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1. INTRODUCTION

Usually, when we are dealing with the relativistic two-
particle problem in the framework of QFT, it is convenient
to use the Bethe-Salpeter equation. However, in this case
there arise some difficulties because of the nondefinite
sign of the norm of the two-particle amplitude. The origin
of these difficulties is the existence in the theory of one
nonphysical parameter, relative-time or its conjugate, rela-
tive-energy. An extremely useful procedure for removing these
difficulties has been suggested by Logunov and Tavkhelidze’/
The main idea of Logunov-Tavkhelidze is the equality of times
of both particles in the centgr-of—mass system, i.e., the re-
lative time is put to be zero YV The theory developed on the
base of this idea as well as its manifestly covariant modifi~
cations’2-8/ constitute a powerful method for studying the
two-particle problem in QFT /787,

On the other hand, in the last years supersymmetric quan-—
tum field theories are intensively developed. An essential
characteristic of such theories is the unification of the
bosonic and fermionic fields in one multiplet. For this rea-
son some of divergences from the bosonic sector are cancelled
with the ones from the fermionic sector. On the whole super-
symmetric QFR*s have less divergences than the ordinary theo-
ries. There is a promise that in some case of extended super-
symmetric theories the divergences do not exist. As an example
we can point out the supersymmetric SU(4) Yang-Mills theory,
where there is no charge renormalization in the three-loop
approximation/?1%/, There is a hope that these renormaliza-
tions do not exist in any order of perturbation theory as
well. In that case the supersymmetric SU(4) Yang-Mills theory
is a good candidate for the theory which is able to describe
the quark confinement phenomen.

In the present report a possibility to construct supersym-—
metric three-dimensional two-particle equation of the quasi-
potential type is discussed. Here is considered only the Logu-
nov-Tavkhelidze approach, however, the same can be made also
in the case of light-cone variables’11/ and for the approach
in which the Markov-Yukawa condition is used 7#'5%/. 1In all
the cases, for simplicity, we restrict ourselves only to
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simple scalar supermultiplets, i.e., superfields describing
one scalar, one pseudo-scalar, and one spinor particles.

With the help of these equations the bound-states problem
in various supersymmetric theories including the supergravity,
supersymmetric electro-weak and Grand Unification theories can
be investigated. The quasipotential can be determined in a
perturbative way from quantum field theory. In the case,when
the Lagrangian contains supersymmetry breaking terms they are
included in the quasipotential.

2, SUPERSYMMETRIC BETHE-SALPETER EQUATION

Consider the supersymmetric four-point Green function

G(zl,""z4)-<0|T(0(z1)¢(z2)¢+(z8)¢+(z4)n0>, 2.1)

where z«(x,,0,), 6 is, in general, the four-component anti-
commuting ﬁaJorana spinor variable and @ are superfields., It

is supposed that G is invariant with respect to the super-
Poincare transformations. For the Green function G the follow-
ing supersymmetric Bethe-Salpeter equation/lg/can be written

. . 8 8 8 8
G(zl,zg.wl,wg)-co(zrzg,wl,wg)+ (a uld uad v,d Ve X
. (2.2)
"Do(zl'uI)Do(z2-“2)K(uluu2;vlvvg)G(vl:vgiwlowg)v

where D, (z,,z,) is the supersymmetric free-particle propagator

D, (2,2 5)m <O| T(®(z ) ®(z )| 0> (2.3)
and K is the invariant Bethe-Salpeter kernel.

As in the usual case, we can introduce a complete system

of intermediate states. Then G can be represented in the fol-
lowing form

Ga Z<OT(®(2)®(25))|0><n|T(®" (w )0" (w,)]0>

(2.4)
=5 ¥ (2,5,) %, (W,.%,),
where by
P,(21,25)=<0| T(®(z,)®(z ) n> (2.5)

the Bethe~Salpeter amplitude is denoted and x%>~yg (a,b=1,2)
is assumed. Then, substituting (2.4) into (2.2) we obtain
the corresponding homogeneous supersymmetric Bethe-Salpeter
equation for the two-particle amplitude

8 8 -1 8
[[47uyd u,Gy (2y,2550,,u,)¥ (g up)~[d “1"8“2"8"1"8"2
(2.6)

x Do(zl,u1)Do(z2,u2)K(u1,uz;v1,vz)!n(vl.v2 )

In eqs. (2.2) and (2.6) it is convenient to introduce the
collective coordinates. In the equal-mass case, we restrict
ourselves to

z..Jz_(zlug)"lz.(xzuﬁ,e;+ef) 2.7)
and
3 -zl—zg-(x‘} —xf’:. ,Oal- 05) (2.8)

are the super—center-of-mass coordinate and the super-relative
coordinates, respectively., It is easy to see that with respect
to the supertransformations the center-of-mass coordinate
(2.7) is transformed as a coordinate in the superspace but the
tranaformation law of the relative coordinate (2.8) is

zaealxy —xfe Loy (0 0% ) 0107, (2.9)
where ¢ is the anticommuting spinor parameter of the super-
transformations.

Transition to the momentum space, with respect to x, is
performed as in the ordinary case. Then the Bethe-Salpeter
eq. (2.2) can be written symbolically in the following way:

G=Gy + GyKG , (2.10)
v Vv

where Gy is the two-particle supersymmetric disconnected Green
function, and the integration over intermediate spinor vari-
ables 1is denoted by v ,the integration over intermediate mo-
mentum variables also being taken into account. The solution
of eq. (2.10) can be found by iteration, i.e.,

G=Gj + G, KG0+GKG\pv0+... (2.11)



In the supersymmetric case in (2.11) there are, in gene-
ral, less singular terms than in the ordinary case. However,
there also exist unphysical parameters: the relative coordi-
nate or ots conjugate relative energy.

3. SUPERSYMMETRIC TWO-TIME GREEN FUNCTION

To make the theory free from the difficulties caused by

the relative time (energy), we following Logunov-Tavkhelidze/3/
put the relative time in (2.1) and (2.5) to be zero in the
c.m,s., i.e.,
1 2
xy~xg =0. 3.1

However, from (2.8) it follows that this operation is not in-
variant with respect to the supertransformations. As is well
known, the equal-time operation also is not invariant with
respect to the Lorentz transformations; the operation (3.1)
can be made meaningful in a fixed reference frame, e.g., in
the c.m.s. In the supersymmetric case the operation (3.1) also
has sense in a fixed reference frame in the superspace. Such
"supercenter-of-mass" system is introduced by the conditions

p-o, e =0. (3-2)

in an arpitrary reference irame the equal—time conditlon
(3.1) can be written in the following invariant form

v -
Ly [x) =%+ 28y, (6,-0,)) =0, (3.3)

v .
where aJp) are matrix elements of the boost operator, for
which “
v
(L )V =:nV z-p—' 02=1.
P0 5
Here p is the total momentum of the two-particle system. Note
that the momentum p is invariant with respect to the super-
transformations.
Transition from the four-time Green functions to the two-
time ones and from the two-time B-S amplitudes to the one-time

wave function can be made in a covariant manner according to
the formulas

G . 2 -
G(zy,25W,,W,)= fdxgdyO 8!n“[x3—x5+ -12-5)’“(.91 -6,
1

2

(3.4)

x Gz 2 w,wo) 810" [y} —y2 4+ 57y, (01-02)1)

and

¥ 2 u 2 1=
¥ (2,,2,)=[dxgbin [x“‘—xu+-é—syu (01—02)]Wn(z1,z2). 3.5)
Going to the momentum space from (3.4) and (3.5) in the "su-
percenter-of-mass' system we have

GE.§.,4°.6,,0, 6,0,)=/dada,G(E, 1,0 6,.0,, 8,0, ) (3.6)
and

Consequently in the momentum space the "equal-time" operation
(3.1) is replaced by the integration over the relative energies,
as in the ordinary case/l

For the two-time Green function (3.4) or (3.6) we have
the following equation

G=Gy+ GyKG, (3.8)

which can be found from the B-S eq. (2.10) by the "equal-time"
operation (3.1). Then, as in the ordinary case, in the super-
symmetrical case the quasipotential is determined from the
equation

~ -1 1

(G171 a Gy 1 = =V, (3.9)

2ni

Here the inverse operator is determined by the following con-
dition

ra®q~a*eratoy GEAT:6,.0,:07.05)
(3.10)
a—l E [ 4 ’, ’, ’ (3) ’ F ’ F ’,

where srke) is the Grassmannian 8-function/134

4, QUASTPOTENTIAL EQUATION FOR SCALAR
CHIRAL SUPERMULTIPLETS

In this section we restrict our consideration to scalar
chiral superfields (see Appendix A). The four-particle Green
function for these fields can be represented in the following
form



+ 4,4+ + - - — W
G G ++,-+ G ++ 4+~ G++v :
-,+l+ - "= - ’ - - -
G + G =4+ G +,+ G +,
G . 4.1)
G+—.++ G+-'.—+ G+—;+-— G+—,——:
G—'—.++ G-'-'v—ﬂ- G-—'v+—= G ————
\ L
where
G“'B-Yns B

a -y 8
=<O|T(® (x,,60,)9(x,,6)0 * (25,090 "(x,,6 0> (4.2)
are the four-point Green functions (4.2) for the chiral scalar
superfields. Here the following notation is used:

o' (x,6) =0(x,0) and  $°(x,0)=0(x,8),

where -- means the complex conjugation. For the two-particle
wave function we have

-
b4 +(!,.xg;01; 62)

T (‘plgiai.UZ) . :

'(xloxg; 0 1:02 ) - ’ (4'3)
+— -

¥ o (x;3,5:60,.605)

RSETS 6,.6,)

where
!:" ‘8- <0|T(Oa'(x1.01)®ﬂ(x2,02)|p,1,1a>, (4.4)

Superfields ® contain components with spin O and 1/2 consequent-
ly the states|p.j,jy > have the spin

j=t0, fx172, (21, (4.5)

where { is the orbital momentum with respect to the center-of-
mass system. The transformation law of the states |P-L13 >

_:ith respect to the supertransformations are not discussed
ere.

6

From (3.9) it follows that the determination_of the quasi-
potential requires the inverse Green function Gal to be
found. The corresponding supersymmetric four-particle two-
time Green function according to (3.6) is given by

Go(E-il.-a's 01 o---104) -_LdQOdan(Evaq’, 01 --.0 4)- (4'6)

Here Gy has a matrix form (4.1) with matrix elements in the
free case

. Ba
%87 D% ®.0.6,,69D, (E.a’.0,.608 k@ —a7),  (4.7)

where Dy are free supersymmetric propagators given in Appen-
dix A. In the integral (4.6) there are divergent terms. To
avoid this difficulty, the Pauli-Villars regularization can
be used for the propagators (A.3). Then inserting (4.7) into
(4.6), after integration over q, and qj and removing the
regularization we have (in the c.m.s. frame)

go (?1001'03) @ QO(QS '02'0 )
it

=

aO(qu’a"-olo..04)- ,l
o soE (4.8)
+ gi(?s .01 '03)~OQO(Q3'%'04)

E+2w

(8) » »,
18 )(q-q ),

where

nsr(o-o) exp?2 098
So= (4.9)
- r - -
exp2 6960 ms (6-0)
and

91 -('.‘-l.). 93-(E+W-a)-

Qi'(E-'-’a)v Qs-(“wl"a)’ W--\/q2+'m2 :

and E is the center-of-mass energy.

It can be verified that the two-fermion component of Qo
coincides with the corresponding two-time Green function for
the free spin 1/2 particles’®1%/, This Green function can be
found from Gg (4.8) as the coefficient of the first power




in 0, ,0, ,04 and 6, . However, it is known’?'1%  that the

two-time fermionic Green function has no inverse in the whole
16—-component spinor space. The resolvent operator can be
found only in the 8-dimensional subspace only with equal sign
of energy of both the particles®. This subspace can be sepa-
rated using the projection operator A+ onto subspaces with
the positive and negative energy. Operators A: have a simple
form in the Foldy-Wouthuysen representation. The transition
to the F-W transformation is made by operators

m+w 0(1)-6

TG BV 1 y(l). q 1 '
Vaw(m+w) vewmiw) \ =oP.q mew
(4.10)
>(2),2
2 m+w - .
@Gy 1 T
Vewms+w)  VEW@+W) o®.3 msw.

For the matrix Y, We use the representation Yo = 0 1 The

superscripts 1,2 in (4.10) indicate the particle on which
T(@) acts.

In the supersymmetric case the wave function (4.3) is de-
composed in 04 and 0, .The corresponding coefficients, the com-
ponents of the superwave functions are denoted by ¥(a,b),
where (a,b=0,1,2). :

Then, the Foldy-Wouthuysen transformation in the supersym-
metric case is defined in the following way

e e 1) » ~
¥, @1, 0-1"@T® )% @.1,1),

= 1) ~
¥_(a.1,a)=T {a)¥(a,1,
p@1,a)=T (@) ¥(a,1.a) @i
¥, (d,a.1) =T q)¥(q,a.1)

¥ (9,2.8)=¥(3,2.8) (a,B=0.2).

The corresponding projection operators on the state with de-
finite sign of energy in the F.W. representation are given by

* . » 13
That is the case of Majorana spinors.

1.2
(1.2) (1,2) 1 t a-(1'2)
(AT )12 SNER? 1 0 %.12)
i = e N - w— .
2 2 i081.2) I(1.2)

which act on the fermionic components. For the Majorana spi-
nor ¥Y(x) we have A_¥=0 and consequently

AP w11 -0 %.13)

Then, without loss of invariance with respect to the spatial
reflections, the following projection operators

I o 0 o0
I, = , M= (4.14)

0 0 0 1
can be introduced, where 1 1is the 2x2-identity matrix. Apply-
ing these operators to the components of the wave function
(4.11) we have

5;1.2)-4 “(1.z)i'r(q'a'b) . (4.15)

Then the following super-wave functions can be formed

~+
(1) [ ¥ (x.0,x56)

WF , (4.16)
L ?—(xlgi.xz,az) J
and
¥ (x,,60,,%,,6,)
L A 1 %.17)
& - -
(x,0,. %.0,)
where components of the super-wave functions ¥~ are given
by (4.15). Corresponding two-time Green functions are given
by r 1 1
14++ 15+ =: ~+ 4+ ~ =t
Gor Gor Gor OF :
~1 _
GOF = = , (4.18)
16=+ 15—~ Tttt St~
. Gor Gor ) .G op Goy e
and ( + + ] [ - +
gA++ g At R R = -
2 Gor  “Gor Gor Gor
Gop = o - (4.19)
. Cor oOF | GoF OF J




Here 6:5”6 can be obtained from (4.8) by the substitution

- - -» F r‘"
exp26,46, -1 +49%8 (9,)8 (6,)
377k ] k (4.20)

r r ‘T
mé (Gj-Gk)+m8 (6;)+m8 (9, )+ W6, 06, .

where w=,/q24m2,i.e., the F.W. transformation is performed.

From the condition (3.10) we can determine the correspond~
ing to ﬁ(ﬁg) resolvents. The explicit form of G} is gi-
ven by 0 oF

A - r r r
Gty ra LimtsTo)8 0,45 0670, +5 0,80

r, .= 2w’ r r
+8°(09)8 (6,)]1+ 229,05 (5(8,)+8° (8,)] +m6, <6,

r r

x[6 (8, )+8 (0,)] -2W0,60,0,¢6 1,
1 8 19787274 (4.21)

tn-1 -+ {,w, T r 2

(Gop) " =115 (8,)+5 (04)1---2%[1:& 2(%:«2)1

r- r r 1 Ew -
x8 @18 0,008 8,)+8 (6,)]+ 0260y ~ (60,
x [8'(6,)+8' (0,)1+E(6,64)0,¢0, +

e
+2[m2+2(§-—‘—=w2)]025048F(§i)8r‘(03)l.

Remaining elements of 165} can be found from (4.21) by comp-
lex conjugation of variables 61 and 6g. The Green function

zGag can be obtained from IGB? by complex conjugation of
all variables 6.

Now we can write a supersymmetric quasipotential equation
of the Logunov-Tavkhelidze type for the two-particle super-
wave-functions. In the super-center-of-mass system it is given
by '

1,2)a~1

where integration over the intermediate momentum and spinor
variables 6 should be taken into account. Here the quasipo-
tential V can be determined in a perturbative way from quan-
tum field theory, as in the ordinary case. These potentials

’

10

~(1,8) =~ ~ (1,2) ’ :
Ve =V, ¥p 4.22)

have the matrix structure as the Green functions (4.18) and
(4.19), respectively. The explicit form of the potential de-
pends on the interaction Lagrangian. Because of a cumbersome
structure of the equations corresponding to (4.22) for the
components of the super-wave function they are not written
here. Note only that after eliminating the nondynamical com-
ponents ¥(2,a) and ¥(a,2) (a =0,1,2), the equations for scalar and
spin 1/2 particles coincide in form with the corresponding
quasipotential equations in the ordinary theories’/1:2/. We
also pointed out that when the supersymmetry breaking terms
are present in the Lagrangiam, these terms are added to the
quasipotential V(x,9) only. In the last case after elimi-
nating the nondynamical components of the wave-function we
have a suitable mass splitting between bosonic and fermionic
masses. As in the ordinary theories, the supersymmetric three-~
dimensional eqs. (4.22) can be used for investigation of the
bound states, as well as the scattering in various supersymmet-
ric theories.

APPENDIX A

The simplest scalar chiral superfields are determined by the

UG- LS

B;0" (x.6)= 0,
(A.1)

D,® (x,5)=0, (a,a=1,2).

Here D, , Dy are supercovariant derivatives (see ref. /1%,
For our purposes it is convenient to use the two-component spi-
nor formalism. In the nonsymmetric representations the fields
®* and 9~ are given by

&*(x,0) =L (A@-1B(®))+6 %4 (x) + L1060 (E@)+iG(x),
2 a 2
(A.2)
0-‘(x,5:)-(0+(x,0))",
where A and F are real scalar fields, B and G are real pseudo-

scalar fields and ¢ two-component spinor fields. The corres-
ponding supersymmetric propagators are given by:

11



DY (x, =%, .0,.6,)=<0| T(®*(xy,6,)8 (x,,6,))]0> =

=m5' (6,-0,) A, (%=X, m ) 4.3)

4=

D (xi-x2.01.5;)-.%exp(-2io 302)A4(x ~x,m ),

where Ac(z,m) is the Feynman propagator and 4= o ", aq is
the identity 2x2 matrix and 0j(i=1.2,3) are the Pauli matrices.
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3aittikoB P.I. E2-82-442
CynepcuMMeTpHUHBE KBAasHIOTEHUMAlIbHHE YpaBHeHHS

B paGoTe mpepgnaraerca cynepCHMMETDHUYHOE o6o6meHHe KBAa3H—-
noTeHuManbHOro noaxopa JlorysHosa-TaBxennnse. HexoamsM sBnAercs,
KaKk H B OOWYHOM Clyyae, CynepcUMMeTpuuHOe ypaBHeHHe Bere-Comn-~
nuTepa. llepexon oT WeTHpeXBPEeMeHHOH K OBYXBpPEMEHHOMN byHKUIHH
'puHa penaerca B GHKCHPOBAHHOM CHCTeMe B cynepnpocTpaHcTBe,
PesonbBeHTHRII omepaTop HaiileH C HCNOJIb30BaHHEM MaltOPaHOBCKOIO
XapaxTepa ABYXPEpMHOHHOM BOJIHOBOH GYHKUHH. 3amHcaHO CynepcHM-—
MeTpHYHO€ KBAaSMIIOTEHUHANNTbHOE YPaBHeHHe H o6CYyxOanTCA BO3IMOX—
Hhle HapymawimHe CYNnepcHMMETPHIO 4YJIeHh B KBas3HIOTeHUHale.

PaBora BumonHeHa B Jla6opaTOpHH TeopeTHUeCKON ¢u3Iuku OHAH,

NpenpuHt 06BPEAUHEHHOrO WHCTUTYTA AAEPHMX uccneposanui, fly6wa 1982

Zaikov R.P, E2-82-442
Supersymmetric Quasipotential Equations

In the paper supersymmetric generalization of the Logu-
nov-Tavkhelidze quasipotential approach is supposed. As in the
ordinary case, the starting point is the supersymmetric Bethe-
Salpeter equation. Corresponding transition from the four-
time Green function to the two-time one is done in the fixed
reference frame in the superspace. The resolvent operator is
find using the Majorana character of the two~fermionic wave-
function., The supersymmetric quasipotential equation is writter
down and the symmetry breaking terms are discussed.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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