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1. INTRODUCTION

The problem of summing up divergent series is by no means
a new one and at present there is a long list of various methods
for the reconstruction of a function f(g) given its asymptotic
(alternating) expansion

fE@)~ 3 fg*,
k=0 k8 . (1.1)
where
f, ~ Kb 1
k ~ c(-a) k (“k)![1+0(ifﬂ' a>0 (1.2)
1/

(see for instance ).

qnfortunately, in all problems of interest the actual appli-
cation of the summation methods is hampered by the humbleness
of the information we have on f(g). That is, we seldom know the
exact values of more than just a few of the first coefficients
fy and we know even less about the analytic properties of f(g).

In what will follow we shall bypass the problem of uniqueness
when trvine to reconstrnet a function fle) feom ite acymptotio
expansion (1.1). Only alternating series will be considér;d.

One o? the most popular methods for summing up divergent
asymptotic series has been invented by Borel. Given the expan-
sion (1.1) we define the Borel transform B(z) of f(g) as

- k

f z
B(Z)- 2 k .
k=0 k! (1.3)

The series (1.3) may have a non-zero radius of convergence
§nd, when continued analytically along the positive real axis,
it may turn out that the integral

o~
[ e B(gt)dt
0 &9 (1.4)

converges. The method of Borel for summing up the divergent se-
ries (1.1) consists in prescribing to it the value of the integ-
ral (1.4) when the latter exists.

It is known that if f(g) 1is analytic in a sufficiently
large domain then the integral (1.4) will converge to the actual
value of f(g) at least for values of g close to the positive
real axis.

The formulae (1.3) and (1.4) can be modified:

k
= £
% (z)= 3 K : (1.5)
k=0 T(k+l+a-y)k”

together with

f@a=fe " "7 ¢ 2B apyat (1.6)
0 at
or
B ()= 3 ——kio. (1.7)

BV =0 Plkaps 1)
and correspondingly

fg=fe" t“BW (gt”)dt. (1.8)
0

More about Borel”s method and its applications can be found in
the monograph’/}/ or in the review papers’™.

The series which defines the Borel transform converges in
a circle of radius 1/a (the nearest to the origin sin%ularity
of B(z) is at z=-1/a for alternating series and at Z=— for non-
alternating series). The analytic continuation of B(z beyond
this circle can be performed by means of a conformal mapping
WaW(z) as a result of which the origin is mapped ii1to itself,
the interval [0,) on [0,1) and the interval (=e,- %) on the
unit circle |wl=1.Next ,B(wW) is expanded as a power series in w.
Sometimes it is not the function Blz(w)] which is expanded 1n
powers of w but rather A B(z), i.e.,

B(z);ﬁ(w)-z"gk B -w . (1.9)

The meaning of this trick is to adapt the large- z behaviour
of B(z) to the large-g asymptotics of f(g) when the latter
is a power-law.

Now let us consider the Borel transform as given by equation
(1.7). We can choose the values of u and v in such a way that
the series (1.7) will define an entire function B, (). Then,
from equation (1.8) it is obvious that if Bu’y(mz:mzp , then

the same power will dominate the large- g behaviour of f(g) ,
i.e., f(g)~ gP . A technique which enables us to determine the
B-Dw

power p from the information supplied by the perturbation theory
and from the large-order asymptotics (1.2) would essentially
simplify the problem of reconstructing f(g).

In the next paragraph we shall outline one such technique
and in the third paragraph we shall apply it to the asymptotic
expansions of the groundstate energy of the quantum-mechanical
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anharmonic oscillator 8X °, the critical exponents and the 8-
function of Gell-Mann-Low.

2. DESCRIPTION OF THE SUMMATION METHOD

Our objective is to sum up the asymptotic series (1.1) of
which we know the exact values of the first N+1 coefficients
fo . fq ,ennfy and the leading term of the large- k asympto-
tics of fy , i.e., eq. (1.2). We shall suppose that the quantity
we are interested in, that is the function f(g), satisfies the
asymptotic condition f(g) ~ constg? .

g-bm

Let us denote by z
the truncated series

maz the largest value of 2z up to which

N k
(N) sz
Bu'u(z)= S e 2.1)

k=0 T'(v k+p +1)

provides a good approximation to the 'true" Borel transform
B, (2). The parameters # and v are chosen in accordance with
eq. (1.2) to ensure the convergence of (1.7) everywhere in the
finite z-plane.

The actual value of z,,. will depend on the accuracy of ap-
proximation required as well as on N, v and p. In order to de-
termine Zp,y we shall have to estimate the first of the neg-

lected terms:

N+1
fN4—1z may .

I'N+v+p+1)
which means that we shall need an estimation of the value of f
This uncertainty can be avoided if fy is used instead of fy, 4
but this will produce a lower bound on =z, which is unsatis-
factory when N is relatively small (N=3,4,5...). Therefore we shall
use an extrapolation procedure based on eq. (1.2) with correc-
tion terms arranged to suit the last several of the exactly
known coefficients. In other words, we define

f
R o] e (2.2)
L+1
When L 1is sufficiently large, we have, because of (1.2),

RLaaL +ab . (2.3)

The approximation we seek is obtained by writing Ry, in the
form

& & €q (2.4)
RL=aL+ab+—E-+i?4u"+iﬁn qg<sN-1

N+1°

and next determining &, , £5...., &4 from the system of linear
equations we get when substituting the exact values of fy_g .,
fneqer wooIN - o

In some cases for which the number of calculated coefficients
is fairly large we have examined the reliability of the extrapo-
lation (2.4) and found the results satisfying.

Now, let us consider the function

N)
dB
v ® . D @2 (2.5)
[ dz B(N) (Z)

i, v N) (N
which is approximately constant ¥, , (2)= p(uv,N) whenever Buﬁkz)

satisfies a simple power-law Bu.l)' (2)~CzP and vice versa.

Since f(g) does not depend on g and v it is obvious that the
dependence of p on g and v will tend to vanish with N »o.
Unfortunately, in all cases of interest the number of calculated
coefficients N is rather small and we must pick up some '"good"
values for # and v. This is done in accordance with the princip-
le of minimal senmsitivity’/3/ which in our case ties the "good"
values py and vy to the minimum of the variation of p(u,v:N)
for a given N. Eventually the approximate Borel transform to be
inserted in (1.8) takes the form

(N)
B#J,(m, 28 Zmax

B, (@)= (2.6)

z p_ (N)
("_—'_-"") Bu.v (z max ) 222,y
\  “max

3. APPLICATION AND NUMERICAL RESULTS
A. The Anharmonic Oscillator

We shall consider the groundstate en$rg E(g) of the quantum-
mechanical anharmonic oscillator V(X)=Erx +gx% ., The perturba-
tion theory has been carried out to very high order 74/ and the

coefficients in the asymptotic series

- k
- 3.1
E@~ 2E. ¢ 3.1

are shown to satisfy
. -

Ey ~ == v&

T

K-+ 00

k 1 (3.2)
3 3 I'(kvs -2-).

On the other hand it is known that

E@® ~ constgl/a. (3.3
g+




Finally, the non-perturbative calculation of E(g) from the
Schroedinger equation can be performed numerically for any
value of 8. All this makes the quantum-mechanical anharmonic
oscillator an almost perfect testground for any new summation
technique. .

First we shall illustrate the reliability of our extrapola-
tion procedure (2.4). In Table | we have given the extrapolated
coefficients E, against the exact values E, and the ratios
E /Ek for extrapolations based on 4-6 terms of the series

(3.1).

~[N,M]r By adding new terms to B we
.qf widen the flat part of the
¥ —curve and thus increase

the confidence with which p
is determined. There are,
of course, limits to this
process and after some M the
addition of new extrapolated
coefficients does not result
in widening the plateau.

A convenient way of study-
Table | l ing ll’(m'M)(z) is this: in-

——

.. . stead of drawing ¥ as a con-
The extrapolated coefficients Ey in the case of the 8

= Z ¢ rve we plot it as
anharmonic oscillator. Ry=E,/E, , N is the number Fig. 1 pical behaviour 81:22112;:0‘-1’2':5 tzken at
;)ut;ttlze'z coeféiglzzr;;fzz(;n;ldezed as an input and in our _g——iz :l&’ as a function equidistant values of z bet-
ations : =edl.d, ete. of M. ween 0 and z_, ,and look at
p the density of their projec-
- |E, | R4 N=3 §- tions on the ordinate. A plateau in ¥ will cauge a peak in the
xl ~ o ~ density and similarly a peak in the density P(¥) at . ¥-p, is
IBkl R, lEk‘ R, 'Ekl Ry a signal for a plateau in ¥ of height »p.
: The width of the peak measures the error in determining p for
5 (2)2.419 (2)2.457 0.98 _ - - - the given values of ¢ and v. To this we must add the error due
6 (3)3.581 (3)3.750 0.95 (3)3.593 0.99 - _ to the var;ation of p(u,v:N) at (Iloal/g). 4
In fig.2a,b we have shown the actual curves corresponding to
. . . . 6 0. _L__L_
7 (4)6.398 (.4.)6‘930 0.92 (.4.)6 474 0.99 (4)6 “ % N=5 and M=10 atr u.=—0.2 and v_ =2.1.
8 (6)1.330 (6)1.495 U889 (0)1,.00) Ue¥( \D)Ll.D4c UeYYy ) v v
9 (7)3.145  (7)3.675  0.85 (7)3.276 0.96 (7)3.206 0.98 17,3.5 T P (¥
10 (8)8.335 (9)1.013  0.82 (8)8.846 0.94 (8)8.605 0.97 )
35] o [N] L
o
From Table | we see that the extrapolation procedure works 34 o 40
even for relatively small values of N and one is tempted to add R ° -
some of the extrapolated coefficients to the N we consider as o
an input. In other words we propose to investigate the functions 33 R ° o © i
‘PL*' ) rather than 'u ), the former being based on: o 6 o © e
= (N+M (N) NaM fo g " 32
Blo (=B @, 3t a2 (3.4) i 20r
k=N+1 T(pkap+ 1) .
The effect of addlng new terms to the ones we have had from 311 =
the start is shown in fig.] v _‘__I'_
The evidence of a section of the Y-curve which runs approxi- L 4 1 L ! ) 1

" n
mately parallel to the z-axis for z>z, is interpreted as 2 3 4 9 6 7 31 32 33 ﬁ'
indicative for a power—law behaviour of the Borel transform:

a b
~ (N+M)

B, @) ~zf, z>z, . (3.5)



Table 2

The anharmonic oscillator: power evaluation (a) and
summation-results (b); N is the number of input-~

coefficients
N ‘ v ‘N
Ko 0 p(“O’VO' ) Ap
4 0.1 2.3 0.298 0.01
5 -0.2 2.1 0.330 0.008
@ 6 0.1 2.3 0.318 0.007
a 7 -0.2 2.1 0.330 0.005
8 -0.4 2.0 0.337 0.005
9 -0.4 2.0 0.336 0.005
10 -0.3 2,0 0.333 0.005
the exact
g N=4 N=6 N=8 N=10 results
) 10 1.44 1.48 1.50 1.50 1.505
100 2,80 3,01 3.10 3411 3,131

J

1000 5.56 6.25 6.76 6.66 6.694

The values of plug.vg.N) and of the groundstate energy for
some values of & and for N=4,5,...10 are listed in Table 2a,b.
It is evident that even for N=4 and N=5 we can determine p
with good accuracy.

B. The Critical Exponents

The critical exponents characterize the behaviour of various
statistical quantities near the critical temperature 8 ,. They
can be expressed through the anomalous dimensions of the Green”s
functions in the ¢ 4-quantum field theory at the infrared-
stable point/7_ /

We shall concentrate our attention on the critical exponents

n , v and @ which control the behaviour of the correlation func-
tion I'(x) and the correlation length £ in the neighbourhood
of a phase transition ( D is the number of space-time dimensions):

> s b, 2~D~—
F(X)\ﬂ-omxl ! © =®c

(3.6)

p— wy
£ et (1rconst.t” 4., t=0-0,
t+ 0

One of the approaches to the problem of determining the criti-
cal exponents is the Wilson”s ¢ -expansion’%/, where 2¢=4-D,
The series generated by the ¢ -expansion technique are of the
type (1.1) with the parameters in the asymptotic formula (1.2)
as follows”~":

a=1, a=3/(@+8)

34+ L
+ 3 for g (3.7)
b= 4+ for A
2 v
5+-£21- for w

Here and in what will follow n comes from a global O(n)-sym-
metry of the Lagrangian.

The first several coefficients in the expansions in powers
of 2¢ for n ,1/v and o have been calculated for various values
of n 77/,

The results obtained with our summation technique are given
in Table 3.

Table 3

The critical exponents: power—evaluation and summation-
results for D=8 (2e=1); n is the number of components
of the field

.. results
critical
nent r “o o o
expone summation experiment/g/
0.00 1,65 2.65 0.0355 0.016 + 0,014
7 2  -0.05 1.65 2.66  0.0374 -
1 -0.05 1.75 1.32 0.6272 0.625 » 0,005
g 2 0.05  1.65  1l.42  0.6658 0,675 + 0,001
1 -0.05 1.65 0.83 0.7867 -
@ 2 0.00 1.65 0.81 0.7849 -

L

In the case D=2 exact results are available for 7 and v
from the Ising model: 7(2¢=2)=0.25 and v(2¢=2)=1.0. The re~
sults we have obtained are respectively 7=0.205and v»=0.91.



C. The B-Function of Gell-Mann and Low

We have used our method to determine the large- g behaviour
of the B-function oﬁaGell-Mann and Low in the model with in-
16 . . . .
4‘” g¢4 in four-dimensional space-time. The
first four coefficients of the perturbation theory expansion
of B(g) are well-known/ 11/ as are the values of the parameters
in (1.2).

Our result is p=1.86.

teraction fint=—

In conclusion, we would like to point out that the success or
failure of any summation method which is based on the Borel
transformation depends on how well it approximates the "true"
Borel-Transform not only near the origin but also along the whole
interval of integration. A better approximation of the Borel
transform for larger values of the argument leads, as we have
demonstrated in this paper, to a reconstruction of the objective

function which is fairly accurate even for very large values of g.

The authors gratefully acknowledge the marked interest and
constant attention to their work given by Dr. S.P.Kuleshov, Dr.
V.A.Matveev and Dr. A.N.Sissakian and the valuable remarks of
Dr. D.I.Kazakov.
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HmueB A.C., MurpomkuH B.K. E2-82-451
CyMMHpDOBaHHe AaCHMIITOTHUECKHX DANOB B HEKOTODHX 3amadax
KBAHTOBO} MEXaHHKH H TEOpHH IOJIA

llpegqnaraercs MeTold CYMMHPOBAHHA 3HAaKoONepeMeHHbIX aCHMITO-
THUYECKHX pAAOB, 6asHpyiomuiicad Ha MOOHGHUHPOBAaHHOM npeobpasoBa-
HUH Bopena, B KoTOpoM GopeneBCKHH o6pas B (z) ecTh uenas
¢yHKUMA Z. B kauecTBe npHMepOB HOaHH pPe3yabTAaTh quMHpOBaHHa
PALOB TEOPHH BO3MYIUEHHI OJ1 OCHOBHOIO YPOBHsa gX 3HEeprUH
AHrapMOHHUYECKOr'o OCHH/INIATOpPA, KPHTHUYECKHX HHOEKCOB M f -
¢yukuuH lenn-ManHa-Jloy B MOogesH TEODHH NOJA g@l%E.

Pabora BrmonHeHa B JlaGopaTopuH TeopeTHuecKoi ¢usuku OWUSAHU.

NpenpuHT 06bEAMHEHHOrO MHCTMTYTa AAEePHbX uccneaosaHui. fybHa 1982

Ilchev A.S., Mitrjushkin V.K, E2-82-451
Summation of Asymptotic Expansions in Certain
Problems from Quantum Mechanics and Quantum Field Theory

] We propose a method for summing up alternating asymptotic
series which is based on a modified Borel transformation with
a Borel transform B(z) which is an entire function of =z.

The method is designed to produce results when B(z) exhibits
a p9wer—1aw asymptotic for z large and positive. The method
is illustrated on the examples of the groundstate energy level

of the quantum-mechanical anharmonic oscillator gx? the cri-

tical exponents and the Gell-Mann-Low function in g (2%
field theory.

The investigation has been performed at the Laboratory

of Theoretical Physics, JINR.
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