scattering matrix (2.13) can be written with the
help of Eqs. (2.14) and (2.15) as
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can be identified with the electron-neutral Goldstone boson
coupling constant.

To evaluate the contribution of the gauge fields A and B
into the ve and ee scattering matrices, we need to calculate
the fermion-vector boson vertex functions, again in the chain
approximation. Starting from the bare ve-W vertex £y d-y.),

gz e 8

we obtain by summing the chain of graphs in Fig.3
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Thus, taking into account Fig.l, the second term in Eq. (2.18)
corresponds to the effective coupling between the charged
Goldstone boson and W boson as shown in Fig.4. This coupling
gives rise to the longitudinal part of the polarization tensor
of the W boson, singular at q®=0 with the residue equal to

1 2
_I-gzm Io.m ©@.

vertex part (2.18) is conserved, we immediately conclude
that this residue is equal to the squared mass of the W boson:

Since the current corresponding to the
/4,6,14/ '

2 2.2 " ;
mw=-—‘]i-g m? . (0). (2.20) !

Repeating the same procedure for the case of neutral gauge
bosons Aa?’, andB_, we easily find the effective vertices of the
neutral Goldstone boson and the neutral gauge bosons A%and B,

. . a a .
see Fig.5. The vertex functions l—"e'a a3 and r'é'e—-B are given
as follows: .
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Hence, the residue at the pole of the longitudinal part of the
polarization tensor of the neutral vector bosons is given by
the matrix
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Fig.5. The effective couplings of the neutral Goldstone
bosons with fermions and with the neutral gauge bosons
A% and B.

and
Aa = sin GWA?;; +COo sﬁwBa

are the neutral intermediate boson Z with the mass m,,Eq. (2.21)
and the massless photon, respectively. Oy 1is the We%nberg
angle, t86y = 878 .

It is clear that the composite doublets o2 iiLE(E:RqL)
¢(1)=--&—§(VR\&L) and ¢ =--i;-2~(ﬁkq 1
masses of the d -quark, neutrino and u -quark, respectively
via the gap equations, analogous to Eq. (2.7) and that they all

contribute in the chain approximation incoherently into the
W and Z boson masses. Hence, in the case of one family we find

give rise to the

2 1 21

Id 2 "
mw-.-:{-g ?: lﬂf O;mf (0) (2'23)

1 2 s 2 . .
m® =12, 3 il . (2.24)

3. THREE FAMILIES

The discussion of anomaly cancellation in the SU52)L xU(1)x
x U(1)"-gauge models has been_already done in ref.”!3/ and it cle-
arly applies also to our model (2.1). If the SU@®) | xU(1)y quan-—
tum numbers are assigned to leptons and quarks as in the GWS
model, three independent sets of heaviness

Yy=0@p )y @p )y @g X ¥y )y (;3R ) ¥(vp)) 3.1
exist/18/;
1
Y(H)=(1/3.4/3.-—2/3;-1. -2, 0) G-2)
9



¥Y® w01, -1; 0,-1,1), (3.3)
YP=(0.5.1;0, -7, ~35) V?). 3.4)

It is easily verified that any combinations N

2 .
¥4 pYY (3.5) b
1) (3) i
Y+ 8y (3.6)

also obey the conditions on anomaly cancellation.

In the case of one family we demanded y(¢) ’ y(eR )
y(vg) <0 and vy@y) ,y@g) ,y(dg>0 (or vice versa). ;
For a,y >0 (for example) any B €:(~4/8a, -2/3a) and i
8>2/3y give the combinations (3.5) or (3.6) with this pro- )
: ;
perty. E

In the case of more families, in contrast with ref. /13/ we
relax the requirement of the same Yy in all families. Flrst,
Yy distinguishes the like fermions in different families for
the electroweak interactions switched off. This is desirable.
It is also necessary, since equal.YH of the like fermions in
all (or some) familieés would imply a global SU@M) symmetry !
(n &, number of families) in the family space.. The dynamically .
appearing different fermion masses would break spontaneously
this symmetry thus generating the unwanted Goldstoné bosons.
There is, however, nobody to "eat" them.: The necessary consequen-—
ce of such a picture, as shown explicitly below, is the appea-
rance of the terms changing flavor in the neutral current. coup-
led to the field C.

The very existence of three sets of Yy.(3.2), (3.3) and
(3.4) seems to be suggestive to raise the hypothesis of the
existence of three fermion families. However, the solution
(3.4) cannot be used for embedding the model into a Grand Uni-
fied Theory /13/This problem is not considered in the present
paper. We are forced to reject the solution (3.4) -anyway, since
it produces the gluon—gluon—()boson anomaly, y(q, )~ y(u’ ) #

# y(dR) y(qL. j, unlike the’ solutlons (3 2) and 83 ences,
the fam111es w111 be d15;1ngu1she& by the heav1ness )

” (1 . B
Tma BP0 e a

where i runs from one to three w1thout an 1nternal Justlflca-
tion. We can only speculate that, Yig will become~quantazed when
the model is embedded into a proper s1mp1e gauge group.

The Lagrangian density to be discussed has the same form,
as the Lagrangian den31ty (2.1), but now the fermion flelds
represent columns in the family .space of the.weak 1nteract10n

e .

T
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eigenstates and Yy is the nondegenerate diagonal matrix of the
eigenvalues of heaviness (3.7).

As in the case of one family, we will analyze the dynamical
breakdown of the gauge SU@®)y xU(1)y symmetry on the typical
(charged lepton) part of that effective four-fermion Lagran-
gian, which is responsible for the fermion-antifermion conden-
sation:

CON L
gNJL "‘y (!l’ )y (eR.)l/,L JR jR wiL

- - (3.8)
=Wi(¢L)yj( )["m . jR,,iL +6,8p € p e 1.

In fact, the Lagrangian density (3.8) consists of 9 composite
Higgs doublets i%!gniij with the weak hypercharge y =1 and
it should give rise to 9 condensates ]E§<5}RejL>. In order to

"calculate" them with the help of the gap equations analogous
to Eq. (2.7), we proceed as follows. Let us write
viL=Ua Wpdvar &L Uiy (@) e,y

(3.9)
i *Ui PrMr Cix
where Va’(.ve.vu, vy o e,=(e,u.7) are the lepton
fields with dynamically generated masses and the matrices
UGwy) 5 Uvg) , U(ey) and (KeR) are unitary matrices. The
Lagranglan den51ty (3-8) rewrltten in terms of the fields v,
and e, (for fixed i,j ) gives rise to the masses of charged
leptons, which are determined by the HFB selfconsistency equa-

tion

=U, ()05 -

2

ij JhT o+ d‘*p meded
m, 8, 2“[&&” a6y, Wy W)Uy, ""’2‘0

) [ -
en )4 p2-m?

(3.10)
Ugi(ep)y; (ep)U, (6 5)=0,

where mJ is the part of the mass of the lepton of sort a which
results frOﬂ the dynamical doublet ‘ngwaL Hence,

m, = % mj .
Eq. (3.10) can be. also easily rewritten in terms of the non—
diagonal condensates

+
uij' = Uia, (BL)maU'aj (eR )

)

. e e , . i
which, by definition, determine m,

ij + (3.11
my 8,p= Uy (8, duy;Uy, (B R) 31D
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Simple inspection of the gap equation (3.10) shows that the
unitary matrices U(eL) and U(ep ) must be in fact real ortho-
gonal matrices, i.e.,

U(e;)» Oep ), Ueg)- O(e p), ete. (3.12)

Thus, there is no room for the Kobayashi—Maskawa/ls/mechanism

of CP violation in this approach. It is, however, clear, that

it is merely a consequence of the form of the self-consistency
condition (3.10) which we know for sure must be changed in

a more accurate approach*,.

Generalization of the mechanism of the dynamical symmetry
breakdown described in Sec.2 to the case of more (3) fermions
with mixing, is straightforward. The iteration of the four-
fermion interaction (3-8) rewritten in terms of mass eigensta—
tes (for fixed i,j ), gives rise to the massless poles both
of charged and neutral Goldstone bosons. Use is made, as befo-
re, of the self-consistency equation (3.10) and definition
(3.11). The inclusion of the gauge fields W and Z is also the
same as in Sec.2. The result is (for £() | Eq. (3.8),
with (3.9) and (3.12) taken into accountf]JL

2 2 .2
m;..i_ £°3 Oza(eR)maIO;ma(f)} (3.13)
Okb(eR)IO;mb 0
2 2:2
ep)miIn. . 0
mi--i—(g2+g’2)2 Oks () iy ;ma ©) (3.14)

) 0% (ep)Im  imy, (0)

The final formulas for m andln% are obtained by summing Eqsvy
(3.13) and (3.14), respectively, over all fermion types
(neutrinos, charged leptons, quarks with the electric charge
2/3 and -1/3) with their respective mixing matrices.

4, CONCLUSIONS

Most of the chiral symmetries, which underlie the gauge theo-
ries of the electroweak' interactions, do not tolerate the fer-
mion mass terms. Despite this, the elementary fermions, i.e.,
leptons and quarks, do have masses. A solution to this dilemma
has been found, which is based on the assumption of the exis-

*We met an analogous restriction already in the case of one
family. Eq. (2.7) offers only the real solution m,although
it is clear that any complex solution m would be good as well.
It can be always made real with the help of the proper phase
transformation of the right-handed fermion field without a
physical consequence.

12
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tence of auxiliary scalar fields with the nonzero vacuum ex—
pectation value. By introducting vastly different Yukawa coup-
ling constants, we are able to describe the fermion mass
spectrum, but not to explain it. This is a definition of pheno-
menology.

The role of scalar fields, is however, twofold. They also
give masses to the gauge fields in the gauge invariant manner.
Notice that these roles are not internally related. We can
introduce scalar fields, which give rise to the gauge boson mas-
ses, but which cannot be invariantly coupled with fermions
to contribute also to their masses. Hence, there is a wide free—
dom in introducing the scalar fields.

In this work, we have suggested to calculate the fermion
masses dynamically as resulting from the strong attraction
between left-handed and right—handed components of the origi-
nally massless fermion fields due to the exchange of an Abelian
field. Such a mechanism points out the deep analogy between
the gap of the BCS-Bogolubov superconductivity and the fermion
mass’5/, Indeed, the renormalization group argument clearly
shows 718/ that .

~

N h

m-uf(h)exp[ f -2-15-:],4

n, BX
where hpis the coupling constant, renormalized at the point u,
h 1is some arbitrary parameter and B(hy)= pJ/duhy .

In physical terms, our system governed by the Lagrangian
density (2.1), is very similar to the many-body theory of
electrons interacting with phonons (to be compared with C) in
the presence of the external magnetic field/11/ (to be compared
with A and B ). Technically, however, there are great differen-
ces, While in the nonrelativistic theory the Cooper phenomenon
takes place for .arbitrarily weak attractive interaction, there
is no signal for analogous effect with small coupling constant
in realistic relativistic field theories. Second difference
lies in different treatment of the loop integrals. While in
superconductivity the gap equation has an immediate physical
interpretation and its solution

4.1)

A=-2thexp[-=--—1-—--]
N(@©O)s
exhibits clearly its nonperturbative origin, the analogous sen-
seful equation for the fermion mass is lacking due to our
lack 'of knowledge of solving and renormalizing the strongly
interacting theory. If we want to save, in accordance with

(4.2)

*Here hwp is the mean phonon energy, N() 1is the density
of states for'ome spin projection at the Fermi surface and g
is the coupling constant, quite analogous to our g,, Eq. (2.6).

13



our intuition, the property of the gap, A+0 for g-»0,. also for
the fermion mass (4.1) in our approach, we have to assume / 18/
that hy has an ultraviolet fixed p01nt, at which the function
B develops an essential singularity 17/, -

What we have done, is only the detailed discussion of the
symmetry properties s of the starting Lagrangian density (2.1).,

The anomaly free solutions for heaviness (3.7) should guarante
the fermion-antifermion condensation in all desirable channels
and forbid it in all undesirable. ones. That is, the fermion
mass generation with mixing is to be expected.

We have also realized the preliminary program of the dyna-
mical mass generation using the simplified four-fermion inte-
raction, which respects the SU(2); xU(l)y electroweak sym-
metry and which bona fide shares with the original theory its
essential physical features, except renormalizability. Hence,
our resulting mathematical formulas for both fermion and
gauge boson masses are cut-off dependent and thus unqualified
to be compared with the experimental numbers. In particular, the
phenomenologically important ratio mZ/m? cannot be safely
determined. To be careful, we think of our conclusions as being
in the quotationsmarks:

(i) All fermion masses and mixing angles are calculable in terms
of several parameters. For three families our starting Lagran-
gian density (2.1) contains the following undetermined parame-
ters: g,g8% h, ay By and M .
(ii) Masses my and m, are calculable in terms cof fermion mas-
ses, fermion-Goldstone boson coupling constants and measurable
mixing angles of the fermion right-handed fields.
(iii) Majorana neutrino masses cannot be dynamically generated,
as easily checked by writing the gap equation for this case.
(iv) The charged weak current J contalns the orthogonal mi-
xing matrices OT(eL)O(uL) and O (dL)O(u in the lepton
and quark sector, respectively. The electromagnetlc current
J¥™  and the weak neutral currentJf remain intact.
(v) The neutral currentJ becomes flavor nondiagonal,
JC — OT - P
2I; = 0 v (W )00 Vy, v +€,07(e (W) yeq + “.3)

- T
VRO (VR)Y(VR)O(VR)}& vp t o

i.e., all fermion mixing angles are measurable in principle,
in contrast with the canonical GWS model. The interaction, me-
diated by the current (4.3) is not universal (the mixing matri-
ces in it are not orthogonal) Its appearance imposes the /187,
restriction on the ratio h?/M2 which must be of order Giz,m2
where m is a heavy quark mass.

We consider the "properties" of the model encouraging and
hope to put off the quotation marks by repeating essentially

14
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the same program in the renormalizable framework in the spirit
of the papers in ref/17/ with modifications disctated by

the requirement that the calculated masses should be renorma-
lization group invariant
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yeThipex$pepMHOHHOI'0 B3auMogeiicTBUsI. Boumcisercsa sbbexruBHoe
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30M K MaccaM BeKTOpHnX GosouoB W u Z, TakuM oBpasomM, Macch
My ¥ M, CBA3AHH C $bepMHOHHBIMH MaCCaMM H C KSMEPEHHBMH VYIJIaMH
CMeNMBaHUA TpaBbX bepMHOHOB. QU3HUYECKHH TOK, C KOTOpPHIM CBA3aH
BeKTOpHbIT 6030H C, He ABIAETCSA OHATOHAIBHLIM IIO aApoMATyY.

E2-82-542

PaBora BomosiHeHa B JlaGopaTopuu TeopeTHUYecKoil ¢usmku OWIH.

NpenpuHT 06beaMHEHHOro MHCTUTYTa AQEPHHX Mcchegosawuii, Ay6Ha 1982
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