


1. INTRODUCTION

The light-cone expansion (LCE) for the product of two
local operators (currents) was derived and proved for scalar
field theories by S.A.Anikin and 0.I. Zavialov/ V. All ques-—
tions concerning the existence of the expansion, the renor-
malization of the occurring light-cone operators, the rela-
tion between local and nonlocal expansions and so on were
extensively discussed in papers’?34%. The nonlocal LCE for
the scalar current j(x)=:¢(X)é(y): has in leading order in
the scalar :#4—theory the form
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where ¢(¥ are the scalar field operators and f(x%i) arecC -
number coefficient functions of the LCE. The corresponding
local LCE has the form
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where Hn)(xz) are also C-number coefficient functions. Both
expansions are connected by the Mellin-transform’3/.The aim
of this paper is the extension of (l1.1) and (1.2) to gauge
theories.

Formally it is easy to do this by a straightforward expan-
sion of the technique applied in the scalar case. In doing
so more accurately, in theories containing vector fields there
arise two questions. First, one has to include into the set
of light-cone operators also operators with arbitrary many
powers of the vector field operators in accordance with the
fact that the canonical light-cone singularity is in this
case determined by the twist rather than by the dimension of
the operators. The expressions containing a sum over the po-
wers of the vector-field operators can be summed up to get
a closed expressionfs/- It is however simpler to solve the
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Ward-identities’® at first and apply its solution as starting

point for further investigations.

Second, it is meaningful to require that the LCE respects
the invariances of the underlying theory, especially the gauge
invariance. Because the LCE is derived starting with the defi-
nition of a special subtraction operator W, it is a priori not
clear, if this condition is satisfied. In this paper we consi-
der the LCE for scalar, gauge invariant operators

i) = Tr: ¢ (D¢ B): (1.3)

in QED. We show that the simplest choice of the subtraction
operator M leads automatically to a gauge invariant form of
the leading order LCE. For this it was necessary to employ

a special solution of the Ward-identities of the QED’/8/. The
paper is organized as follows. In the second section we intro-
duce the necessary notation. In the third we apply a special
solution of the Ward-identities to derive the nonlocal LCE.
The results are discussed in section 4. In the Appendix we
prove the smallness of the remainder,

2. NOTATION

Let %—S(tl—/,zl/,”A) be the action of the QED with ¢ (¥, ¢(%)
the electron field and A,(X) the photon field, All quantities

under consideration are ftunctionals of ¢, ¢, and A
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Here the summation over the corresponding spinor indices is
assumed. All further notations are the same as in the scalar
case (see refs.’V or 7% ):

RE 4(5) = R expS (2.2)

is the functional of the S-matrix’/V
Ri(DEy (9, (2.3)
Ri(®Di(ME (9 (2.4)

generate the coefficient functions of all graphs with one,
resp., two insertions of the operator ji(® (1.3).

*Following /V

everywhere.

we omit the symbol of the time ordering
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An essential role for the derivation of the LCE there ;/)1Uays
the subtraction operator M. For the QED we choose (cf. )
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where F(x) is a functional with two insertions of the opera-
tor j(x), X- prop means the contribution of graphs, which
become 1PI after identification of the vertices corresponding
to the operator insertions. The vector x, is given by

- . x2n2
xo=x+r]—:'—{—g—[\/1+02—(-_£%—2—1]‘ (2.7)

with

=t [xrzg—n(m)]+77%\/(m)2—xgn , X2-0 (2.8)
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(cf. %4 ). Further in (2.5) 2 is a number a>0 and s is a num-
ber large enough, so that

asFrpmp(-}iq—,ap,op',ok) 2.9
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is regular for o +0.The sum over { and £’ in (2.8) is bounded
by the condition a+2~ € -3" +s>0. ‘

It should be remarked that a bigger choice of 's does not
change anything, because MP*3¢2 f(o) = MP () = for f(o) re-
gular for ¢+0. It is easy to find the minimal S. Inverse powers
of S comes only from Xg/c- Because coefficient functions of
graphs are polynomials of x (with vector and spi}r{ior2 indi::‘es),
besides the dependence of scalar products like (—%—) =x2, —;—aok =

: ®
= X, -k inverse powers of o can occur only from factors >
a

. The maximal number of such factors is C+f’. So we can

choose



s=0+0". (2.10)

With this the sum over ! and {° is bounded by P<(a+2)/2.If we
are interested only in the leading order LCE, that means we
choose a=0, only terms with{’=0 and £"=1 will contribute to
(2.8). The sum over { remains unbounded. The LCE comes from
the identity/1/

o 1 B . .
RG(DIOE(8) = B (8, )mm RG(0IOE,(S) +Q a(x), (2.11)
where Q%% 1is the remainder with the property

(a/de1,
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This property is correctly proved in’Y for scalar theories.
The proof for nonscalar theories is given in the appendix.
The first term in the r.h.s. of (2.11) contains the LCE. One
has to compute

M *RG(DIO)E, (S) (2.13)

to get a sum of operators (the light-cone operators) with
¢ -number coefficient functions. The remaining operation
Eg(S1)/(1+ M*E,(S,)) means then the renormalization of
the light—cgﬂgnggeratpyi._ -

NOW 1eTt r - “\&y=VU| y,p,A) denote the X -prop part of the
functiqnal (2.5). Due to the Ward-identities its coefficient
functions sz?z)mp
1 Eofhyoees b9
(2.1)) are not independent. In ref. it was shown, that the
coefficient functions with £°=0,1 obey such a set of relations

that the corresponding functional, which we denote by Fj(‘;;;("g%f%)

(x’plvp;s---y pg’ ’ p[’l” k [ ---.ke ) (compare
/e/

for £’=0 and {l"j(:;j‘();;?l (%1, X5 [ AW (2 (x Jdx dxy,  for =1
can be expressed in the form
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tr, :-prop

The functionals Fj(x)j(()),f’ (A) (£7=0,1) have the property

a 5 ir, >-pro
L InEPIOp Ay -0, (2.16)
dz, BA(z) X x),J(0).

*(a/2] means the integer part of [a/d.

So they are transversal ones. The integral in the exponential
in (2.15) goes along a path ¥y connecting points X, and X, .
This path is arbitrary. A change of the path means a change

tr, x—pro
of the functional Fj(x)xj(g).f (x,,%,|4) by transversal terms.

3. THE NON-LOCAL LCE
Let us compute expression (2.13) which has now the form
MORG(DIOEG (D) =
3.1)

o X-prop o x-prop AN
=TMh iy,0 B+ M0, 1 Ky XA (% (R, )dx X,

For the first term of the r.h.s. we have with (2.5) and (2.14)

o1 *~prop g _
W Fj(x)j(O),O 4 =

-3 —;—Mtfoe {[qu(;x—prop”(i:_,gkl.....okg) - (3.2)
¢ ! 0o ptgyeen

~ 5, Lok ) Sk, vk, g, VA, (k )oA,, (K, Ry ,

ryrz (s

tr, x-prop
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where Ij L0y el

and A, (2) = feikz A, (dk is the Fourier transform.

of ['[l¥ PP

are the coefficient functions 1(0i(0),0

Eq. (2.16) means for the coefficient functions

Ks __ tr,x~prop
ks FE ,0#1...“g(xv ki' ...,kz) =0.

So, we can write down the identity

[ MXDIop (. kl""'kﬂ ) =
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-~ tr,¥x—prop . tr,x—-prop . .
where IE’O-M---AE is that part of Fﬂ’(’#‘l"-#s » which contains

X in scalar products only. We see that



tr, x—p'mp
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is a regular function of o for o0 + 0 because it does not
contain ¢ in the denominator. Consequently, in (3.2) the term
with f =2 survives only. Taking into account that the lon-
gitudinal contribution in (3.2) vanishes, we get

Mer X—prop (A)

(n)i0),0
-1 f[zl Buads(% JEpo ¥ rg g x (3.4)
-4 G Afp :
S tEPOD g . )
«T oo (52 k)8, (kB (k)i Gk dky
= i1, x~-prop . . . = tr, x=prop .
where I' 20 is the contribution to I'¢,2,AyA; » which is

proportional te g ) ;\,+ All other contributions are proportio-

nal to (okg)y ~ and vanish.

form with respect to xk ,, XKy o

fo0 x*, 0 =

f‘ tr, =~prop g = (3.5)
iz Ky +izgKy 2,0 (x* ,xkj )
= { dz,dzge S e
(&k P(Xkyp) xky =z
Its support property follows from the fact that
Kt’lbx’_‘f;ﬁ‘?#ﬂ(x’k1y"-r k) is an analytical function of xk;.

On the other hand, this can be shown in « -representation’1:?,
So, we get finally
1 1
oy X~Prop 1 2 A
ToTy g0 B =5 [y [ deplyp (x5K)0,0 () 3.6)

with the light-cone operators

~ iK1~XK1+iK2;k2 -~ ~
Ogolk) =/ e (gull\l("k1)"xy1k1/\1) x

Xk )-X : k YA (k. ):dk dk, =
X (B J*He) pgeng) Bag, Ay, Gy (k) ey (3.7)

=t o ™ .
=xF x" F‘Lp (x«1)va(x;< 2).

They depend on the field-strength tensor

FPP(Y) =<9y# AL, (W) —ayu 1Au ¥ .
only and are bilocal operators localized at two points on the
light—-cone like in the scalar case.

Now we have to calculate the second term in the r.h.s. of
(3.1). Here we take into account the representation (2.15).
Consider the first term in braces in (2.15) that means the 1Pl
contribution. We have

mer rj(x)j(O).l (x4, x21A)u/_;(x1)u/;(x2)dx1dx2 =

® n F e, Ak )ak,)
= M° — i e z X
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with the Fourier transform

Y(® = e Py (p)dp .

The functions
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Because of (2.16) they are transversal '
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For the application of the definition (2.5) of the subtrac-
tion operator M one must take into account that the number?
of vector fields in (2.5) has to be rewritten in (3.8) to f+n,
where ! is the number of vector fields in the expansion of
the functional F(,“@)l (xszlA) and n is the number of
vector fields in the expansion of

X2
exp(ig ‘{1 8, (9dz, ).
Substituting in (3.8)
2, - %/m xi»xyh, q; +0q;
we see, that the remaining o —-dependence has the form
f+1 X,
o o tr
OQEOT 3,1’#1, vllﬂ(o ’0q1'0q2'0k1 ,...,ok ). (3.9)
Because of the transversality it is easy to see that

t Xo
"r‘ﬂ,'l p,?(';"'y oq l.Oqg.ok 1,.,.,0];2)

o gpeees
is regular for 0-+0.This can be seen in the same way as for
(3.3) whereby an additional factor, X, /o, can occur only.
So, in (3.9) we have the contrlbutlon of £ =0 which is pro-

portional to ®» = X Yu
~St 2
r‘otfl(qul,qz) = xr‘o,rl(x vquoxqz yqlqu) + .

onlv and eet
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~tr 2 - o
Because Ip ; (x7,%qy,%q5,0,0) depends on scalar products only,
it must be proportional to the unity matrix. Introducing once
more the Fourier transform

flPI( 2 -
3.11)
lzl+ll<222
= [dzldz2 T, (x .qu.xq2,00)| Ga =2,
we get finally
mofrj(x)j(m 1% Xl W)Y (X ) (x,)d% 10 5 =
(3.12)
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with the light-cone operators
™

By 4 () = P i ) T (i P eRUE_[ &, (A2, (3.13)

The coefficient functions fo 1(32 k) are obtained by (3.11)
from that of the functional Djyjo)a(X X gl4) for :A=0The
contribution of X-prop rather than 1Pl functionals (the se-
cond and third term in braces in (2.15)) can be calculated
analogously. For this reason one must assume that the length
of the path ¥ 1is proportional to the distance between its
endpoints, so that

oz’
‘ N -0,
[ A, e, +0 for o
Gz
Finally, we get

3-prop p(x_)dx . dx =
LN R R NESTICIACIL (3.14)

1 1 ~
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where one gets fg «(%%,6) by (3.11) from the functional
IO, A A=0.

FJ(X)J(O)I( 1+%Xg |A)  for

4. SUMMARY

+ From the calculations in the previous sections it follows
that the nonlocal light-cone expansion for scalar currents

K0 = 8p: gDy (x): 4.1)

has in the leading order the form

1 1 ~ A
RGDIOE(S) ~ [ de [ drg By (x50 RG W EH(S) +
. . x2.0 0 6 ' (4.2)
+ [ dky [ dky T3 (2%, R(Og0 WEQ(D) .
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where the operators are given by .

~ ELPN

0,10 = 1P (Xx,) Xyh(Frg) exp g [ A, (2dz,): (4.3)
XKt

620(5) =:x*x¥ Fup (2« l)FVp(iKQ ) . (4.4)

The coefficient functions are connected by the Fourier trans-
form



. iK1z1+iK2 Zg _ X—prop '
2 - 2
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xqj =24

with some parts of the Green functlons with two insertions
of the operator j. Namely, x“pmp(x »Xq;.,9;Q; ) is the x-
prop contribution to the part of the Green funct1on with two
external electron lines that is proportional to x, and

F;mep (x® ,%q;,q;q;)  is the X —prop contribution to the part
of the Green function with two external photon lines that is
proportional to B -

This light-cone expansion (4.2) is very gimilar to that
for the scalar theory (1.1). The operators O0 (x) and O o &
are gauge invariant and, as in the scalar case, are concen—
trated on the light-cone. Both operators Op,; and 020 have
dimension 2 so that the coefficient functions fo, and fg
behave as (¥)2 whereas the remainder behaves as ;E (cf

It is easy to get a local LCE from (4.2) by means of the
Mellin transform as in the scalar case’%. Define the local
light-cone operators by

\ne N
0l

6In n ) =(~ \nl( J

RV \ g1k ] \dxg/ ~ ‘n=v \Te
Then the coefficient functions are given by
inﬂb)(x ) =f dxy f dueg (k) (kg) (x5, ). (4.6)
0 0
In our case we get as local operators
~ - nl__ : - n
OOv““y%9=:(XDY1) ¢(y1)X(XD,,Q ¢(y2)|y [=¥g=0 - (4.7)

and

~ e Ny o.p - ng _y
02.0(n1,n2)='(xay1) X' Fu,(y 1)(x<9y2) x Fup (y2):|yl=y2=0,

.8
where Dy is the covariant derivative. Formulae (4.7) is ea33
to prove by induction.

We see that the local operators have a form similar to
that in the scalar case (1.2) with substituting the ordinary
derivatives by the covariant ones for (4.7). In general, we
see in this way that the LCE in a nomscalar theory is very
similar to that in the scalar case and all points essential
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(2.12)).

for the LCE remain unchanged. Difficulties connected with
the gauge invariance of the theory will not arise when using
the solutions (2.14) and (2.15) of the Ward-identities.

Of course, there are some questions which are not answered
in this paper. So it is not shown that no infrared difficul-
ties occur. Further one has to shift the subtraction point
in the subtraction operators and to prove the renormalization
properties of the operators O.

We thank D.Robaschik for useful discussions.

APPENDIX

Here we will prove the property (2.12) of the remainder.
The proof is a straightforward generalization of the one gi-
ven for scalar theories by A.S.Anikin and 0.I.Zavialov’ Y and
we are able to employ many details from ref. 'V The proof
will be given here in a general manner valid not only for QED.
For this reason we must introduce some additional notation.

Let us consider a field theory with sorts of fields ¢; and
propagators

o 1 e o .
A(P)-lof daP(z—iaf,a) explia (p“~ m* +i¢) + 21£pl| £=0" (A.1)

where Ptira,.n\ ie a pelwvnomiol in A - ond ozl LiD T Le Lhe
highest power of d¢ in P andn’ the lowest power of e in P.
Derivative couplings will be included in the propagators of
the lines incident with the corresponding vertices. In this
manner any operator insertion can be treated as a usual ver-
tex. The object under consideration Q*(¥ is a sum of graphs
[' having two operator insertions j(¥ and j(y). The corres-
ponding vertices are denoted by Vy and Vy * Other external
vertices with external momenta are denoted by Vi .The graphs
contributing to @%(% are renormalized by the R -operation R
which acts on graphs with no or one insertion of the operator
i with the subtraction operator M and on subgraphs with two
1nsert1ons of the operator j with the subtraction operator M?
(cf. '/2/) As the divergence index of a graphy we choose

a)y=4§Ry-22y +e§ (g- 2n; ), (A.2)
- Y
where ﬂy is the number of loops of y; and f,, the number

of lines in . The sum runs over all lines of y. As subtracti-
on operator M acting on functionals of the fields ¢; without

* Due to translation invariance we put y=0.
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insertion of the operator j we choose

MF= 3 M®° [F

Lgreenig @ ¢ (0K |,...,0kp )BZK); &, l(k l)---¢iﬂ (kp): dk.

(A.3)
and for functionals with one insertion of j(x)

P N
MR® = = Mg R ok kg )id ()t o (Kp)idk.
iqeeeig il o 1 (A.4)
The sums are bounded by the condition w >0 *. As subtraction
operator M* acting on functionals with two insertions of the
operator j we choose

X

MOF- T MEere,e ypiljfir;p(-;-,okl....pkg)z‘bil(kl)...%(kg):dg,
igseeniig 1 (A.5)
where the sum is bounded by a+w +8>0.Tt is clear that (A.5)

coincides with (2.5) for QED.
Under these assumptions we show that the coefficient func-

tion Fp(x, k) of any graph I' contributing to Q@2(x) has the
property
‘ . [a/d+1
F, (% k) 5 (x ) ) (A.6)

x° -0

where [8/2] means the integer part of a/2.To show this we have
o lnctroduce some rurther notation. Let y be a subgraph given
by an érbitrary set of lines and all verticeé incident with
them. is the set of all such subgraphs. ¢ is the subset
of consisting of subgraphs which contain the vertices V,
and Vy in one component of connectivity. A nest N is a sub-
set of such that for any y;€ ) and ypo €Ml either y3 Cyg
or yg € yy,-holds. With this the following lemma is true.

Lemma }. The coefficient function Fp(x,k) of a graphI' con-
tributing to Q*(® has the representation

> o aytwy+
Fe (0 =C fda, .. fda,d T I, + 5 T (-M Tno1
P (eg=0fa, . fdegl Boloy ¥ T yen oy yenlor
‘sy+4$ L l ) , (A.7)
Xygga ytgl Pz(maf,a).rﬁ(xﬂvﬂf k—)g(g)!£=0

* » depends on i;..ip, that means on the number and sorts

of fields ¢; only. It is the same for all graphs contributing
to the coefficient function Fil"' ip
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where

L 2 .
&) = vI_I 1exp[ia g(—mg +ie)l,

a for yef,
ay = | -
0 for yecf,.,
‘S are sufficiently large numbers. L denotes the number of

lines inI' and
ny(oy) =f(1).
The function
Fﬁ(x”,l;, E) EFBl---Béx” L PR P kl"' kn )

contains the combinatorical functions and will be specified
later. The parameters fy are given by

By =agn82 (A.8)
with IIy= yfgleay'and the 7y by
7p=1,&,, (A.9)
x, 1is given by (2.7) and
N-10 o.. (A.10)
yef, ”

To show (A.7) we start with the corresponding unrenormalized
coefficient function

oo oo L
1
Fi'(x, )= C f da .. fda, T P(5-3 ,@ x
r e 1 2=y 2 (A.11)

xTp (&0 6@, .

where r is the UV-regularization parameter. One gets this re-
presentation by a partial Fourier transform out of the stan-
dard a-representation’/? . The function I'j(x & k) is given
by -

Fg (X, é) E) =
2
- i D@ _2 i A (@) i Tkiajla)
~@a)Feml- 3 X" -3 %3G T T Dad@
13
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(Rad) i EeBee®
+ - - =
D(a) Da) 4 Dfa)Ala)
- - - - (a2
i 3xégBy (a) i kA @y ?g(g) o Enggi(a)kiL
2 Ala) 2 Dig) ‘Ala) Dla)

An n-~tree of the graph I' is a set of lines of I' with no
loops and n components of connectedness. So T is a l-tree.
Tg is a 2-tree containing the vertices V, and V, in diffe-
rent components of connectivity. T3 , resp., Ty are 2-
trees'containing the vertices V, and V{, resp. V., V;, and
Vj 1n one component and Vy, in the other. With this we have

D(g)=2 B ap, Ai(g)= > 1 ap
T, e 5, Le T
(A.13)
A(E)= T I ae, Aij(a)= > I a,
T ZGT2 Tzijf GTE'ij

Now we assume that the lines are oriented. T% is a l-tree
containing the line ¢ and TO&X {s a 1-tree in which the
line £ 1is directed to the vertex Vy . The sum X* goes over

all vertices of Tl" between v, and the line {. With this we
have

Bj@=% 0 a,,
- ¢ gomp L
T: f%eT
- 1 1
B, (@dk = 3 I
T L ey
Tl'x Z’GTIJ
I:Iow let T be a l-tree with loop. Introduce an orientation
in the loop and let t£p; be the sum over the lines of the

loop where the sign shows the orientation of the line ¢ to
the loop. Then

k@,f)= X 1
e T, ey
Now let”s consider the action of the subtraction operator W*
on an x-prop subgraph y¢ Qc. With (A.5) we have

(A.14)
az (=*x) .

ay(3 :fg)? (A.15)

a +w_+m 8 ] o
REFS" ak)=M? Y Y da. . [da . x
Yy - [} Yy 1 Ly
y r r (A.16)

1 y Xo ! un
O P (~—2@ R ' (—, . ' .
foy 5% a) a(a £ °B)gy(f)‘g=o x"}‘/y(lif)df
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Here the first factor is the a -representation of y and the
second factor is the coefficient function of the graph ['/y.
p are the external momenta of y. From (A.13), (A.14), and
(A.15) it follows
X A
v % & 4R, .
LG 5o =% ey (o, oy 0D -

—_—y a
ay, Ty Y - y
Now the first factor in the r.h.s. of (A.16) has again the
form of the a-representation, and we can integrate over p
to get

4.(Ry+ ]
Y

a, + +8
MR (k) =M ) RAR2 4
Y

(A.17)

x [day . [ dq

T T

L .
1

H P, (—d,,a)l,(x_,n,k

with 8, n , n given by (A.8), (A.9), (A.10). In the same

way weé get fotr a 1Pl subgraph y

ay+Ci, + S}’ " 4.‘Ry+ S}’

o X
y Y

M, Fl‘i" (x, k) =M

(a 18)
o0

X rf dal eos ‘;rdaLZEI Pe (-éi—aé. ya)FE (X,Er E)g(g)‘é-:o

with a, =0 (y € £,). For latter convenience we have intro-
duced the number s, which does not change anything. By re-
peating this proceé/ure we get a contribution to (A.7). Now
let ¥ be a forest of x -prop resp. 1Pl subgraphs. Then the
structure of the R-operation is given by the braces in (A.7)
where the sum goes over all forests. Taking into account
(A.17) and (A.18) we have shown (A.7) with summation over
forests. In ref.”’!” it was shown that this sum is equiva-
lent to the sum over the nests. The proof given there is va-
lid for our case too. So the representation (A.7) is shown.

To analyse the structure of the integral (A.7) we divide
the integration domain into Hepp sectors 0<a, <..<a and
consider the contribution from one sector, sayl 0<a—<¢iL<...<aL.
In this sector we introduce new variables T olm e

t)=a a (Z =1,2.....L—1

e=%/ %, ) (A.19)
t L=2L
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with the integration domain 0<tpsl (2—12 owLl-1) and 0<t,,

The Jacobian is c?(al...aL)/a(t wty) = H t 1, The inverse

transformation looks 1like
L

a, 6 = H

b =t

Further we divide the set of nests into classes. Let PQ),....PL)
be & permuttation P of the numbers 1,2,...,L and let e denote
the subgraphs yg_{P(l) P(2),. .,P(E)} A subgraph yp 1is called
increasing if "P()>P(+1)and is called decrea51ng if P({{)>PE+1).

We put formally P(L+1)= L+1 so that y 1s increasing for all
permutations P. Let X% be the nest NF =1y s¥ iy, 1 and

t, - (A.20)

P F P .
T fne resp. X the subnests of N~ consisting of increasing,

dec 71/ .
resp., decreasing v¢ only. In ref. the relation

EII(M)B _EH(—M)HI-M)HI
aY +T( yel % yel Y P yGT( %y ye nil:m( Y “yyc”:.ﬂp %
(A.21)

was shown.
So the contribution from one Hepp sector and one permuta-
tion P to (A.7) looks like

1 1 o0 L
FHyP(x:k),ﬂ'{'df Crar  farm :l[-1 )
1 ind o 1 0 ]_..10 Lf=1
wp+ Bptsp . n wpiaprsg sl .
x m 5 3 1 5% g . 1 ae pregrt
yggndec np=0 n[! % E=y£@)'(mc (co‘!+i€l.e+sE +1)1%
(A.22)
L 4&{4‘82 1 .
o, Py-2 4 )I‘ (x [ N 4 6 !,
"oy’ e G %y a1 W,
GZ—O (yl€ ndec

at=6 (y en? )y,

ine

where we have taken o =1 for yGﬁ and denoted Typ =} @ RIS
s, =8, for yeN P, The mass exponential has the. %orm

Ye

EW = k explit 15 -m? +ie)}
- (=1 k—E k
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and we have employed (2.9) and

b 1 b+1
(Io—Mo)f(a)= VY d, t(a){a=3 , 6¢<l0,1].

As the next we will show that (A.22) is a sum of terms

P 1 1 00 x2 . a
(x,k) =C EJfdtl...ofdlCL_l gdtL (t—g_—..—.-—t-;—) x
y 1 (A.23)
N ; 2
x T tyfepl- L — 2 v ®lu, (x2,1)
£=1 4 tp sty = -
1

with Ny >0 for {=1,2,.,0-1 and NP('a-] for £ =¢ ,..,L and a>0

uy is an analytlc function in ty and exponent1a1 decrea31ng
for ty»> =. V{ is an analytic function in t¢ and does not
depend on tj,.

To show (A.23) we introduce auxiliary variables

te =aP(E) /aP(Z+l) (l= 1,2,...,1‘-1)

(A.24)
tL = aP(L) .
The inverse is
L ~
- m . . N
A L (A.2])
PU) L g K
Because of
- P
t =t e for y,eR._ ,
{ P(f) P(l+1)—1 £ ine (A.26)

-1 P
ty = [tp(i+1)'" tP(f)—1]~ for v, @ﬂdec

Fz is analytic in tp for yZGT( and only ?L depends on ty,
so that t, withf<L and Y 4 G iﬁc are bounded in the integ-
ration domain.

Introduce
- 2
fe:te aﬂ ’ (A°27)
it is clear that due to
L
= N = n A.ZS
© P Praeny 0 Py T BT (4.28)

the combinatorical functions (A.13), (A. 14), and (A.15) are
polynomials in g -

17



Now we claim that

L 1
021 PG e G 1 Bleno
is a sum of terms
L T, nf sph
Z (3 ? x2
-— eV ,
B Meeg 7p v, ) eml-g Ty welL a (A.29)

where u and V, are analytic in x2 and rp (for nonnegative
) ). {5 is the minimal number such that Yp containing the
0

vertices V, and V, in one component of connectivity,

and 8° are numbers with 0<n,<n, and T} >n/. To show (A 25),

we refer to’/!/ where this relation was shdéwn for I (X ;+0,k)

(The contribution corresponding to the scalar theory). Espe—

cially there was shown that V; does not depend on 7, - So we

con31der the contribution from the propagator polynomlal

EH PE (21 §’a)' By definition every term in it contains at
..1 —

least ng >n, factors a, and not more than ng <ne factors
ag Every derivative agz produces a factor L) owing to 352

= mp a” The derivatives ,72 give factors before the ex-

potential containing the combinatorical functions Afr), Ay(r)
and so on, which are polynomials in r and contribute to

the funceisn o ond the fazeors "2 %7 Co uc ocan writc (L0223
as a sum of terms f
1 1 a L
H,P f-1
F (x,k) =C [dt_... [dt fda II t X
rs2 o 1o Letg Lg_y g
wg+ae+sz 1 nz
XB an p3 —3_ x
yeG decnfo nfl [4
(A.30)
» I 1 ,we+az+sz+1 §
P <4
B:th T(mc (wp+ 8y +8p +1)! ¢

I![‘ 4&[+ 8¢ ﬁe

x a ™
t=, ¢ f
2
xexp[—-i- X
46 ..
20

. T) X

vl (r)]é(t) I az =0 for yz G"(P

d;c
oy =0f for yecﬂm

* The numbers 8

4
18

can be negative.

=1 [4

<

) ) - (A.31)
~ —2Re+2-1 Y, --é-él(np(x)—fanp(k)}
Z x
? 4

2 1
i £+ 550 +sz + ?:1 P ‘

Remembering that Sy is not bounded from above we require
s[Z>-.‘?,sE Further x_=f(x®,0%) (2.10) is analytic in x®¢%2and 5 =
T

=1 o so that
k=0 ¥
2
Y - e,
£, f1, "o
With thlS we® Can”revrite (A 30) as
P k) = fdt, . f f I T
X, k)= fdt, ... [dt [ dt p3 — 4 x
- o 1 0 Llo Le:ygcndf;c n8=0 nE' o
y I L____awe+az+se+1 N (A.32)
, P o
E.yz Gninc (wz+az+ ngl)!.
4
-2 ~1-41 -1 a —-2n’
s I11, - Rp+t~1 25 2k=1(P(k) 205 ) )
f=1
2
x2 - - X —Vl(:)
X Uy (—————, ) e % i B,
. b
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2
where u

7 ,ﬂ is analytic in all its arguments (we have
e
included here the mass exponential) and exponentially decreas-
ing for Ly, > oo

Every derivative with respect to o

c does not change this
properties and gives a factor t

and possibly a factor

x . . . .
—?E———?:T—.Taklng the derivatives with respect to gp we get
o
a sum of terms
t 1
1 1 00 L =W —=+= % [0 -n_ —2(’ )1+By
fdtl---f - fdt te 2 2 -1 P(k) P(k) P(k) P(k)
0 E—l
0
(A.33)
a x2
X(t“ -—) u(x? t)exp[-—— — VvV, ®]
eo""tL 4 tg cess tL
with BE=§1' for Ye C-T(p and BE<0 for Ye € ﬁp and a >0.

One gets the function V 1 from V (r) putting 7p=:0 for yeGT(

and 7y = 6y for.y, C-T(mc So it depends on ?E for yp ¢ T(};nc
only and due to (A.26) it is analytic in tp- The function u
contains all factors occurring from the differentiations and

is analytic in x2 and t. and exponentiallv decreasine for
- \ Iod

t, >0, With
" L % L ;
=~ & Mp(k) b3 my - -
Mt k=1 =11 tk=1 , . ‘
Po1 't oyt NER A Y
the factor ¢
L - 1y [n -n -2 -a" )
ot 2 k=1 Pm) Pm@) P(n) P(n)
¢=1 L
gives positive powers of ty only. Further
L ~l+Bg BZ
I tl II t
=1 l:ypc Mo | L -3+58, L -4L fa
gives positive powers of tp only. With H tg gl tg Ity
~ 1 "f=
€,=P(ly)) and t, ....tL=tel vt we get (A 23) with
[]
N, >- L £ =1,2..,0 -1
e ol 2 ™ 000y 1
N, > & =0,..
¢ 23 f Ef. s L,

20

Now we argue that only integer powers of ty enter into the
integrand of (A.33) as well as (A.23). Therefore if some Ny

1 Sl

by

SO

we

not integer, that would mean that u contains the factor
. We obtain finally

Ng 20 for €=12 .l ~1
Ny >z] for £ =0, ,.. L
that (A.23) is proved.

With this the proof of (A.6) is nearly finished, because
have obtained with (A.23) the same representation for the

coefficient function ﬁﬂ(x,k) as in the scalar theory. Even

in

ref.’l” it was shown that (A.23) has for x 2,0 the desired

behaviour (A.6).
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