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1. INTRODUCTION

The QCD sum rule approach /1:2/ ygag extremely successful in
explaining many properties of hadrons. The basic idea of the
approach is that at large momenta one can rely on perturbation
theory (PT) whereas the deviations from PT at moderate and small
momenta can be described and /or parametrized by nonvanishing
vacuum matrix elements of quark and gluon local operators, such
as

2a a
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<py>, <g? f&chZuGt:u\Gif ,ete.

In the absence of a complete theory of the QCD vacuum these
vacuum averages play the role of fundamental constants charac-
terizing the quark-gluon interactions at long distances. As is
well known, the magnitude of the quark condensate term <gy>
can be extracted from the hadronic spectrum by the current
algebra analysis/2-4/:

<uu> = <dd> = <88> = =(0.24 GeV)3, (1.1)

Tha e¢luan condensate term (g2gz N T L e

. . 3 . . - ~b ~ ~ - was
f}rst estimated by Shifman, Vainshtein and Zakharov /2/ by analy-
sing the QCD sum rule for charmonium systems with €y ¢ quan-—
tum numbers. They obtained B

<g2G2%>  =(0.83 Gev)% (1.2)

A more extensive analysis (including sum rules related to
other L=0,1 charmonium states) performed by Reinders, Rubin-
stein and Yazaki 75/ yielded essentially the same result.

Calculating higher power corrections and comparing the results
9btained with the curves based on experimental data one can,
in pPrinciple, estimate also the vacuum averages of higher dimen-
sion operators 83fG3 = g3fane G2,G2\G%, , g4G4, etc.,

l.e., to extract more detailed informatfon about the QCD vacuum
structure. Unfortunately, the algorithm used so far to compute
the vacuum corrections /2:5/ requires a considerable effort even
for calculating the simplest O(G®) -correction. In essence, the
complications are due to the fact that the standard Feynman
rules for the quark-gluon vertices are formulated for the gauge-
dependent vector fieldAﬁ(potential) while the final result
should be expressed in terms of the gauge-invariant operators
(e.g., G;VGZV Jconstructed from the field strength tensor Gﬂy
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In a recent letter’/8/we proposed a new method® that enab-
les one to factor the "A-dependent" terms into path-ordered
exponentials. The latter can be easily shown to cancel with
each other for the gauge-invariant amplitudes II(Q studied with-
in = the QCD sum rule approach. The remaining terms depend,
just as desired, only on Gy, and its covariant derivatives.

In the course of our computations we realized that our basic
representation (see eq. (3.4) below) is in fact a gauge trans-—
formation relating the quark propagator 5S¢ (x,5,A) calcula-
ted in an arbitrary gauge with that in the Schwinger gauge /8/™

(xh - 2 ) A (®)=0. (1.3)

In this gauge one can express Au just in terms of G, , and
its covariant derivatives (see ref./1Vand eqs. (3.12), (3.17)
below), and as a result, the computation of the gluonic vacuum
corrections is considerably simplified. After completing our
computations of the O(G3) =-corrections we received papers /14—-18/
where the gluonic power corrections to some amplitudes were
calculated just with the help of the Schwinger gauge x*A (x)=0.
It should be noted, however, that refg, /15.16/ deal with pola-
rization operators related to massless quarks. The massive
quark case (i.e., the situation we are interested in here) is
analysed in ref.’/!4/but only the calculation of the O(G2) -
terms (obtained earlier’?/ by straightforward methods) is des-—
cribed in that paper. There exist algo some minor differences
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le for computer calculations) and that proposed in ref. /14/,
In the present paper we give a more detailed description of
our method concentrating on the calculation of the O(G23)-cor-
rections to the QCD charmonium sum ryles. The paper is organi-
zed as follows. In Sec.2 we outline a general algorithm for
computing vacuum gluonic corrections, In Sec. 3 we describe a
technique of extracting the A-dependent terms into the path-
ordered exponentials and discuss the relation of our method to

*This method is really a refined version of a technique de-
veloped previously by one of the authors (A.R.) to study the
factorization in arbitrary gauge at the leading twist level
(see ref.’?/).

*To the best of our knowledge, this gauge was first incorpo-~
rated in QED by Schwinger/8/Later it was rediscovered by many
other authors /9—-12/ who used various names (e.g., coordinate
gauge /11/, fixed-point gauge’/12/,etc.) for it. A similar gauge
("normal" gauge 713/ ) is useful in the (super) gravity theory,
where it enables one to express the petrics g , (@) in terms

of the Riemann tensor flaixﬁgxz (ﬁog.qetailg see ref./13/),
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the Schwinger gauge technique. Our algorithm for computing the
gluonic power corrections is presented in Sec.4. Applications
of the O(G3) results to the charmonium analysis within the
QCD sum rule approach are discussed in Sec.5. Some formulas
used in the O(G3) -calcylations are presented in Appendix A.
Appendix B contains our results concerning the 0(G2) and

O (G3) contributions for c—quark currents j(I') < zre.

2. POLARIZATION OPERATOR IN THE VACUUM GLUONIC FIELD

2.1. General Discussion

The basic amplitude HI‘UD analysed within the QCD sum rule
approach is the polarization operator induced by a particular
current j

T (@) = ifd4xeiax <olT 1T x) jT(0y}[0>. (2.1)

In the present paper we restrict our attention to the sim—
plest Tlc currents relevant to QCD charmonium sum rules
q .9

» Yy (7% -8, ¥y ). As explained by

(l“=1,y5 M

Shifman et al.’2/, one should calculate the amplitude M(g) in
the region q2<0 where the corrections to the simplest contribu-
tion (fig.la) are small because of asymptotic freedom.

First, there exist perturbative corrections, the simplest
of which z2re shown in figs. ib,c. As is weil—known, their con-
tribution for the vector current can be extracted from Schwin-
ger's book /17/For other currents the diagrams lb,c have been
computed by Reinders et al./5/ (see also ref./18/), As for the
next order (i.e., 3-loop) diagrams, their complete evaluation
for fixed nonzero quark masses is, to the best of our know—
ledge, far beyond the capacities of any existing computational
technique. However, since after the renormalization group im-
provement of perturbative expansion the contribution of higher-
order diagrams are damped by ag /n <O.1 factor per loop, one
can usually ignore higher perturbative corrections.

a) b) c)

Fig.1. Perturbative contributions to the polarization opera-
tor.
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Fig.2. I-loop diagrams describing in-
d) teractions with the vacuum gluonic field.

Second, in QCD one should also take into account th? correc-
tions due to fluctuating vacuum fields of nonperturbative ori-
gin. As emphasized in ref.’/2/, it is these corrections (not
higher terms of the perturbative a, —series) that destroy asym—
ptotic freedom for q2 close to the Tc -threshold. Some o? the
diagrams describing the interactions due to the vacuum'flelds
are shown in fig.2. In addition to'the.two external lines cor-
responding to the currents ir entering into eq. (2.1), these

1 S~ =Y als aribcieme Tl Vlnn wnTabnd en T3 A .\:::i:_
Uragias puUsSEsS ardC wac SALCInNGa L221nC5 TILITIS UC ""‘b“" r
les (i.e., u, d, s quarks and gluons) absorbed and/or emitted
by the vacuum fields/2/ (see also ref./5/). )

In this paper we shall concentrate on the calculation of ]
the most important l-loop diagrams, i.e., on those corresponding

to the vacuum fields corrections to the lowest-order pertur-
bative diagram.

2.2. External Field Method

As is seen from fig.2 the problem is to calculate the pola-
rization operator ﬂr(Q) in the presence of the external va-
cuum gluonic field A,.Using the standard Feynman rules for the
quark-gluon vertices and c—quark propagators,on? can write
down the contributions of any given diagram of fig.2 type.For
instance,the contribution of fig.2b for the vector current
L==E)ﬁ cin the coordinate representation is

i a
5 @A) = [€9%Sp by, 5 ()y, 8°(-n)y"2 1, %8y T, x (2.2)

a a
x 8(€-1)1 <018, & A, (lo>a*xateaty,



where r, are matrices of the gauge group SU(3)c in the quark
(fundamental) representation related to the Gell-Mann matrices
a
Aﬂ by r'-—%—.
Performing the Taylor expansion of the‘A; fields at some
spatial point (say, at zero)

3 " &

a 1
-3z L¢
one obtains the expansion of'D(?(qu) in terms of the vacuum~
to-vacuum matrix elements of local operators constructed from
the A-fields and their derivatives.

In charmonium calculations (as well as in all cases when the
quark masses cannot be neglected) it is convenient to proceed
further using the momentum representation. Then, e.g., the
contribution of fig. 2b reads

iy Hp

(6u1...aun‘A;(0)) (2.3)

oo =) ? ~ - ~
(2 i ak k4 g+m k+em _a
CA) = —_— S 2,
o (08 = 2 fm0 T!-f(zn)‘l p'yﬁ‘(k+q)2—m2 vipm2!
f ka [Spm . 2 (ke SNSR(r, 7, e (2.4)
ad 1 d . kK°-m akyl akve K“%~m

y a y y 52
<013y, wndy_ :A,,;(O))(a,,z...a,,gA o )]0 .

Of course, not all terms in the r.h.s. of eq. (2.4) are equal-
ly important. In the final result, any matrix element <O;> will
be accompanied by a factor like ﬂrfi,where 4 is the mass dimen-
sion of the Oj-operator. Thus, one should calculate first the
contribution of the lowest dimension operators, then the next
power correction, next-to-next, etc. To get operators of higher
dimensions, one has to increase either the number of derivatives
or the number of the A-fields. It is clear that if the number
of the derivatives and/or A-fields is large, then it is diffi-

cult to calculate the integrand of eq. (2.4) by hand. Fortunately,

all the necessary manipulations can be easily performed by a com-
puter with the help of, say, the SCHOONSCHIP program written by
M.Veltman’!/The resulting I-loop integrals are standard (see
sect. 4.1 below) and this step can be also performed at the
computer,

At the last step one observes, however, that there appear
numerous cancellations between contributions of different diag-
rams. In particular, all terms related to operators without de-
rivatives (or with a single derivative) disappear after summa-
tion over all relevant diagrams. It is easy to realize that the-
se cancellations are due to gauge invariance: only gauge—inva-
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riant combinations of the local operators constructed from the
(9 ... :A) —-fields should appear in the final result. Thus, one
has to express the final result in terms of the operators con-
taining only the gluon field strength * G;L
a [ a ‘b c

GMV'auIAV —8VAM +gfabc'AuAV (2.5)

and its covariant derivatives Guvi aye.. an
~ ~ b b
a D 21 *122b, y™Pa’ . (2.6)

Gﬂ-il;al...an"(Dan) (Dan_l) ( al) . p‘w '
where D, =gq _igztz is the covariant derivative acting on
the gluon field, Ka-A:!ga and o0, 1s the gauge group mat-—
rix in the gluonic (adjoint) representation
; (2.7)

(Un )bc "lfnbc . . . .

The reexpansion of the operators (au.&AZ”.Sau.aA) over
the operators (D...DG)... (D..DG)is, in fact, not a trivial prob-
lem especially in a non-Abelian theory where_the operator
G Gpuaovy » say, comes from diagrams with 2,3 and 4. ]
ex%gzéalugluon lines. What is still worse, it is rather diffi-
cult to computerize this step.

3. IMPROVED EXTERNAL FIELD METHOD

3.1. Exponentiation of the 'A,—Dependence

. T e s
To analyse the gauge-invariance structure of M (g it is
convenient to write the sum of the I-loop diagrams as a con-
volution of two quark propagators in the external vacuum field'A

M (9= ifd%ze' 9% 8p ([} S®(xy;A)T, S° (v, x:A) 1. , (3.1)

By definition S$°%(x,y;A) is the perturbative solution to
the Dirac equation

: < 4
[iy (=2 - igh (¥) - m] 5%(x,y;) = ~5%(x~y), (3.2)
d xH ¢

where A =A" Ta- AN

Note that S°¢(xy;;A) in contrast to T1 (@ is not a gauge-
invariant quantity. It changes under the SU(3)¢ gauge trans-
formations in the same way as the path-ordered exponential
P (xy:A:0

P (x,y;A;C) = P exp (ig ﬁ&u (z)dz#) (3.3)
C

*Note that in ref.’/8/ we used another definition of GFV
that differs by sign from the standard one given by eq. (2.5).




.(reca}l that ¢ () P (x,y:A) ¢ (y) is the standard gauge-
invariant bilocal operator). Here, C is some path connecting
X and vy. ~

) The idea is to pick out the P -factor from SC(x,y:A)
with the hope that the remaining factor '§ will depend on the
vacuum.field only throigh Gy, and its covariant derivatives.
To begin with, one should decide whether S¢ will be represen-—
ted as PS or P (in QCD this problem is not trivial because
both P and i§ are matrices). One should also specify the
path C,

After che_acking several possibilities we observed that the

most convenient is the symmetric representation

SE(%,y:A) = ﬁ(x,zo ;A) ’S"(x,y;zA,zo) E (2g,y:8), (3.4)

whgre z, is some fixed (i.e., not depending on x,y ) spatial
pcnn? and E (x; z4:A) is the path-ordered exponential corres-
ponding to the straight-line path

. 1
E (x,2);A) = P exp[ig (z* - 2'5) fodt‘AV{zo+ t(x-2g)) ). (3.5)

It.is sgraightforward to derive that eq. (3.2) is satisfied
only if '§ (%, y; A, 24) is a solution to the modified Di-
rac equation

[iy# (Bi_# - g, (x,2zg) —-m) )Sc(x,y;A,zo) - -84(«x—y) (3.6)

thai differs from eq. (3.2) only by the change

1
A LG v v b S ba
.Au Gu(x.zo)-(x -z, )Jtdtcw (DE "(2,25) /,. 2, +t(x-zg)" (3.7)
Here, E is a straight-line-ordered exponential in the gluonic

repre§entation. To derive eqs. (3.6),(3.7), we used the com-
mutation rule

(") apEnc(z.20) = E A z.20) (- pcE P1z.2y) 3-8
based on the well-known formula
e’B&* = B +[A,B] + 5 LALAB ... (3.9)
and the relation .
[rys gl m=(oy )y 7°- (3.10)

Note now, that incorporating the Baker-Haussdorff theorem
(see, e.g.,”®/) one can perform the Taylor expansion

b “ha g a “ n
G, (DE (z.zo).;z‘._ocw;#lmuh(zo)-i(z-zo) 1 (z—zo)“ (3.11)

a 3
and.exm"ess G# (% Z23) 1in terms of Guv(zo) and its covariant
derivatives

8

G;(X.Zo) -
(3.12)

“1 M1 Hn Hn
(X -Z )...(x "'Zo )Gyp,;p,l...u.ﬁ

o0

v v
=(xV-2z5) 3
( o)n 0

-
n! (n+2)

Further observation is that the exponentials E entering into
SC(x,y;A) are precisely cancelled in eq. (3.1) by those
present in S°(y,x;A); so that one can change 8§°%,§°¢ in
eql; (3.1). Solving eq. (3.6) perturbatively one obtains for
m'(q) the (80)-expansion that has the same structure (cor-
responding to diagrams shown in fig.2) as the original (gA)-
expansion. The contribution of each diagram can be then calcula-
ted just as described in sect. 2.2. A very important difference,
however, is that (0 is Taylor expanded just in terms of

Guipy ---pn so that the final result has the desired

form, and no further reexpansion is needed.

Of course, the final result may be trusted only if it does
not depend on the arbitrary parameter Zz.Recalling that 2z 1is
some spatial point one may naively expect that the 2o -dependen-
ce is eliminated by the translation invariance. This is indeed
the case for the vacuum matrix elements, since all the composite
operators O, (e.g., G‘“, (z¢ )Gag(zo )) are constructed
from the G, By pn -fields taken at the same point Zg,and

<0]0; (2)]0> =<0|0; (0)]0> . (3.13)

However, the 2o -dependence is generated also by the (xHi -
- Z‘éi )-factor in the Taylor expansion (3.12). As an explicit
calculation shows, the resulting 2, -dependence (or, more pre-
cisely, the dependence on y-2z;) disappears only after summing
over all the relevant diagrams. This observation suggests that
zy works also like a gauge parameter.

3.2 Schwinger Gauge

It is easy to realize that our basic ansatz (3.4) is in fact
a gauge transformation which relates the propagator S9%x,y;A)
calculated in an arbitrary gauge with that in the Schwinger
gauge/8/

(x#-zg)Au(x).o. (3.14)

Indeed, in this gauge E(x,zg;A)=1, and, as a result,

S€a 8§ $An equivalent form of eq. (3.14) is

‘A#(ZO) -0 (3.15a)




(alil "'a#n!A#(zo))symmexﬁzed =0, n21 (3.15b)
Performing the Taylor expansion Of‘A#(X) at Xm= Zg

, e 1 H1_ K1y K © ;

LCY -!Eo -n.!(x 2o Yoo (X710 = 20 )(éiu1 . a#n .Au(z0 N (3.16)

and using egs. (3.15) one obtains the expression*

‘ (%’ — oV 1M1 m Bn_ ,Hn
'Au(x) (x zo);?.o_—n!(mz) (x Zg ). (X zo ).

‘ (3.17)
a“'l oo B#n (6,, ‘%,(ZO) - Bu AV(ZO))

that in the Schwinger gauge (3.14) is equivalent to eq. (3.12).
In particular, due to eq. (3.15 ) the derivatives Bu ’e ,8#

in e311(3 17) can be treated as the covariant ones (see also
ref.

4. CALCULATIONS
4.1. General Outline

The expansion (3.12) generates Feynman rules for vertices

where a quark interacts with the G ooy (zp)  gluon field.
It is convenient to preserve the usual graﬁhlcal notation for
the G -vertices 1nd1r~ahna in additian alen- tha —~wmblaw - ©

________ > e’ crav dawmmcs Do

covariant derivatives (see flg. ).

Consider, as an example, the diagram shown in fig.3a. In
the coordlnate representation its contribution for the vector
current ju - cy# ¢ reads

n(3a igx
0,00 =L fé ¥ 0| G (%), g A7) 0> 80y, $5x-8 %
x r (EPB)segy, ‘s°(—n)y"'ra,(7,3'_z")s (h miats a%at, 41

Incorporating the covariance properties of the vacuum matrix
elements with respect to the color SU(3)¢ and Lorentz trans-
formations one can write

<01G B(z )G,y B (z0)|o>-Ta (gaangB-gaB'gBaf)(O[ Gy G5 10>,
(4.2)

Note that due to the translation invariance (see eq. (3.13))
there is no need to specify the argument of the G-fields in
the r.h.s. of eq. (4.2).

*This derivation was suggested to us by E.A.Ivanov.
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Fig,3. 1-loop diagrams constructed according to the Feynman

rules generated by eq. (3.12). a,b) GG-diagrams; c) GGG-
diagram; d) G(DDG)-diagram; e) (DG)(DG)-diagram.

For massless quarks, the most simple way to proceed further
is to use the explicit form of §$¢(x) and to calculate the in-
tegrand of eq. (4.1) just in the coordinate representation (see,
e.g., refs./14~16/ ), However, for massive quarks, which we are
interested in, S %x) contains transcendental functions, and
it is much more convenient to rewrite eq. (4.1) in the momentum
representation. This can be accomplished in a straightforward
way. The only complication compared to the ordinary Feynman
integrals is owing to the derivatives 9 /9k%,d/dkB resulting
from the ¢¢ ,qB factors (cf. eq. (2.4)). However, these deri-
vatives are eliminated by using the relation

' kfy +m k#y +m kP m

9 Yy o Yy y Yot (4.3)
k¥ k2-m? k2~m?2 Y g%2-m? '
and the resulting expression looks much like the ordinary Feyn-
man integral. Typically, one obtains

4 e v

I, (6.0 ~ <gG...gG> [ bt 21yl KB Wy7} (4.4)
# @2m) 4k -m)N[(keq 2 —m M

After calculating the traces it is convenient to expand the nu-
merator in powers of the denominator factors ((k+ @ 2--m2) and
(k2-m2).,As a result, the integrand is considerably simplified,
and the next step is to introduce the Feynman parametrization.
Then 0, is given by a sum of integrals like

11




1 n m
1"2Q2%, m?) o« fax—2=X (1-% ) 4.
N ({ [Q2x(1-x)+m2]N (4.5)

where Q2 --q2 .
Note, that the denominator in eq. (4.5) is symmetric under
the change X -+ 1-x.This means that the numerator factor in
eq. (4.5) can be also made symmetric with respect to this
change and then reexpanded in powers of x(1-x).
Furthermore, using the obvious recurrence relations for I“NgI;“

n 1 -1 270~
IV = Oy - n? 1y ) (4.6)
one can write "IW as a sum of the basic integrals ( )
$ dx 4.7
(—-2-) of oIN ( )
[1+x(1—x) =]
that can be calculated explicitly
N-
N~
(_:_3).'_[(1.&:1) JamMBxl, s _(!:_Q. ({a=y" 7" 4, (4.8)
(N- 1)' 2a fa-1 k=1 (2k—1)!! (2a)
where =14 == 4m 2
Q2

The algorithm described above can be applied for calculating
an arbitrary l-loop diagram with external vacuum gluon lines *.
The main tecnnical probiem is to construct (by hand”) a genera-
lization of eq. (4.2) for operators of higher dimensions.

As a final result, one obtains for N{P (g9 the expansion
in terms of vacuum averages of local gauge-invariant operators 0;

nl @=1l@icla +cl,<g%c2 62 > »

T 3 4 a.a el 2
+C 3<8 14, GG )‘GM>+C >+ T P,
(4.9)

where TT(Qis a structure depending on the current iT®. For
vettor current, e.g., , (@ satisfies the transversallty con-
dition @# My =q M, =0 and the usual choice is T;"\ =q,q,- q’g v

To 111ustrate the typical structure of the coefficient func-
tions Ci (Q@2,m?),wepresent below the exp11c1t expression for
the G2-term of the expansion (4.9) for N '(q)

*0f course, the necessary computer time rapidly increases with
the dimension of the operator.

12

Cram ———— (=14 35- 2 3) (4.10a)

48n2 (Q2)2
2 2
- 1 [ 3(3—-1)(3 -1)ln ~/—5+1 __3a —2a3 1, (4. 10b)
4 444172’(((2!2)2 2a? /a Ja -1 a?

where a.l.,,__Q_!. The final form (4.10b) coincides with that ob-

tained in ref./2/.

It should be remarked here that the expansion (4.10a) in
terms of the basic integrals (4.7) is in practice much more
useful for further analysis (e.g., for calculating derivatives
an g /;dQ2)") than the explicit form (4.10b) (cf. Sec. 4.2
of ref./? ).

4.2. Computation of 0(G3)—Contribution

Using the gluonic fields present in the generating expansion
(3.12) one can construct 3 different local operators with di-
mension 6 (fig. 3c-e).

a b c . a b . a b

0“1"10“2”20“3"3' G“l"l;“é}“ i) G“!"x‘"c“z voib *

The total number of diagrams conmstructed according to Feynman
rules generated by eq. (3.12) is 13=4+6+3 (figs. 3c-e). The most
trivial step is the calculation of the color traces

Spr'rb-—lia'b, (4.11a)
Spr'rbrcn—i(dﬂb°+if“b°). (4.11b)

It should be remarked from the start that the operator
dabegagh Ge although present at intermediate stages of the
calculation, disappears in the final result. This is a manifes-
tation of the QCD Furry theorem.

The next step is to get explicit aexpressions for vacuum

a a a
averages <Gy, iaB%yv s> Cuyvydiugvy B
,wc : :
“1"10 Hy Vol “3"3f abe> - This is performed
in a straightforward way (the result is presented in Appendix A).

and < G

Then we incorporate the equation of motion
a . a
Guu;u "gly'-gﬁu ‘f)’ %y (4.12)

for operators containing @
Bianchi identity

G;w;a "’Gm;u +Ggyy =0 (4.13)
the commutation relation

pvig In a similar way, using the

13




a a abc
GaB;uv -Gaﬁ;vu - GaB pv (4.14)
and eq. (4.12) one can express G;L;aa in terms of j;;v and
Gb ge '
abe pa va b
¢ j? —j° . 4.15
G;Lav;aa -g(zfabccy.a Gva +Jy.;v Jv;u ) ( )

Finally, incorporating translation invariance reduces

<j% G® >to <j? %>

piv opv T
<0|jn ul|0>---g.<0|j“"’|0>'. (4.16)
As a result, the dimension-6 contrlbutlon is expressed in

terms of 2 operators: g3fG3 = g3fabe GJ, b G, and
gti? = g4j; j; . For the vector current our result is
31 43 12 Q2

CVam — L (2. - a3 s - 90 .
63 T3o2 @77 (+ <3 Ja- 4 T
- (4.17a)
1 [ (a~1)2(5a3+15a%23a+ 21 R
7272 (Q2)3:32 234 \/; /3'_1

7525 + 2524 -9023 4 2224 495a - 315 ]
1K a4 (a_1)

qQ? 3 Q2
Clom — 1 _4_1_ +29-9g 49 By +_8_35+m31______%_

%7 3q2(Q2)3 391772 "9 T 154 T 5 5 m
(4.17b)
L1 (- 52°-103a*-6a’ +98a° 792421 | VB4l
3672(Q2)3.48 2a4 /2 Va-

7585 — 159524 +930a3 — 221822, 1395a-315,
+
15a4(a~1)

)

where §n are the basic integrals (4.7).
The results for other currents are given in Appendix B.

4.3, Tests on the Computer Program

The final result should posses some general properties that
we have used to check our computer program.

First, the coefficient functions related to <g3 1G3 > and
<g4j2> should be gauge-invariant (i.e., zo-independent) for all
currents. This requirement is far from being trivial since the
cancellation of the 2p-dependence takes place between the con-—
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tributions of different diagrams. In particular, the total con-
tribution of the GDDG-diagrams (fig. 3d,e) depends on zo9 for
G3-part and is zp -independent for j2 part. The contribution
of the GGG-diagrams (fig.3c), in its turn, contains only G¥ -
term which has the zy ~dependence just cancelling that due to
the GDDG-diagrams,

Our second check is based on the requirement that for the
vector current Il (9@ should be proportional to (gq,q ng# )
Again, to get thils structure, one must sum over afl relevant
diagrams, and a small error present in a particular diagram
normally spoils the total sum.

We use the same program for all currents, hence, if the
program was correct for the vector current, it should be also
correct for all other currents.

Moreover, one can directly check the consistency of calcula-
tions for various currents. This check is based on the Fierz
identity

S P oV . oA
Sp(y5'8°) Sp(y5'8°) ~T° + 1 --nw+n rlww,, (4.18)
where A - Yo¥s5 * g2B , and the observation that
k §+$ d ) k+m
i . =0. (4.19)
Sp(}’s 2)’ Ik JKal akan k2-m2)

Really, from eq. (4.]9) it follows that only diagrams having
at least two G-insertions into each bare quark line give a non-
zero contribution to the l.h,s. of eq. (4.18). Thus as far as
the dimension-6 contribution is concerned, the combination
written down in the r.h.s. of eq. (4.18) should vanish. Our
results do satisfy this requirement.

5. APPLICATIONS TO QCD CHARMONIUM SUM RULES

Using a dispersion relation one can relate ?I(Q? to its
imaginary part

o0 T,
Prey. Lt ImP (9 4 (5.1)
m 4m2 ’S+Q2
[]
In its turnm, Imfrr(ﬁ is related to a cross section. In par-
ticular, for the vector current we have

Im T (s) = ‘8g-(e*e™» cham), (5.2)

6422
where o =1/137 is the fine structure constant and o (ete~ -
charm) is the total cross section of the ete™ annihilation into
final states with open and hidden charm. Thus, using the ex-
plicit expression for ?1(Q2) in terms of the vacuum expecta-
tion values <G2> , <G3>,<j?2> , etc., one can relate the pa-

15




rnj °
on | . <
x x x x X
X C - = =
010 | v v
' v
009| Y
| v
.l 1 ul 1 1 i L lnl
3 4L 5 6 7 8 9 10 N 12
M .
011}
®
ox X o g 2 20X
010 | . -
T v,
v v
009 v
3 4 5 6 7 8 9 10 1N 12°

16

rameters of the QCD vacuum to observable quantities and test

the existing models of the QCD vacuum structure.
In ref./? it was proposed to compare with data the ratio
I, =M /M,y of moments M defined by

‘ o0 I,
MF- _1_ f Im? S ds.
n

T gm2stt (5.3)
[

The explicit expression for M, including the <G2> vacuum
correction was first obtained in ref.’/2/:

\ 2 2
- 3! <€ 8> ,0 @i, (5.4)
® (n=D!(245) 9 (4m2)2
where Mﬁlm is the contribution of the simplest I-loop diagram
(fig.1a).

©__3 _2%(n41) (n-1)!
e ¢
ay are known coefficients of the 2-loop perturbative correction
and m.is the mass of the charmed quark. In fig.4a (taken from
ref./2/ ) the comparison is shown between theoretical prediction
for r, based on eq. (5.4) with m .=],25 GeV, ag =0.2, <g2G®-=
=(0.83 GeV)* and experimental data. The two curves are in good
agreement with each other up to n=8. Adding higher 1/m‘2, cor-
rections to eq. (5.4) one should presumably improve the agreement
also for higher n values.

Neing aq 4 17) it i5 2255 to caliulaie ihe explicic form

of the O (m=6 ) -correction to eq. (5.4): .

v {0)
Mn - Mn {1+ a.a

AMV-M(O)gi (n+4)!(3n? +8n-5) <g3rG3>
n n 45 (n-1)!(2n+5) (2n+7) 9(4m2c)3
(5.6)
8 (2! (430’4470 %+ 2440+ 905) <gti?®> |

" 135 213
9(4mc)

136 (n—1)! (20+.5) (204 7)

As argued by SVZ in ref. /2/, the vacuum intermediate state
duminates the <j?> matrix element, and, hence, <g4j?> is not
a free parameter

. . M,
‘F_l&_f&__ Ratio rp = -M:-l .
a) bars: experiment; circles: no power corrections; nablas:
SVZ fit <g2G2>=(0.83 GeV) 4; crosses: SVZ fit corrected by
<g*j?> and <gdrGgd > contributions, the latter estimated in
the DIGA, <g3fG3>=(0.60 GeV)6 , <g4j2>==(0.52 GeV)6 .
b) bars: experiment; circles: no power corrections; nablas:
<g2G2> =(0.87 GeV)4, <g31G3> « < g4j2> =0; crosses:
<g2G% >=(0.87 GeV)* , <g31G3> =(0.62)Gev)6, <g4i2> =
=~(0.52 GeV)6 .
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<gti?> = - -‘%-g4 <uu>? . (5.7

Taking g2=4s. 0.7 at the low normalization point p=0.2 GeV
where <iu>» =—(0.24)GeV)? we obtain the estimate

<gtj?> =—(0.52 GeV)6 (5.8)

(for details see ref./z/).

The magnitude of the <g3fG3 > matrix element can be estima-
ted by using the dilute instanton-gas approximation (DIGA) that
gives /2/

b

3 c
< 8%ape G7, G 00% > | Dica

12 ~2_..208 2
= —s—pc<g GIJ-VGIIV> . (5.9)

where p, =(200 MeV)'l.If we adhere to this estimate and take
the SVZ value (0.83 GeV)? for <g2G2>,then’/?/

<glrads =(0.60 Gev)®. (5.10)

Hence, both O(m'f) corrections to M, and r, are positive,
i.e., work in the desired direction. The resulting curve is
shown in fig.4a. It goes systematically higher than the curve
based on experimental data.

To improve the agreement between the two curves, one should
take a larger value for ,<g2G2>Q In particular, multiplying

~ ~1 Lew 1 D mmm mlbmion ~ ~sirmara that 360 in

'\gou > anu <p 1G » ®Y see SUT SSCIINC & © that y
good agreement with experimental data up to n= 13 (see fig.4b).
Moreover, treating <g2G2 >, <g3fG3>and <g4j?> as independent
free parameters,one can get even better fit to data.However,our
point of view is that it is premature to attempt such a fit-
ting without including the next, i.e., O(G*%)-correction. The
motivation is that the O(G3)-contribution has an additional
numerical suppression compared to 0(G?%) and 0(G%) ones. To
illustrate the suppression, let us write down the leading
large-n behaviour of M:

v

3 2 : 2 3 :
M =MP{14a o - 2 <g¥>_n? <10, 4y (5.1
0 n-soe n s

18 (4m%)2 15 (4m2)3

As is clear from eq. (5.11), the 0(G3) contribution is sup~
pressed by the factor (1/15) compared to what one can expect
from naive dimensional consideratioms. This suppression was
first observed by Voloshin/2V who demonstrated that in the
nonrelativistic limit, i.e., for nsw,alt the G2mtleontributions
have additional small factors absent for the G2nones. Hence,
the Gi-contribution may exceed the G3 one even for not very
large n values n» 4, and a reliable test of existing models of
the QCD vacuum requires the calculation of the G%corrections.
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6. CONCLUSION

In the present paper we described the method of computing
vacuum gluonic corrections to the polarization operator MT (g
of quark currents. The basic idea of the method is that one can
separate the '"A-dependence" from " G-dependence" by extracting
the A-dependent terms into path-ordered exponentials which
cancel with each other for gauge-invariant amplitudes like
T (q. We demonstrated also that our technique is equivalent
to the use of the Schwinger gauge (xt-zH)A (¥ =0 for vacuum
gluonic fields. Furthermore, we described the algorithm used in
computer calculations of O} and O(mwP ) corrections to QCD
charmonium sum rules and presented our results for polarization
operators related to 4 different quark currents. Comparing our
results for the wvector current Cy,c with the curve
based on experimental data we observed that the data
favour a larger <g2G%>value than that used by SVZ in ref./?/.
However, as argued in Sec.5, to get a reliable estimate for
<g2G2>'and<g3f G3 > from experimental data, one should compute:
also Fhe G4 contribution. The computations based on the approach
described in the present paper are under completion now, and
their results will be published elsewhere.
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APPENDIX A

In computing the coefficients C 3 and C;2 in the expansion
(4.9) we used the following representation for the tensor struc-—
ture of the basic matrix elements

b c
e ~b ne <01 f4pG gy G AG 3y 0>
<0140 Gyf, Gpg G 5,1 0> = be g v M2

(g g B, + -
uoEarBBp * 8upBap Bov* BasBup Bl Bov Bua B0

(A1)
=~ 8uBBarB = Buy BapBug ™ Bay Bup B = BBy Bua Bg):
<01G2 Gg*° 0>=20" -
1G,, Cogipo 10> 8o (8,38, -8, B,g)+ a2)
g )+

+07(g .8 B8 +8 & g, - -
uB as"pv  Cav “up " Bo Bao Bup gVB B Bua Bpo
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+ O (g g )r (A.Z)

0 B2y Bpp* Bupap Bov ™ 4o Bap 88 E,p%a Bro
where

o' . L <0 ghin i, 10> '1,413_<01gr,bcc Gox G, 10> -
APPENDIX B

Here we present our results for the coefficients C;2, C 3
and C.2 in the expansion (4.9) for scalar(?u/;).pseudoscalar
(P, y)and axial-vector (Pn,, ¥ vs¥) currents. The results
are presented both in temJ‘ of the basic integral §y (4.7) and

in an explicit form. We denote 99, _g , a= 1+4m2/Q2
Tww = T2 uv

1) Scalar current. JPG O+, TSa1

S

C o= (-1 -20,+3847) =
G 32112(32
1 . [ (1-2)(a+3) 1, Ja+1 a,-3]
3222 Q22 2a./a /a-l a (B.1)
S 1 14 69 3 Q2
CSaw ol (-1 _9g, 428,440, +=4,- = —)~
¢3 " Taas2(@)2 5 ! 2 375 747 10 m?
. Y2 BN | . 2. .o /=01
i [ J\A—a) \& fun -r;uur_-_-:/ln Uy == +
14422(Q2)2%16 2ad/a Va-1
3a%+10a3-434 27582469 , (8.2)
a3 (a—1)
S 1 46 Q? 9 Q2
05, —d s (Khagye0d, 4 Ay - B - hd -5 )=
it 72.2(@%H? 15 5 m 5 m
) , (B.3)
1 a'_8a’_90a’, 88a-28  Jfa+l |
720%(Q%¢-8 2a3./3 Ja -1
3a% - 2a%4s 4365 a% - 310469
+

3a’ (1-9)
2) Pseudoscalar current JPCLot, TPat

P
C o=
c2

(-5-69; +1699=493) =
6172@
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- 1 [ 3U-a)(1+38), Jazl _ 347a

9672 Q2.2 2al./3 ﬁ—l 2a?
P 1 14 153 2 (B.4)
g3 m e (= —= =99, +480, - - -
63" Taanz@n2 | 5 1tTR 6295 + e 5 10m2)-
- 1 [ 3-2(58° +13a%4 28a47) | VA4l |
14472 (Q2)2.16 2at /a va -1
15a4-11%a3 6443 a2,34a: 21 (B.5)
+ g
at (a—1)
P 1
cPom — 1 (87 _g +259, - --4-29 4 Q% __3
i?7 7242 (Q2)2 15 % 5“+ * q Q'
1 11 4 _ 3 2 _ N
- A a’-22a +3fa +14a-7 | [A+1 (B.6)
7272(Q%)% -8 2a4 /a fa-1
3324, 1422 a3 —824 a2.
. + 42—5-a 82 5a 563.+21]
3a% (1-a)
3) Axtal-vector current. 7 s X L. qQqQ - q: g
uv By uv
A
Cc2' _1__(1_42) -
1672 (Q2)2 (B.7)
: 1 (a,-1)2ln vA-1 3+l
1672(Q%)2.2 2a/a /a+1 2
A
C s —L (Ll By 2y S Q’ ) -
7222(Q2)3 15 3 5 10m?2
(B.8)
. -1 [ (a-1)? (5a%+12a+ 29) | y3-1
72n2(Q2)3 -16 2a3 Ja Jh+1
15a4-4aa-70;‘5.a2 +1482-69
3a3(a~1)
2
cha 2
;2 302 C,2 (B.9)
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BakyyMHble nongfsxu Kk KX npaBunaM cyMM OJjia 4uapMoHusA. OCHOBH
mMerona 1 0 (G?°) pesyabTaTs

JlaeTcs mogpoGHOe H3JOKEHHe HOBOT'O MeTOHA BRYHCIIEHHS BBHICUIHX
cTeneHHulX nonpaBok K KX[I npaBumaM cyMM A uapMoHHs. Merop
SKBHUBAIIEHTEH MCIOJIb30BAHHI0 [JIf BAKYYMHHWIX TIIIOOHOB KAJIMGPOBKH
lleuurepa. C ero nomombio Beraucienst O(G®) u O(G3)nompasxu.

PaGora BrmoJsiHeHa B JlaBopaTopHH TeopeTHueckod ¢usuxu OHAH.
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Nikolaev S.N., Radyushkin A.V. E2-82-521

Vacuum‘Corrections to QCD Charmonium Sum Rules. Basic
Formalism and O(G3)Results

A dgtailed description is presented of a new method for
computing higher gluonic power corrections to QCD charmonium
sum rules.'Tbe method is equivalent to using the Schwinger
gauge condition (x# -zH)A, (x) =0 for vacuum gluons. As an

application of the method we calculate O (G?) and 0(G3) correc-
tions.

The %nvestigation has been performed at the Laboratory of
Theoretical Physics, JINR.
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