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I • INTRODUCTION 

The QCD sum rule approach 1 1.2/ was extremely successful in 
explaining many properties of hadrons. The basic idea of the 
approach is that at large momenta one can rely on perturbation 
theory (PT) whereas the deviations from PT at moderate and small 
momenta can be described and /or parametrized by nonvanishing 
vacuum matrix elements of quark and gluon local operators, such 
as 

<g 2GII. aa. > <·'··'·>, <g3 f aa. ab ac > t IJ.V IJ.V ' 'I"P a. be Ill/ vX ~ , e c. 

In the absence of a complete theory of the QCD vacuum these 
vacuum averages play the role of fundamental constants charac­
terizing the quark-gluon interactions at long distances. As is 
well known, the magnitude of the quark condensate term <ifj'r/1> 
can be extracted from the hadronic spectrum by the current 
algebra analysis/~-4/: 

<iiu>=<dd>= <ss> .. -(0.24 GeV)3. (I. I) 

'T'hP P11Uln C'OndPn~.<lt"P t"<>l"'m ~ .,.2n2 ' _ /-9 ro • • ro • 

first e;timated by Shifman, Vai~sht~in- a~d zfkh~~i;/12/ by 
sing the QCD sum rule for charmonium system~ with c c Y, tum numbers. They obtained ~ 

<g2a2 > =(0.83 GeV) 4· 

analy­
quan-

(I. 2) 

A more extensive analysis (including sum rules related to 
other L=O,I charmonium states) performed by Reinders, Rubin­
stein and Yazaki/5/ yielded essentially the same result. 

Calculating higher power corrections and comparing the results 
obtained with the curves based on experimental data one can, 
in principle, estimate also the vacuum averages of higher dimen­
~ion operators g 3fG 3 = g3 ~abc G~vG~A.GX4£ , g4a4 , etc., 
1.e., to extract more deta1led informat1on about the QCD vacuum 
structure. Unfortunately, the algorithm used so far to compute 
the vacuum corrections /2,5/ requires a considerable effort even 
for calculating the simplest O(G2) -correction. In essence, the 
complications are due to the fact that the standard Feynman 
rules for the quark-gluon vertices are formulated for the gauge­
dependent vector field A~ (potential) while the final result 
should be expressed in terms of the gauge-invariant operators 
(e.g., 0~11 0~11 )constructed from the field strength tensor GIJ.v' 
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* In a recent letter161we proposed a new method that enab-
les one to factor the "A-dependent" terms into path-ordered 
exponentials. The latter can be easily shown to cancel with 
each other for the gauge-invariant amplitudes ll(~ studied with­
in the QCD sum rule approach. The remaining terms depend, 
just as desired, only on GIJ.v and its covariant derivatives. 

In the course of our computations we realized that our basic 
representation (see eq. (3.4) below) is in fact a gauge trans-
formation relating the quark propagator sc (x,y,A) calcula-
ted in an arbitrary gauge with that in the Schwinger gauge /8/~ 

(I. 3) 

In this gauge one can express All just in terms of GIJ.v and 
its covariant derivatives (see ref. Ill/and eqs. (3. 12), (3. 17) 
below), and as a result, the computation of the gluonic vacuum 
corrections is considerably simplified. After completing our 
computations of the O(G3) -corrections we received papers/14-16/ 
where the gluonic power corrections to some amplitudes were 
calculated just with the help of the Schwinger gauge xllA (x) = 0. 
It should be noted, however, that refs. /15,16/ deal with IJ.pola­
rization operators related to massless quarks. The massive 
quark case (i.e., the situation we are interested in here) is 
analysed in ref.114<but only the calculation of the O(G2)­
terms (obtained earlier 121 by straightforward methods) is des­
cribed in that paper. There exist also some minor differences 
\.. ....................... - ....... - ... ,,..,.,..._..: ... \... ..... (,...,... .............. ,.. •• ,... ........ ..::~ ,.._ -- .......... '-~ .... t.. ..... ___ ....... ....... .: ....... t.._ .......... ......... .............. .............. - ...... o.............. ............... , ................................... - ......... v a..:.o ~......... ..,.._ ........... .................... .... ............ - ..... 

le for computer calculations) and that proposed in ref. 1141. 
In the present paper we give a more detailed description of 

our method concentrating on the calculation of the O(G3)-cor­
rections to the QCD charmonium sum rules. The paper is organi­
zed as follows. In Sec.2 we outline a general algorithm for 
computing vacuum gluonic corrections. In Sec. 3 we describe a 
technique of extracting the A-dependent terms into the path­
ordered exponentials and discuss the relation of our method to 

*This method is really a refined version of a technique de­
veloped previously by one of the authors (A.R.) to study the 
factorization in arbitrary gauge at the leading twist level 
(see ref. 111). 

~To the best of our knowledge, this gauge was first incorpo· 
rated in QED by SchwingeriB~Later it was rediscovered by many 
other authors /9-12/ who used various names (e.g., coordinate 
gauge/11/, fixed-point gaugel1 21.etc.) for it. A similar gauge 
("normal" gauge /13/ ) is useful in the (super) gravity theory, 
where it enables one to express the metrics g (x) in terms 
of the Riemann tensor R a1t~.x~ Ctor.<!~ta,il~v ~.ee ref ./13/ ) . 

I ''d ~~- -·~;-· ·-' ... ·. -~·.. \ 3 Lk_ __ .. ,- ........... ~---



the Schwi~ger gauge technique. Our algorithm for computing the 
gluonic power corrections is presented in Sec.4. Applications 
of the O(G 3

) results to the charmonium analysis within the 
QCD s~m rule approach are discussed in Sec.S. Some formulas 
used 1~ the O(G~) -calcvlations are presented in Appendix A. 
Append1x B conta1ns our results concerning the O(G2) and 
0 (G3

) contributions for c-quark currents j(r} = l!rc. 

2. POLARIZATION OPERATOR IN THE VACUUM GLUONIC FIELD 

2. I. General Discussion 

The basic amplitude llr (q) analysed within the QCD sum rule 
approach is the polarization operator induced by a particular 
current j r 

ur(q)= i(d4xeiqx<OJT {jr(x) jr(O)IJO>. (2. I) 
In the present paper we restrict our attention to the sim­

plest l! rc currents relevant to QCD charmonium sum rules 

<r= 1, Y , Y. <~ g >" > 5 J.L Q 2 - J.LV y y 5 • As explained by 

Shifman et al/21 • one should calculate the amplitude U(q) in 
t~e reg~on q

2
<0 where the corrections to the simplest contribu­

t1on. (f1g. Ia) are small because of asymptotic freedom. 
F1~st, there exi~t perturba~ive corrections, the simplest 

"F "·"'h, .... l-.. ... ._,... ... 1-. ~· ·- - - .c! - - ~, • • - - - ~ -- • .... -:-u - ......... ..,..,.....,.,. ... ..&.u .a...&.p,;:,• JUtl.:• 1\:S .1S We.ll-KOOWTI, thelr COn-

tr1bUt10n for the vector current can be extracted from Schwin­
ger's book 117 ~For other currents the diagrams lb c have been 
computed by Reinders et al,/5/ (see also ref.I18J). As for the 
next ~rder (i.e., 3-loop) diagrams, their complete evaluation 
for f1xed nonzero quark masses is, to the best of our know­
ledge~ far beyond the.capacities of any existing computational 
techn1que. However, s1nce after the renormalization group im­
provement of perturbative expansion the contribution of higher­
order diagra~s are d~mped by a

9 
/ rr S, 0. I factor per loop, one 

can usually 1gnore h1gher perturbative corrections. 

a) b) C) 

Fig.l. Perturbative contributions to the polarization opera­
tor. 

a) b) 

' , -o-
1 
I 

c) 

d) 
Fig.2. !-loop diagrams describing in­
teractions with the vacuum gluonic field. 

Second, in QCD one should also take into account the correc­
tions due to fluctuating vacuum fields of nonperturbative ori­
gin. As emphasized in ref./2/, it is these corrections (not 
higher terms of the perturbative a 8 -series) that destroy asym­
ptotic freedom for q2 close to the l!c -threshold. Some of the 
diagrams describing the interactions due to the vacuum fields 
are shown in fig.2. In addition to the two external lines cor­
responding to the currents jr entering into eq. (2. 1), these 
,. ---- - . ---- _., __ &-l...- -~~.._ ____ , 1.!--~ __ , .......... ...3 ... ~ ,;,.,..\.., ... ....... - .. .:,.._ 
U.LCl~.LC1t.U.::J pv0o:JC03.:J Q..&..;JV l,.U,Il;... ll;...~&,..~.&.llU.&.. "-.&..1.&'-Y ._,._.._.._.. .. .._.._.. ,.,_...., .a..o..t;t••._ t".....,.._ ._.._._. 

les (i.e., u, d, s quarks and gluons) absorbed and/or emitted 
by the vacuum fields/2/(see also ref./5/). 

In this paper we shall concentrate on the calculation of 
the most important !-loop diagrams, i.e., on those corresponding 
to the vacuum fields corrections to the lowest-order pertur­
bative diagram. 

2.2. External Field Method 

As is seen from fig.2 the problem is to calculate the pola­
rization operator nr (q) in the presence of the external va­
cuum gluonic field A .Using the standard Feynman rules for the 

J.L • 
quark-gluon vertices and c-quark propagators,o~e can wr1te 
down the contributions of any given diagram of fig. 2 type. For 
instance,the contribution of fig.2b for the vector current 
~ .. cyl' c in the coordinate representation is 

(2.2) 

5 



where r., are matrices of the gauge group SU(3)
0 

in the quark 
(fundamental) representation related to the Gell-Mann matrices 

A" a A" by r • -r. 
Performing the Taylor -expansion of the A" fields at some 

spatial point (say, at zero) a 

A .. w I 1 ~Ill ~lln (a a A 8 (0)) (2.3) a • n..O liT .. • llt • • • lln a 

one obtains the expansion of ·n( 2) (q, A) in terms of the vacuum-
. 1 /LV to-vacuum matrlx e ements of local operators constructed from 

the A-fields and their derivatives. 
In charmonium calculations (as well as in all cases when the 

quark masses cannot be neglected) it is convenient to proceed 
further using the momentum representation. Then, e.g., the 
contribution of fig. 2b reads 

( 00 n 00 r ... ~ 
n 2l ( q,:A) • ~ _i ~ i f _d_lt_ Sp I k + • .9 + m k + m y a .2 • 

/LV n..O n! P.o T! (217)4 Yll (k+q)2_m2 Yv k2-m2 

a a 

Of course, not all terms in the r.h.s. of eq. (2.4) are equal­
ly important. In the final result, any matrix element <Oi> will 
be accompanied by a factor like mrgi ,where~ is the mass dimen­
sion of the Oi-operator. Thus, one should calculate first the 
contribution of the lowest dimension operators, then the next 
power correction, next-to-next, etc. To get operators of higher 
dimensions, one has to increase either the number of derivatives 
or the number of the A-fields. It is clear that, if the number 
of the derivatives and/or A-fields is large, then it is diffi­
cult to calculate the integrand of eq. (2.4) by hand. Fortunately, 
all the necessary manipulations can be easily performed by a com­
puter with the help of, say, the SCHOONSCHIP program written by 
M. Veltman 

119
/.The resulting 1-loop integrals are standard (see 

sect. 4. I below) and this step can be also performed at the 
computer. 

At the last step one observes, however, that there appear 
numerous cancellations between contributions of different diag­
r~ms .. In particular, all terms related to operators without de­
r~vatlves (or with a single derivative) disappear after summa­
tlon over all relevant diagrams. It is easy to realize that the­
se cancellations are due to gauge invariance: only gauge-inva-
6 

riant combinations of the local operators constructed from the 
(a ••• a:A) -fields should appear in the final result. Thus, one 
has to express the final result in terms of the operators con­
taining only the gluon field strength * a:v 

ft " " b c 
allv-allAV- aVAil+ gfab~AilAV (2.5) 

and its covariant derivatives allv; a 1 ... an 

a.. . • < i5 ) aa t <'n a ) "!.~ 2('0 a ) "n-tb a ~v • 
/LV• ar••a an n-f } 

(2.6) 

where Ba • aan -ig 'A a is the covariant derivative 
the gluon field, Aa·A~rr,. and rr,. is the gauge 
rix in the gluonic (adjoint) representation 

acting on 
group mat-

(rr a ) be • -if abc • 
(2. 7) 

The reexpansion of the operators (a .•. a·A) ... (a ... a·A) over 
the operators (D ... Da) ... (D ... Da)is, in fact, n-ot a trivial prob­
lem especially in a non-Abelian theory where the operator 
a a 2 2 say, comes from diagrams with 2,3 and 4 

lll~'l ll v • . . '1 . . h d'ff' external gluon l1nes. What lS st1 1 worse, lt 1s rat er 1 l-
cult to computerize this step. 

3. IMPROVED EXTERNAL FIELD METHOD 

3. I. Exponentiation of the ·Au-Dependence 

To analyse the gauge-invariance structure of n·[ (q) it is 
convenient to write the sum of the I-loop d1agrams as a con­
volution of two quark propagators in the external vacuum field A 

(3. I) 

By definition S 0 (x, y; A) 
the Dirac equation 

is the perturbative solution to 

[ i fL (-a-- ig·A (x)) - ml S 0 (x,y;:A) • -8\x-y), 
a xll ll 

(3. 2) 

where !A,.,::~ ~A a r a . 

S ( A) · ·n ·r(q) · t Note that c x,y;: 1n contrast to 1s no a gauge-
invariant quantity. It changes under the SU(~c gauge trans­
formations in the same way as the path-ordered exponential 
P (x,y;A;C) 

p (x,y;.A;C)- p exp (ig r All (z) dz ll) 
c 

(3. 3) 

*Note that in ref )67 we used another definition of al}v 
that differs by sign from the standard one given by eq. ~2.5). 
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(recall that ;j (x) P (x,y;!A) .,p (y) 
invariant bilocal operator). Here, 
x and y. 

is the standard gauge­
C is some path connecting 

. The idea is to pick out the P -factor from S c(x,y;!A) 
w1th the. hope that the remaining factor 1S will depend on the 
vacuum.fle~d only through G~v and its covariant derivatives. 
To beg1n Wlth, one should decide whether sc will be represen­
ted as PIS or 1$p (in QCD this problem is not trivial because 
both P and 1S are matrices). One should also specify the 
path C. 

After checking several possibilities we observed that the 
most convenient is the symmetric representation 

sc(x,y;A). E (x,zo;A) ISC(x,y;,A,zo) E (Zo,Y;!A), 
(3.4) 

wh~re z0 is ~orne fixed (i.e., not depending on x,y) spatial 
po1nt and E (x; z0 ;A) is the path-ordered exponential corres-
ponding to the straight-line path 

~ . . v v 1 ~ 
E (x,z0 ;A) .p exp[tg(x- z 0 } fdtAv~Zo+ t(x-z0 ))]. (3.5) 

0 

It is straightforward to derive that eq. (3.2) is satisfied 
only if 1S c (x, y; A, zo) is a solution to the modified Di-
rac equation 

(3.6) 
.... , . ,..,.. 
'-"<~'- u ......... "'~::; .1.rom eq. \..l.LJ only by the change 

A a r. • v v 1 b - ba 
' ~--- u~(x,z 0 ).(x -z0 )JtdtG,.,~ (z)E (z,z0 )/z.zo +t(•-zol' (3.7) 

Here, E is a straight-line-ordered exponential in the gluonic 
repre~entation. To derive eqs. (3.6),(3.7), we used the com­
mutation rule 

( r b) AB Eac (z,z0). E Afiz,z0 ) (r a., acE b'tz.z0 ) (3 • S) 

based on the well-known formula 

e'\eA • B + [A,B] + i![ A,[A,B]]+ ... (3.9) 

and the relation 

[ Tb , T ) •- (ab ) T C • a ac (3. 10) 

Note now, that incorporating the Baker-Haussdorff theorem 
(see, e.g.,!~!) one can perform the Taylor expansion 

(3. II) 

and express u; (Z. Zo) in terms of GILV(Zo) and its covariant 
derivatives 

8 

(3. 12) 
1 ~ 1 ~ 1 ~n ~n a 

.(xv-zo) I ~(x -z 0 ) ••• (x -z 0 )GvJL·~ 1 ... 1L· 
n.O n! (11+2 ' n 

Further observation is that the exponentials E entering into 
Sc(x,y; A) are precisely cancelled in eq. (3.1) by those 

present in Sc(y,X;!A); so that one can change Sc-.1Sc in 
eq. (3.1). Solving eq. (3.6) perturbatively one obtains for 
nr( q) the (gU) -expansion that has the same structure (cor­

responding to diagrams shown in fig.2) as the original (gA)­
expansion. The contribution of each diagram can be then calcula­
ted just as described in sect. 2.2. A very important difference, 
however, is that (j is Taylor expanded just in terms of 
0~11 ; ~ 1 .•• fl 0 so that the final result has the desired 

form, and no further reexpansion is needed. 
Of course, the final result may be trusted only if it does 

not depend on the arbitrary parameter z0 .Recalling that~ is 
some spatial point one may naively expect that the zo -dependen­
ce is eliminated by the translation invariance. This is indeed 
the case for the vacuum matrix elements, since all the composite 
operators 0; (e.g., G

1
Lv (zo )Ga8<zo )) are constructed 

from the 0,,.,. , -fields taken at the same point zo, and 
r'ri'''~n 

<OJ oi (~)I 0>. <01 0; (0)1 0> (3. 13) 

However, the zo -dependence is generated also by the (x~i -
- zgi )-factor in the Taylor expansion (3. 12). As an explicit 
calculation shows,the resulting ~-dependence (or, more pre­
cisely, the dependence on y-zo) disappears only after summing 
over all the relevant diagrams. This observation suggests that 
z0 works also like a gauge parameter. 

3.2 Schwinger Gauge 

It is easy to realize that our basic ansatz (3.4) is in fact 
a gauge transformation which relates the propagator SC(x,y;,A) 
calculated in an arbitrary gauge with that in the Schwinger 
gaugeiB/ 

(x~-z~)AIL(x).O. (3.14) 

Indeed, in this gauge E(x,zo ;.A) .1, and, as a result, 
gc .1S ~An equivalent form of eq. (3. 14) is 

A (z0 ) • 0 
~ 

(3.15a) 

9 



(all I ... all n ~AJ.L (Zo)) symmetrized •O • n;?; I 

Performing the Taylor expansion of ·AJ.L (x) at x. zo 
.. 1 

~All (x) • ~ --
1
(xJ.II_ Zhl )' ... (xJ.In- z~n) (a ... a A (z0 )) n.O n. Ill J.ln J.1 

and using eqs. (3. 15) one obtains the expression* 

ail 
1 

... a/J.n (a11 \ {zo)- aiL ·A 11(z0)) 

(3. 15b) 

(3. 16) 

(3. I 7) 

that in the Schwinger gauge (3. 14) is equivalent to eq. (3. 12). 
In particular, due to eq. (3. IS ) the derivatives a

1
.q , .. , aJ.In 

in eq. (3. 17) can be treated as the covariant ones (see also 
ref. Ill/). 

4. CALCULATIONS 

4. I. General Outline 

The expansion (3. 12) generates Feynman rules for vertices 
where a quark interacts with the G 8

. (z ) gluon field. 
I . . J.LII·P.r .. J.L o 

t 1s conven1ent to preserve the usual graPhical notation for 
the G -verticPs inrlirArin<> in ,.,tttit-i .... ~ ~1~~ ....... __ ,_,_ __ -" 
covariant derivatives (see ~fig. 3):-- -----, ---- -.. ~ .. ~·~v~~ ~~ 

Consid~r, as an example, the diagram shown in fig.3a. In 
the coord1nate representation its contribution for the vector 
current j J.l - cy J.l c reads 

'll(3a)( G) i iqx a a' 
11"' q, • 4 J e 4>! Ga/3(7u) Ga, /3.(zo)! O>Sp lrJ.L S c(x-$ yax 

x r a((I3-.Jt)sc($yv Sc(-l))ya' r a' (7)/3' -z6')Sc(7) x) ld4x d4(d477_(4. I) 

Incorporating the covariance properties of the vacuum matrix 
elements with respect to the color SU(3)c and Lorentz trans­
formations one can write 

<0! Gaa/3(z )a;:/3,(Zo)l 0>~-fss aa'(gaa' g /3/3-gaf3'&/3a ,)<01 a;,\ q7>_ I 0>. 

(4.2) 
Note that due to the translation invariance (see eq. (3. 13)) 

there is no need to specify the argument of the G -fields in 
the r.h.a. of eq. (4.2). 

*This derivation was suggested to us by E.A.Ivanov. 
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al 
2 

I 
I 

d) 

' , 

-Z:5-
b) 

+Sperm 

I 
I 

c) 

1 I 
I 
e) 

+ 3perm. 

+2perm. 

Fig.3. !-loop diagrams constructed according to the Feynman 
rules generated by eq. (3. 12). a,b) GG-diagrams; c) GGG­
diagram; d) G(DDG)-diagram; e) (DG)(DG)-diagram. 

For massless quarks, the most simple way to proceed further 
is to use the explicit form of sec~ and to calculate the in­
tegrand of eq. (4. I) just in the coordinate representation (see, 
e.g., refs,/14-16/ ). However, for massive quarks, which we are 
interested in, sc(x) contains transcendental functions, and 
it is much more convenient to rewrite eq. (4.1) in the momentum 
representation. This can be accomplished in a straightforward 
way. The only complication compared to the ordinary Feynman 
integrals is owing to the derivatives a/aka·,a/akl3resulting 
from the e-a, 77 /3 factors (cf. eq. (2.4)). However, these deri­
vatives are eliminated by using the relation 

a kll y +m kJ.Iy +ID kPy +ID 
J.l --~e ____ _ 

k 2 - m 2 k 2 - m 2 Yv k 2 - m 2 
(4. 3) 

and the resulting expression looks much like the ordinary Feyn­
man integral. Typically, one obtains 

n (q,G) _ <gG ... gG> J d
4

k Sp{yll .. ~k, q, m)yv 1 
J.IV (2") 4(k2 -m2)N((k+q)2 -m2JM 

(4.4) 

After calculating the traces it is convenient to expand the nu­
merator in powers of the denominator factors ( ( k + q) 2 - m 2) and 
(k2-m 2 ).As a result, the integrand is considerably simplified, 
and the next step is to introduce the Feynman parametrization. 
Then llJ.I11 is given by a sum of integrals like 

II 



(4.5) 

w~ere Q 2 • - q 2 . 
Note, that the denominator in eq. (4.5) is symmetric under 

the change x ... 1-x.This means that the numerator factor in 
eq. (4.5) can be also made symmetric with respect to this 
change and then reexpanded in powers of x(l-x). 

Furthermore, using the obvious recurrence relations for I 0
5 Inn 

N N 

In • _1_ (I n-1 _ m2 I n- ~ 
N Q2 N-1 N (4.6) 

one can write Dllv as a sum of the basic integrals 

Q 2 1 dx 
~N(-;;r)•f 

m o [1+x(1-x)~]N 
that can be calculated explicitly 

N N-1 N k 
g (...S:).<2N-3l!![((a-1) ,;iitn&.!+ I l!=.lli ({&-1)- ], 

N m2' (N-1)! 2a fa -1 1c.1 (2k-1)11 (2a) 
4m2 where a. 1 + -· Q2 

(4.8) 

The algorithm described above can be applied for calculating 
an arbitrary 1-loop diagram with external vacuum gluon lines*. 
J.llt= wct.i.u L~cimicai proo1em is t:o construct t ::by hand") a genera­
lization of eq. (4.2) for operators of higher dimensions. 

As a final result, one obtains for n<f'l (q) the expansion 
in terms of vacuum averages of local gauge-invariant operators Oi 

r 3 a b c r 4 . II. a I r m r 2) 
+CG3<g fabcGilvGvAG-\I>+Ci2<g JILJI'>+ ... wT J (q ' 

(4.9) 

where Tr(q) is a structure depending on the current j r (x). For 
vector current, e.g., Dllv(q) satisfies the transversality con­
dition qll f\tv. qvTI,.tv•O and the usual choice is T~~ • qflqv- q2 gi'V' 

To illustrate the typical structure of the coeffic1ent func­
tions Ci (Q 2,m2) ,we present below the explicit expression for 
the G2-term of the expansion (4.9) for O~~(q): 

*Of course, the necessary computer time rapidly increases with 
the dimension of the operator. 
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) 

) 

(4.10a) 

1 [ 3(a-1)(a
2
-1) 1n..L!.±.!..- 3a

2
-2a.t-3 ] , 

4·48rr2((Q2)2 2a 2 ./a /i -1 a 2 (4. lOb) 

4m 2 
where a-l+"Q"!· The final form (4.10b) coincides with that ob-

tained in ref ,/2/. 
It should be remarked here that the expansion (4. lOa) in 

terms of the basic integrals (4.7) is in practice much more 
useful for further analysis (e.g., for calculating derivatives 
dnc. 1 (dQ2) 0 ) than the explicit form (4.10b) (cf. Sec. 4.2 

I /2/ of ref. ) . 

4.2. Computation of O(G~-Contribution 

Using the gluonic fields present in the generating expansion 
(3.12) one can construct 3 different local operators with di­
mension 6 (fig. 3c-e). 

0 a Gb 0 c . 0 a rl1b . 0 a Gb 
lllVl 1!~2 1'3 V3' ~'1 v1 ;ap-f.l 2V2' ~'tvl;a ~'2 v2;{J • 

The total number of diagrams constructed according to Feynman 
rules generated by eq. (3. 12) is 13=4+6+3 (figs. 3c-e). The most 
trivial step is the calculation of the color traces 

(4. II a) 

Sp 7 a7 b7c • ! (debe+ ifsbc). (4.11b) 

It should be remarked from the start that the operator 
dabcaaab ac although present at intermediate stages of the 
calculation, disappears in the final result. This is a manifes­
tation of the QCD Furry theorem. 

The next step is to get explicit expressions for vacuum 
averages < G~l vl ;af3GI'a2 v l' <GI'•l vl;cF ;2 v2; {3> 
and < G ~ vG ~. v •J ~ v f abc> · 

r} l '"2 2 r-3 3 
This is performed 

in a straightforward way (the result is presented in Appendix A). 
Then we incorporate the equation of motion 

G a . a " .7. a,,, (4. 12) I'V;I' •-&Jv•-g ~ 'f'Y T 'I' 
r/J-u, d, s v 

for operators containing G" . . In a similar way, using the 
• • • • ,-V•Il B1anch1 1dent1ty 

G . + G . +G .• 0 I'V,a va,ll a;.t•V (4. 13) 

the commutation relation 
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(4. 14) 

and eq. (4.l2) one can express 
... 
J fl; v and 1n terms of 

f ab ae 
&be fLa va 

G" - g(2f G b ae + j II -jv" .. , ). (4.15) 
fLV;aa &be lla va fL;v r 

Finally, incorporating translation invariance reduces 

<j " G" >.·to < j" j" > 
fL;V fLV ll fL 

<01 j II G"IO>--g<OI j II j II 10>. (4.16) 
fL;V fLV fL fL 

As a result, the dimension-6 contribution is expressed in 
terms of 2 operators: g3 f G 3 "" g 3 f 11be a;11 Gi>. G ~ and 

4 ·2 4· 11 . ., For the vector current our result is g J 5 g JILJIL' 

cv 1 (_g_+~2-_ll~3+~~4-.E.~s-JCJ-
c3· 72rr2(Q2)3 15 3 5 5 10m 

1 [ (a-1)2(5a3+15a2+23a+21
10 

Ja+l 

72rr2(Q2)3·32 2a4Ja Ja-1 

75a 5 + 25a 4-90 a 3 +2a 2+495a -315 
1F;,4(,._1) 

(4.17a) 

v 
c. 2• 

J 

2 2 
__ 1_ (.!!..+..t~ -~ - ....1.~ - ~~ + ..§...~ + _9_~ - ..2. JL). 
36 11 2 (Q 2)3 45 3 1 2 9 3 15 4 5 5 3m2 1 5 m:). 

(4.17b) 

1 [ _ 5a 5 -103a 4 -6a3 
t 98a 2 -79a+ 21 ln ..ll!±..!. + 

36rr2(Q2)3.48 2a4Ja va-1 

75a5 -1595a 4 +930a3 - 2218a 2 + 1395a-315] 
+ ' 15a4(a-1) 

where gN are the basic integrals (4. 7). 
The results for other currents are given 1n Appendix B. 

4.3. Tests on the Computer Program 

The final result should posses some general properties that 
we have used to check our computer program. 

First, the coefficient functions related to .<g 3 fG 3 >and 
<g4 j 2> should be gauge-invariant (i.e., zo-independent) for all 
currents. This requirement is far from being trivial since the 
cancellation of the zo-dependence takes place between the con-

tributions of different diagrams. In particular, the total con­
tribution of the GDDG-diagrams (fig. 3d,e) depends on zo for 
a 3 -part and is zo -independent for j 2 part. The contribution 

of the GGG-diagrams (fig. 3c), in its turn, contains only G 3-
term which has the zo -dependence just cancelling that due to 
the GDDG-diagrams, 

Our second check is based on the requirement that for the 
vector current n1.w(q) should be proportional to (q q

11
- q2gll

11
) 

Again, to get th1s structure, one must sum over all relevant 
diagrams, and a small error present in a particular diagram 
normally spoils the total sum. 

We use the same program for all currents, hence, if the 
program was correct for the vector current, it should be also 
correct for all other currents. 

Moreover, one can directly check the consistency of calcula­
tions for various currents. This check is based on the Fierz 
identity ~ 

Sp ( y 5 1S e) Sp ( y 5 1S e ) ... n 5 + n P -·niL~ + n! - n:v fLV , (A. 18) 

where A - y y
5 

, T ~ - 1-·11·af3, and the observation that 
..... a ,..\/2 ,... 
k+m k+m ll a a a k+m .) 0 (4.19) 

Sp(y5 k2-mJ • Sp(y 5~y akv ~1 ... akan k2-mZ • • 

Really, from eq. (4. 19) it follows that only diagrams having 
at least two a-insertions into each bare quark line give a non­
zero contribution to the l.h.s. of eq. (4.18). Thus as far as 
the dimension-6 contribution is concerned, the combination 
written down in the r.h.s. of eq. (4.18) should vanish. Our 
results do satisfy this requirement. 

5. APPLICATIONS TO QCD CHARMONIUM SUM RULES 

Using a dispersion relation one can relate !f'l(Q2) to its 
imaginary part 

!f'l(Q2)-..!. j Im pr (s) ds. 
s +Q2 

(5. I) 
IT 4m2 

e 
In its turn, Im pr (s) is related to a cross section. In par­

ticular, for the vector current we have 

Im P v (s)- 9 ·scT'(e+e-:.. charm), (5. 2) 
64rr 2a 2 

where a =I I 137 is the fine structure constant and u (e+ e- -+ 

charm) is the total cross section of the e+e- annihilation into 
final states with open and hidden charm. Thus, using the ex­
plicit expression for P·f(Q2) in terms of the vacuum expecta­
tion values < G 2 > , .<G 3> , <j 2 > , etc., one can relate the pa-
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rameters of the QCD vacuum to observable quantities and test 

the existing models of the QCD vacuum structure. 
In ref./2/it was proposed to compare with data the ratio 

r n • Mn /Mn-1 of moments Mndefined by 

Mr • ..1. j ImP 
1~ ds. (5. 3) 

n 17 4 2·sn+l 
me 

The explicit expression for Mn including the <G 2 > vacuum 
correction was first obtained in ref./2/: 

MV.M(Olll+aa- (11+ 3)! 
n n n 8 (n-1)!(211+5) (5.4) 

where M~Ol is the contribution of the simplest 1-loop diagram 
(fig. Ia). 

M(Ol. _1.. ~llin-y! 
n 4172 (211+3)!! (4m )n (5.5) 

an are known coefficients of the 2-loop perturbative correction 
and m cis the mass of the charmed quark. In fig. 4a (taken from 
ref./2/) the comparison is shown between theoretical prediction 
for rn based on eq. (5.4) with m c=l .25 GeV, a 8 =0.2, <g 2G2>= 
=(0.83 GeV)4 and experimental data. The two curves are in good 
agreement with each other up ton =8. Adding higher 1/m~ cor­
rections to eq. (5.4) one should presumably improve the agreement 
also for higher n values. 

TTc;nrr on II, 11\ .... 
--o - "'1. ' ' •• •" ........ 

- _, ... 
t,..V \,...Q~\...UJ..c1L.t: Lll~ ~XpllClL form 

of the 0 (m-: ) -correction to eq. (5.4): 

hMV.M(Ol 1_!. Jn+4)!(3n2 +8n-5) <g 3fG 3> _ 
n n 45 (n-1)!(211+5)(211+7) 9(4m2)3 

c 

8 (fi;t2)!(1l+4)(3n 3+47n 2 +244n+405) <g4 j_2_ I. 
(n-1)! (211+5) (211+ 7) 9 (4m2) 3 

(5.6) 

135 
c 

As argued by SVZ in ref. 1 21, the vacuum intermediate state 
d0minates the <j2 > matrix element, and, hence, <g 4j 2> is not 
a free parameter 

~ Fig.4. Ratio rn • ~~ 
-, Mn-1 

a) bars: experiment; circles: no power corrections; nablas: 
SVZ fit <g2G2>=(0.83 GeV) 4 ; crosses: SVZ fit corrected by 
< g 

4 
j 

2
> and <g 3 f G 3 > contributions, the latter estimated in 

the DIGA, <g3fQ3 >=(0.60 GeV) 6 , <g4j 2>=-(0.52 GeV)6. 
b) bars: experiment; circles: no power corrections; nablas: 
<g 2G 2 > =(0.87 GeV)4, <g3fG3>-<g4j2> =0; crosses: 
<g

2
G

2 
>=(0.87 GeV) 4 , <g 3 CG 3 > =(0.62JGeV) 6 , <g 4 j 2> = 

=- (0. 52 GeV)6 : 
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<g4j2>--...ig4<uu>2 cs.n 
3 

Taking g 2. 417 • 0.7 at the low normalization point IL =0. 2 GeV 
where .<uu> =-(0.24)GeV) 3 we obtain the estimate 

< g4 j 2> =- (0. 52 GeV)6 (5. 8) 

(for details see ref./ 2/). 
The magnitude of the <g3f03 > matrix element can be estima­

ted by using the dilute instanton-gas approximation (DIGA) that 
gives /2/ 

3r o"ohoc >loiGA _ _g_p-2<g2o"O"> < g llhC j.LV VA Aj.L 5 c j.LV j.LV (5.9) 

where p =(200 MeV)- 1 .If we adhere to this estimate 
the SVZcvalue (0.83 GeV) 4 for <g 20 2>,then1 2/ 

and take 

<g3ro3> =(0.60 GeV) 6· (5. 10) 

Hence, both 0 (m7.) corrections to Mn and rn are posit~ve, 
i.e., work in the desired direction. The resulting curve IS 
shown in fig.4a. It goes systematically higher than the curve 
based on experimental data. 

To improve the agreement between the two curves, one should 
take a larger value for .<g 20 2>:In particular, multiplying 

"--" __ _] ':\,.-~ '-·~1'1.-_ .......... \..+--..:-~ .... ,.., .. _.,,... ... 'h.,+-..:~.;T"' 
<..,~ \.J > Q11U .<.....t:; l U _? UJ ••"- .._,.,.,.._ ...,LI ... ._..._.,.,..,. ..... .._.__._. _ .. .,._._ ..,._.. --~-

good agreement with experimental data up to n-13 (see fig.4b). 
Moreover, treating <g2o2 >·, <g3f03>and <g 4 j 2> as independent 
free parameters,one can get even better fit to data.Howev~r,our 
point of view is that it is premature to attempt such a fit­
ting without including the next, i: e.,. 0 (0 4 )- corre~t~on. The 
motivation is that the 0(03)-contribution has an additional 
numerical suppression compared to 0(0 2) and 0(0 4

) ones. To 
illustrate the suppression, let us write down the leading 

. . v 
large-n behaviour of Mn: 

V (Ol n 3 

Mnln.._-Mn l1+anas-18[ 
<g2o~ n2 <g3ro3:>+ ... ] !. 
(4m~ 2 15 (4m~3 

(5. II) 

As is clear from eq. (5.11), the 0(03 ) contribution is sup­
pressed by the factor (1/15) compared to what one can expect 
from naive dimensional considerations. This suppression was 
first observed by Voloshin/21/who demonstrated that in the 
nonrelativistic limit, i.e., for n ... oe~,all the o 2n+lcontributions 
have additional small factors absent for the o 2nones. Hence, 
the o4-contribution may exceed the 0 3 one even for not very 
large n values n.:2:, 4, and a reliable test of existing mode~s of 
the QCD vacuum requires the calculation of the O~corrections. 
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6. CONCLUSION 

In the present paper we described the method of computing 
vacuum gluonic corrections to the polarization operator n·rc~ 
of quark currents. The basic idea of the method is that one can 
separate the "A-dependence" from "0 -dependence" by extracting 
the A-dependent terms into path-ordered exponentials which 
cancel with each other for gauge-invariant amplitudes like 
n·f(~. We demonstrated also that our technique is equivalent 

to th~ us~ of the Schwinger gauge (xll :- z h ):AIL (x) .o . for vacuum 
gluonic fields. Furthermore, we describea tne algorithm used in 
compute: calculations of O~m~4) and O(m7) corrections to QCD 
charmonium sum rules and presented our results for polarization 
operators related to 4 different qu~rk currents. Comparing our 
results for the vector current cyp. c with the curve 
based on experiment?l data we observed that the data 
favour a larger <g20 2>value than that used by SVZ in ref. /2/, 
Hm·;ever, as argued in Sec.5, to get a reliable estimate for 
<g202:>and<g3f Q3 >from experimental data, one should compute. 
also the 0 4 contribution. The computations based on the approach 
described in the present paper are under completion now, and 
their results will be published elsewhere. 
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APPENDIX A 

In computing the coefficients C c3 and C. 2 in the 
(4.9) we used the following representation

1
for the 

ture of the basic matrix elements 
" b c 

<0 I f 0" oh 0 c I 0 .<0 I f abcOL!V G VA 0 A,tl 0> 
11bc !LV af3 pa· > • -- 24 -

(g g g + g g g +g g g ff g g g -
,m· av f3p I.Lf3 ap uv a11 !lP vp pv lla fn· 

<O 1 o" a" 1 O> - 2 o- g < g f3 g - g g f3) + J.LV af3; pa pu IL av ILU v 

expansion 
tensor struc-

(A. I) 

(A.2) 

+ o-c g g g + g g g - g g g - g g g > + 
p.f3 au· pv av ILP fn au ILP vf3 pv j.La f3u 
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+ o+ (g g g + g Qg g - g g g Q- g g g ) • 
W' av f3p Ill-' ap uv j.LU· ap v,_. pf3 jla vo 

(A.2) 

where 

0
± 1 2 . a . a ' 1 a G b c I 0 • 72 <0 I g Jj.L Jj.L I 0> ±48 <01 gfabCGj.LV vAG~ '> • 

APPENDIX B 

Here we present our results for the coefficients Ccz, Cc 3 
and C i 2 in the expansion (4. 9) for scalar(~ .p),pseudoscalar 
(ipy

5
.p)and axial-vector ((#TJ y y 5.p) currents. The results 

are presented both in terml'vof the basic integral ~N (4. 7) and 
in an explicit form. We denote 1J • ~ - g , a. 1+ 4m2 /Q 2 

20 

j.LV q2 j.LV 

I) Scalar current. JP (1,. Q++, T S .1 

+ 

+ 

3a4 + 10 a 3-43-t a2 -58a+69 1 
a3 (a-1) 

4 3 2 1 [ a -Sa -90a + 88a- 23 

721f2(Q2 ~ · 8 2a 3 .fi 

3a4 -l!>a3+ 436~a2 -310a +69 
1 ' 

3a3 (1-a) 

2) Pseudoscalar current JP c. o-+ , TP. 1 

p 
cc2· 

ln 1l:t! + 
Ja -1 

(B. I) 

(B. 2) 

(B.3) 

CPG3.. 1 (- _!!_ 9~ +48~ -62~ 153~ 24 • Q2 (B.4) 
1441f2(Q2)2 5 1 2 3 + -;,4- _,5_ --)-

5 5 10m2 

1 [ 3(1-a)(5a3 +13a2+23a+7) ln Va+1 + 

1441f2(Q2)2.16 2a 4 ra Ja -1 

(B.S) 

1 [ 11a4 -22a 3+36a 2 +14a-7 ln {a +1 + 
72"2(Q2)2 .s 2a 4 /a li -1 

(B.6) 

+ 
33a4+ 142~ a3 -82...!. a2-56a+21 

5 1 
3a 4 (1-a) 

.... , . . ... nr .. . ., 
JJ rtA.uu-vecLor currenL. J .... 1' • '1' .• - q q - q-

j.LV J.l V gj.LV 

A 1 
cc2· ----(1-~2). 

16772(Q2)2 (B.7) 

-
__ 1 __ [ (a-1) 21 va-1 a+ 1 1 

-- n--+--
16"2(Q2)2·2 2a/a fi+1 a 

(B.S) 

·1 [ (a-1) 2 (5a2+12a+23) 1n.:JI...-1 + 

72"2(Q 2 )3. 16 2a 3 ;a. ,1;.;:+ 1 

+ 
1 4 3 4 2 Sa -4a -703"a +148a-69 

3a3(a-1) 

(B.9) 
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HHKonaeB C.H. , PagromKHH A.B. E2-82-521 

BaKYYMHbJe nonpaBKH K I<X,[( npaBHnaM CYMM AJHI qapMOHHH. OcHOBbl 
MeTOAa H 0 (G 3) pesynbTaTbl 

.[(aeTCH TIOAp06Hoe H3nOJKeHHe HOBOrO MeTOAa Bbl'lHCneHHH BbJCmHX 
cTeneHHbJX nonpaBOK K KX]J; npaBHnaM CYMM AnH qapMOHHH. MeTOA 
3KBHBMeHTeH HCTIOnb30BaHHJO AnH BaKYYMHblX rnJOOHOB KMH6pOBKH 
lliBHHrepa. C ero noMo~bJO BbNHCneHbl O(G2) H O(G3)nonpaBKH. 

Pa6oTa BbffiOnHeHa B na6opaTOpHH TeopeTH'leCKOH ~H3HKH OaHH. 

Nikolaev S.N., Radyushkin A.V. E2-82-S21 
Vacuum Corrections to QCD Charmonium Sum Rules. Basic 
Formalism and O(G3)Results 

A detailed description is presented of a new method for 
computing higher gluonic power corrections to QCD charmonium 
sum rules. The method is equivalent to using the Schwinger 
gauge condition (xll -zll )A11 (x) = 0 for vacuum gluons. As an 
application of the met~od we calculate 0(02) and O(G3)correc­
tions. 

The investigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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