

ОбивдИНЕнНы
 ПНСТИTYT
 яаерных
 "сследованй
 дубна

$3684 / 82$

$$
9 / 8-82
$$

E2-82-442

R.P.Zaikov

SUPERSYMMETRIC
 QUASIPOTENTIAL EQUATIONS

Submitted to the XXI International Conference on High Energy Physics (Paris, 1982)

1．INTRODUCTION

Usually，when we are dealing with the relativistic two－ particle problem in the framework of QFT，it is convenient to use the Bethe－Salpeter equation．However，in this case there arise some difficulties because of the nondefinite sign of the norm of the two－particle amplitude．The origin of these difficulties is the existence in the theory of one nonphysical parameter，relative－time or its conjugate，rela－ tive－energy．An extremely useful procedure for removing these difficulties has been suggested by Logunov and Tavkhelidze ${ }^{11}$ ． The main idea of Logunov－Tavkhelidze is the equality of times of both particles in the centerivof－mass system，i．e．，the re－ lative time is put to be zero ${ }^{1 /}$ ．The theory developed on the base of this idea as well as its manifestly covariant modifi－ cations ${ }^{\prime 2-6 /}$ constitute a powerful method for studying the two－particle problem in $\mathrm{QFT}^{17,8 \prime}$ ．

On the other hand，in the last years supersymmetric quan－ tum field theories are intensively developed．An essential characteristic of such theories is the unification of the bosonic and fermionic fields in one multiplet．For this rea－ son some of divergences from the bosonic sector are cancelled with the ones from the fermionic sector．On the whole super－ symmetric $\mathrm{QFR}^{\prime} \mathrm{s}$ have less divergences than the ordinary theo－ ries．There is a promise that in some case of extended super－ symmetric theories the divergences do not exist．As an example we can point out the supersymmetric $\operatorname{SU}(4)$ Yang－Mills theory， where there is no charge renormalization in the three－loop approximation ${ }^{\prime} .10 /$ ．There is a hope that these renormaliza－ tions do not exist in any order of perturbation theory as well．In that case the supersymetric $\operatorname{SU}(4)$ Yang－Mills theory is a good candidate for the theory which is able to describe the quark confinement phenomen．

In the present report a possibility to construct supersym－ metric three－dimensional two－particle equation of the quasi－ potential type is discussed．Here is considered only the Logu－ nov－Tavkhelidze approach，however，the same can be made also in the case of light－cone variables ${ }^{11 /}$ and for the approach in which the Markov－Yukawa condition is used $/ 2,5,8 /$ ．In all the cases，for simplicity，we restrict ourselves only to
simple scalar supermultiplets, i.e., superfields describing one scalar, one pseudo-scalar, and one spinor particles.

With the help of these equations the bound-states problem in various supersymmetric theories including the supergravity, supersymetric electro-weak and Grand Unification theories can be investigated. The quasipotential can be determined in a perturbative way from quantum field theory. In the case, when the Lagrangian contains supersymmetry breaking terms they are included in the quasipotential.

2. SUPERSYMMETRIC BETHE-SALPETER EQUATION

Consider the supersymmetric four-point Green function

$$
\begin{equation*}
\left.G\left(z_{1} \ldots, z_{4}\right)=<0\left|T\left(\Phi\left(z_{1}\right) \Phi\left(z_{2}\right) \Phi^{+}\left(z_{8}\right) \Phi^{+}\left(z_{4}\right)\right)\right| 0\right\rangle \tag{2.1}
\end{equation*}
$$

where $\varepsilon=\left(x_{\mu}, \theta_{a}\right), \theta$ is, in general, the four-component anticommuting Majorana spinor variable and Φ are superfields. It is supposed that G is invariant with respect to the superPoincare transformations. For the Green function \mathbf{G} the following supersymmetric Bethe-Salpeter equation ${ }^{\prime 18 /}$ can be written

$$
\begin{align*}
& G\left(z_{1}, z_{2} ; w_{1}, w_{2}\right)=G_{0}\left(z_{r} z_{2} ; w_{1}, w_{2}\right)+\int d^{8} u_{1} d^{8} u_{2} d^{8} v_{1} d^{8} v_{2} \times \tag{2.2}\\
& \times D_{0}\left(z_{1}, u_{1}\right) D_{0}\left(z_{2}, u_{2}\right) K\left(u_{1}, u_{2} ; v_{1}, v_{2}\right) G\left(v_{1}, v_{2} ; w_{1}, w_{2}\right),
\end{align*}
$$

where $D_{0}\left(r_{1}, z_{2}\right)$ is the supersymetric free-particle propagator

$$
\begin{equation*}
D_{0}\left(z_{1}, z_{2}\right)=\langle 0| T\left(\Phi\left(z_{1}\right) \Phi\left(z_{\mathcal{R}}\right)\right)|0\rangle \tag{2.3}
\end{equation*}
$$

and K is the invariant Bethe-Salpeter kernel.
As in the usual case, we can introduce a complete system of intermediate states. Then G can be represented in the following form

$$
\begin{align*}
G & =\sum_{n}\langle 0| T\left(\Phi\left(z_{1}\right) \Phi\left(z_{2}\right)\right)|n\rangle\langle n| T\left(\Phi^{+}\left(\Psi_{1}\right) \Phi^{+}\left(w_{R}\right)\right)|0\rangle \tag{2.4}\\
& =\sum_{n} \Psi_{n}\left(z_{1}, z_{2}\right) \Psi_{n}^{+}\left(w_{1}, w_{2}\right),
\end{align*}
$$

where by

$$
\begin{equation*}
\Phi_{n}\left(z_{1}, z_{2}\right)=\langle 0| T\left(\Phi\left(z_{1}\right) \Phi\left(z_{2}\right)\right)|n\rangle \tag{2.5}
\end{equation*}
$$

the Bethe-Salpeter amplitude is denoted and $x_{0}^{a}>y_{0}^{b}(a, b=1,2)$ is assumed. Then, substituting (2.4) into (2.2) we obtain the corresponding homogeneous supersymmetric Bethe-Salpeter equation for the two-particle amplitude

$$
\begin{align*}
& \int d^{8} u_{1} d^{8} u_{2} G_{0}^{-1}\left(z_{1}, z_{2} ; u_{1}, u_{2}\right) \Psi_{n}\left(u_{1}, u_{2}\right)=\int d^{8} u_{1} d^{8} u_{2} d^{8} v_{1} d^{8} v_{2} \tag{2.6}\\
& \times D_{0}\left(z_{1}, u_{1}\right) D_{0}\left(z_{2}, u_{2}\right) K\left(u_{1}, u_{2} ; v_{1}, v_{2}\right) \Psi_{n}\left(v_{1}, v_{2}\right) .
\end{align*}
$$

In eqs. (2.2) and (2.6) it is convenient to introduce the collective coordinates. In the equal-mass case, we restrict ourselves to

$$
\begin{equation*}
Z=\frac{1}{2}\left(z_{1}+z_{2}\right)=\frac{1}{2}\left(x_{\mu}^{1}+x_{\mu}^{2}, \theta_{a}^{1}+\theta_{a}^{2}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
z=z_{1}-z_{2}=\left(x_{\mu}^{1}-x_{\mu}^{2}, \quad \theta_{a}^{1}-\theta_{a}^{2}\right) \tag{2.8}
\end{equation*}
$$

are the super-center-of-mass coordinate and the super-relative coordinates, respectively. It is easy to see that with respect to the supertransformations the center-of-mass coordinate
(2.7) is transformed as a coordinate in the superspace but the tranaformation 1 aw of the relative coordinate (2.8) is

$$
\begin{equation*}
z \rightarrow z^{\prime}=\left\{x_{\mu}^{1}-x_{\mu}^{2}+\frac{1}{2} \in \gamma_{\mu}\left(\theta^{1}-\theta^{2}\right), \theta^{1}-\theta^{2}\right\} \tag{2.9}
\end{equation*}
$$

where f is the anticommuting spinor parameter of the supertransformations.

Transition to the momentum space, with respect to x, is performed as in the ordinary case. Then the Bethe-Salpeter eq. (2.2) can be written symbolically in the following way:

$$
\begin{equation*}
G=G_{0}+G_{0} K G, \tag{2.10}
\end{equation*}
$$

where G_{0} is the two-particle supersymmetric disconnected Green function, and the integration over intermediate spinor variables is denoted by v, the integration over intermediate momentum variables also being taken into account. The solution of eq. (2.10) can be found by iteration, i.e.,

$$
\begin{equation*}
G=G_{0}+G_{0} K G_{v}+G_{Q_{V}} K G_{v} K G_{0}+\cdots \tag{2.11}
\end{equation*}
$$

In the supersymmetric case in (2.11) there are, in general, less singular terms than in the ordinary case. However, there also exist unphysical parameters: the relative coordinate or ots conjugate relative energy.

3. SUPERSYMMETRIC TWO-TIME GREEN FUNCTION

To make the theory free from the difficulties caused by the relative time (energy), we following Logunov-Tavkhelidze ${ }^{\prime \prime}$, put the relative time in (2.1) and (2.5) to be zero in the c.m.s., i.e.,

$$
\begin{equation*}
x_{0}^{1}-x_{0}^{2}=0 . \tag{3.1}
\end{equation*}
$$

However, from (2.8) it follows that this operation is not invariant with respect to the supertransformations. As is well known, the equal-time operation also is not invariant with respect to the Lorentz transformations; the operation (3.1) can be made meaningful in a fixed reference frame, e.g., in the $c . m . s$. In the supersymmetric case the operation (3.1) also has sense in a fixed reference frame in the superspace. Such "supercenter-of-mass" system is introduced by the conditions

$$
\begin{equation*}
p=0, \quad \epsilon=0 . \tag{3.2}
\end{equation*}
$$

In an arioitrary reference irame tne equat-rime condition (3.1) can be written in the following invariant form

$$
\begin{equation*}
\left(L_{p}\right)_{0}^{\nu}\left[x_{\nu}^{1}-x_{\nu}^{2}+\frac{1}{2} \vec{\epsilon} y_{\nu}\left(\theta_{1}-\theta_{2}\right)\right]=0 \tag{3.3}
\end{equation*}
$$

where $\left(L_{p}\right)_{\mu}^{\nu}$ are matrix elements of the boost operator, for
which

$$
\left(L_{p}\right)_{0}^{\nu}=n^{\nu}=\frac{p^{\nu}}{\sqrt{p^{2}}}, \quad n^{2}=1
$$

Here p is the total momentum of the two-particle system. Note that the momentum p is invariant with respect to the supertransformations.

Transition from the four-time Green functions to the twotime ones and from the two-time $B-S$ amplitudes to the one-time wave function can be made in a covariant manner according to the formulas

$$
\begin{aligned}
& \tilde{G}\left(z_{1}, z_{2} ; w_{1}, w_{2}\right)=\int d x_{0}^{2} d y_{0}^{2} \delta\left\{n^{\mu}\left[x_{\mu}^{1}-x_{\mu}^{2}+-\frac{1}{2} \bar{\varepsilon}_{\mu}\left(\theta_{1}-\theta_{2}\right)\right]\right. \\
& \times G\left(z_{1}, z_{2} ; w_{1}, w_{2}\right) \delta\left\{n^{\mu}\left[y_{\mu}^{1}-y_{\mu}^{2}+\frac{1}{2} \bar{\varepsilon} y_{\mu}\left(\theta_{1}-\theta_{2}\right)\right]\right\}
\end{aligned}
$$

and

$$
\begin{equation*}
\tilde{\Psi}_{\mathrm{n}}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)=\int \mathrm{d} \mathrm{x}_{0}^{2} \delta\left\{\mathrm{n}^{\mu}\left[\mathrm{x}_{\mu}^{1}-\mathrm{x}_{\mu}^{2}+\frac{1}{2} \bar{\epsilon} y_{\mu}\left(\theta_{1}-\theta_{2}\right)\right]\right\} \Phi_{\mathrm{n}}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \tag{3.5}
\end{equation*}
$$

Going to the momentum space from (3.4) and (3.5) in the "su-percenter-of-mass" system we have

$$
\begin{equation*}
\tilde{\mathrm{G}}\left(\mathrm{E}, \overrightarrow{\mathrm{q}}, \vec{q}^{\prime}, \theta_{1}, \theta_{2}, \quad \theta_{1}, \theta_{2}\right)=\int \mathrm{dq}_{0} \mathrm{dq}_{0}^{\prime} \mathrm{G}\left(\mathrm{E}, \mathrm{q}, \mathrm{q}^{\prime}, \theta_{1}, \theta_{2}, \theta_{1}, \theta_{2}\right) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\Psi}_{E}\left(\overrightarrow{\mathrm{q}}, \theta_{1}, \theta_{2}\right)=\int \mathrm{dq}{ }_{0} \mathbf{T}\left(\mathrm{E}, \mathrm{q}, \theta_{1}, \theta_{2}\right) \tag{3.7}
\end{equation*}
$$

Consequently in the momentum space the "equal-time" operation (3.1) is replaced by the integration over the relative energies, as in the ordinary case ${ }^{11}$.

For the two-time Green function (3.4) or (3.6) we have the following equation

$$
\begin{equation*}
\stackrel{\rightharpoonup}{G}=\vec{G}_{0}+G_{0} K G, \tag{3.8}
\end{equation*}
$$

which can be found from the B-S eq. (2.10) by the "equal-time" operation (3.1). Then, as in the ordinary case, in the supersymmetrical case the quasipotential is determined from the equation

$$
\begin{equation*}
[\tilde{\mathrm{G}}]^{-1}=\left[\tilde{\mathrm{G}}_{0}\right]^{-1}-\frac{1}{2 \pi \mathrm{i}}: \mathrm{V} \tag{3.9}
\end{equation*}
$$

Here the inverse operator is determined by the following condition

$$
\begin{aligned}
& \int \mathrm{d}^{3} \mathrm{q}^{\prime \prime} \mathrm{d}^{4} \theta_{1}^{\prime \prime} \mathrm{d}^{4} \theta_{2}^{\prime \prime} \tilde{\mathrm{G}}\left(\mathrm{E}, \vec{q}^{\prime} \vec{q}^{\prime \prime} ; \theta_{1}, \theta_{2} ; \theta_{1}^{\prime \prime}, \theta_{2}^{\prime \prime}\right) \\
& \times \widetilde{\mathrm{G}}^{-1}\left(\mathrm{E}, \mathrm{q}^{\prime \prime}, q^{\prime}, \theta_{1}^{\prime \prime}, \theta_{2}^{\prime \prime}, \theta_{1}^{\prime}, \theta_{2}^{\prime}\right)=\delta^{(3)}\left(\mathrm{q}^{\prime}-q^{\prime}\right) \delta^{\Gamma}\left(\theta_{1}-\theta_{1}^{\prime}\right) \delta^{\Gamma}\left(\theta_{2}-\theta_{2}^{\prime}\right)
\end{aligned}
$$

where $\delta \Gamma_{(\theta)}$ is the Grassmannian δ-function ${ }^{13 /}$.

- 4. QUASIPOTENTIAL EQUATION FOR SCALAR

CHIRAL SUPERMULTIPLETS
In this section we restrict our consideration to scalar chiral superfields (see Appendix A). The four-particle Green function for these fields can be represented in the following form

where

$$
\begin{equation*}
\mathrm{G}^{a, \beta, y, \delta}=\langle 0| \mathrm{T}\left(\Phi^{a^{\prime}}\left(\mathrm{x}_{1}, \theta_{1}\right) \Phi^{\beta}\left(\mathrm{x}_{2}, \theta_{2}\right) \Phi^{-y}\left(\mathrm{x}_{3}, \theta_{3}\right) \Phi^{\delta}\left(\mathrm{x}_{4}, \theta_{4}\right)\right)|0\rangle \tag{4.2}
\end{equation*}
$$

are the four－point Green functions（4．2）for the chiral scalar superfields．Here the following notation is used：

$$
\Phi^{+}(x, \theta)=\Phi(x, \theta) \quad \text { and } \quad \bar{\Phi}^{-}(x, \theta)=\Phi(x, \bar{\theta})
$$

where－means the complex conjugation．For the two－particle wave function we have

$$
\Psi\left(x_{1}, x_{2} ; \theta_{1}, \theta_{2}\right)=\left[\begin{array}{c}
\Psi^{++}\left(x_{1}, x_{2} ; \theta_{1} ; \theta_{2}\right) \tag{4.3}\\
\bar{I}^{-+}\left(\mathrm{A}_{1}, x_{2}, \bar{\theta}_{1}, \theta_{2}\right) \\
\Psi^{+-}\left(x_{1}, x_{2} ; \theta_{1}, \bar{\theta}_{2}\right) \\
\Psi^{--}\left(x_{1}, x_{2} ; \bar{\theta}_{1}, \bar{\theta}_{2}\right)
\end{array}\right],
$$

where

$$
\begin{equation*}
\Psi_{p}^{a, \beta}=\langle 0| T\left(\Phi^{a}\left(x_{1}, \theta_{1}\right) \Phi^{\beta}\left(x_{2}, \theta_{R}\right)\left|p, j, J_{g}\right\rangle\right. \tag{4.4}
\end{equation*}
$$

Superfields Φ contain components with spin 0 and $1 / 2$ consequent－ ly the states $\left|p, j_{0} j_{3}\right\rangle$ have the spin

$$
\begin{equation*}
J=\ell, \quad \ell \pm 1 / 2, \quad \ell \pm 1 \tag{4.5}
\end{equation*}
$$

where ℓ is the orbital momentum with respect to the center－of－ mass system．The transformation law of the states｜p．J．Js＞ with respect to the supertransformations are not discussed here．

From（3．9）it follows that the determination of the quasi－ potential requires the inverse Green function $\tilde{\mathrm{G}}_{0}^{-1}$ to be found．The corresponding supersymmetric four－particle two－ time Green function according to（3．6）is given by

$$
\begin{equation*}
\tilde{\mathrm{G}}_{0}\left(\mathrm{E}, \overrightarrow{\mathrm{q}}, \overrightarrow{\mathrm{q}}^{\prime}, \theta_{1}, \ldots, \theta_{4}\right)=\int_{-\infty}^{\infty} \mathrm{dq}_{0} \mathrm{dq}{ }_{0}^{\prime} \mathrm{G}\left(\mathrm{E}, \mathrm{q}, \mathrm{q}^{\prime}, \theta_{1} \ldots \theta_{4}\right) . \tag{4.6}
\end{equation*}
$$

Here G_{0} has a matrix form（4．1）with matrix elements in the free case

$$
\begin{equation*}
\mathrm{G}_{0}^{a \beta, \gamma \delta}=\mathrm{D}_{0}^{a \gamma}\left(\mathrm{E}, \mathrm{q}, \theta_{1}, \theta_{3}\right) \mathrm{D}_{0}^{\beta \delta}\left(\mathrm{E}, \mathrm{q}^{\prime}, \theta_{2}, \theta_{4}\right) \delta^{(4)} \mathrm{k}\left(\mathrm{q}-\mathrm{q}^{\prime}\right) \tag{4.7}
\end{equation*}
$$

where D_{0} are free supersymmetric propagators given in Appen－ dix A．In the integral（4．6）there are divergent terms．To avoid this difficulty，the Pauli－Villars regularization can be used for the propagators（A．3）．Then inserting（4．7）into （4．6），after integration over q_{0} and q_{0}^{\prime} and removing the regularization we have（in the c．m．s．frame）

$$
\begin{align*}
& \left.+\frac{乌_{0}\left(\Phi_{8}, \theta_{1}, \theta_{3}\right) \otimes 乌_{0}\left(Q_{3}, \theta_{2}, \theta_{4}\right)}{E+2 w} \right\rvert\, \delta^{(8)}\left(\vec{q}-\vec{q}^{\prime}\right), \tag{4.8}
\end{align*}
$$

where

$$
\Im_{0}=\left(\begin{array}{cc}
m \delta^{\Gamma}(\theta-\theta) & \exp 2 \tag{4.9}\\
\theta \rho^{\varphi} \bar{\theta} \\
\exp 2 \bar{\theta} \tilde{\rho}_{\theta} & \mathrm{m} \delta(\bar{\theta}-\bar{\theta})
\end{array}\right)
$$

and

$$
\begin{aligned}
& \Phi_{1}=(w, \vec{q}), \quad \Phi_{3}(E+w, \vec{q}), \\
& Q_{1}=(E-w,-\vec{q}), \quad Q_{3}=(-w,-\vec{q}), \quad w=\sqrt{ } \overline{q^{2}+m^{2}}
\end{aligned}
$$

and E is the center－of－mass energy．
It can be verified that the two－fermion component of \mathcal{G}_{0} coincides with the corresponding two－time Green function for the free spin $1 / 2$ particles $/ 8.147$ ．This Green function can be found from $\overline{\mathrm{O}}_{0}$（4．8）as the coefficient of the first power
in $\theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4}. However, it is known ${ }^{\prime 2.14 /}$ that the two-time fermionic Green function has no inverse in the whole 16 -component spinor space. The resolvent operator can be found only in the 8 -dimensional subspace only with equal sign of energy of both the particles*. This subspace can be separated using the projection operator $\Lambda_{ \pm}$onto subspaces with the positive and negative energy. Operators $\Lambda_{ \pm}$have a simple form in the Foldy-Wouthuysen representation. The transition to the $\mathrm{F}-\mathrm{W}$ transformation is made by operators

$$
\begin{align*}
& \mathrm{T}^{(1)}(\overrightarrow{\mathrm{q}})=\frac{\mathrm{m}+\mathrm{w}+y^{(1)} \cdot \overrightarrow{\mathrm{q}}}{\sqrt{2 \mathrm{w}(\mathrm{~m}+\mathrm{w})}}=\frac{1}{\sqrt{2 w(m+w)}}\left(\begin{array}{cc}
\mathrm{m}+\mathrm{w} & \sigma^{(1)} \cdot \overrightarrow{\mathrm{q}} \\
-\vec{\sigma}^{(1)} \cdot \vec{q} & m+w
\end{array}\right) \\
& \mathrm{T}^{(2)}(\overrightarrow{\mathrm{q}})=\frac{\mathrm{m}+\mathrm{w}-y^{(2)} \cdot \mathrm{q}}{\sqrt{2 \mathrm{w}(\mathrm{~m}+w)}}=\frac{1}{\sqrt{\overrightarrow{2 w(m+w)}}}\left(\begin{array}{ll}
\mathrm{m}+\mathrm{w} & -\vec{\sigma}^{(2)} \cdot \overrightarrow{\mathrm{q}} \\
\vec{\sigma}^{(2)} \cdot \overrightarrow{\mathrm{q}} & \mathrm{~m}+\mathrm{w}
\end{array}\right) . \tag{4.10}
\end{align*}
$$

For the matrix y_{0} we use the representation $y_{0}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ The superscripts 1,2 in (4.10) indicate the particle on which $\mathrm{T}(\mathrm{q})$ acts.

In the supersymmetric case the wave function (4.3) is decomposed in θ_{1} and θ_{2}. The corresponding coefficients, the components of the superwave functions are denoted, by $\Psi(a, b)$, where $(a, b=0,1,2)$.

Then, the Foldy-Wouthuysen transformation in the supersymmetric case is defined in the following way

$$
\begin{align*}
& \tilde{\Psi}_{\mathrm{F}}(\overrightarrow{\mathrm{q}}, 1,1)=\mathrm{T}^{(1)}(\overrightarrow{\mathrm{q}}) \mathrm{T}^{(2)}(\mathrm{q}) \widetilde{\Psi}(\mathrm{q}, 1,1), \\
& \tilde{\Psi}_{\mathrm{F}}(\mathrm{q}, 1, a)=\mathrm{T}^{(1)}(\mathrm{q}) \tilde{\Psi}(\mathrm{q}, 1, a) \tag{4.11}\\
& \tilde{\Psi}_{\mathrm{F}}(\mathrm{q}, a, 1)=\mathrm{T}^{(2)}(\mathrm{q}) \tilde{\Psi}(\mathrm{q}, a, 1) \\
& \tilde{\Psi}_{\mathrm{F}}(\mathrm{q}, a, \beta)=\vec{\Psi}(\overrightarrow{\mathrm{q}}, a, \beta) \quad(a, \beta=0,2)
\end{align*}
$$

The corresponding projection operators on the state with definite sign of energy in the F.W. representation are given by

[^0]\[

\left(\Lambda_{ \pm}^{F}\right)^{1,2}=\frac{1^{(1,2)} \pm y_{0}^{(1,2)}}{2}=\frac{1}{2}\left[$$
\begin{array}{cc}
\mathrm{I}^{1,2} & \pm \sigma_{0}^{(1,2)} \tag{4.12}\\
\pm \sigma_{0}^{(1,2)} & \mathrm{I}^{(1,2)}
\end{array}
$$\right]
\]

which act on the fermionic components. For the Majorana spinor $\Psi(x)$ we have $\Lambda_{-} \Psi=0$ and consequently

$$
\begin{equation*}
\Lambda_{-:}^{(1,2)} \Psi(1,1)=0 \tag{4.13}
\end{equation*}
$$

Then, without loss of invariance with respect to the spatial reflections, the following projection operators

$$
\Pi_{1}=\left[\begin{array}{ll}
1 & 0 \tag{4.14}\\
0 & 0
\end{array}\right], \quad \Pi_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

can be introduced, where 1 is the 2×2-identity matrix. Applying these operators to the components of the wave function (4.11) we have

$$
\begin{equation*}
\tilde{\mathbf{Y}}_{F}^{(1,2)}=\Pi_{(1,2)} \tilde{\Psi}_{F}(\mathrm{q}, \mathrm{a}, \mathrm{~b}) \tag{4.15}
\end{equation*}
$$

Then the following super-wave functions can be formed

$$
\hat{\Psi}_{\mathbf{F}}^{(1)}=\left[\begin{array}{c}
\hat{\Psi}^{+}\left(\mathbf{x}_{1}, \theta_{1}, \mathbf{x}_{2}, \theta_{2}\right) \tag{4.16}\\
\hat{\overline{\mathbf{Y}}}^{-}\left(\mathbf{x}_{1} \bar{\theta}_{1}, \mathbf{x}_{2}, \theta_{2}\right)
\end{array}\right],
$$

and

$$
\hat{\boldsymbol{\varphi}}_{\mathrm{F}}^{(2)}=\left[\begin{array}{c}
\hat{\Psi}^{-:}\left(\mathbf{x}_{1}, \bar{\theta}_{1}, \mathbf{x}_{2}, \theta_{2}\right) \tag{4.17}\\
\hat{\Psi}^{+}\left(\mathbf{x}_{1} \bar{\theta}_{1}, \mathbf{x}_{2}, \bar{\theta}_{2}\right)
\end{array}\right]
$$

where components of the super-wave functions $\hat{\Psi}^{ \pm}$are given by (4.15). Corresponding two-time Green functions are given

$$
\begin{align*}
& \text { by } \\
& \hat{\mathrm{G}}_{0 \mathrm{~F}}^{1}=\left[\begin{array}{ll}
{ }^{1} \hat{\mathrm{G}}_{\mathrm{OF}}^{++} & { }^{1} \hat{\mathrm{G}}_{\mathrm{OF}}^{+-} \\
{ }^{1} \hat{\mathrm{G}}_{\mathrm{OF}}^{-+} & { }^{1} \hat{\mathrm{G}}_{\mathrm{OF}}^{--}
\end{array}\right]=\left[\begin{array}{ll}
\tilde{\mathrm{G}}_{\mathrm{OF}}^{++,++} & \tilde{\mathrm{G}}_{0 \mathrm{~F}}^{++-+} \\
\tilde{\mathrm{G}}_{\mathrm{OF}}^{-+,++} & \tilde{\mathrm{G}}_{0 \mathrm{~F}}^{-+,-+}
\end{array}\right] \text {, } \tag{4.18}\\
& \text { and } \\
& \hat{\mathrm{G}}_{\mathrm{OF}}^{2}=\left[\begin{array}{cc}
{ }^{2} \hat{\mathrm{G}}_{\mathrm{OF}}^{++} & 2 \hat{\mathrm{G}}_{\mathrm{OF}}^{+--} \\
{ }^{2} \hat{\mathrm{G}}_{\mathrm{OF}}^{-+} & { }^{2} \hat{\mathrm{G}}_{\mathrm{OF}}^{--;}
\end{array}\right]=\left[\begin{array}{ll}
\tilde{\mathrm{G}}_{\mathrm{OF}}^{+-,+-} & \tilde{\mathrm{G}}_{\mathrm{OF}}^{+---} \\
\tilde{\mathrm{G}}_{\mathrm{OF}}^{--,+-} & \tilde{\mathrm{G}}_{0 \mathrm{~F}}^{-----}
\end{array}\right] \tag{4.19}
\end{align*}
$$

Here $\overline{\mathrm{G}}_{\mathrm{OF}}^{a \beta y \delta}$ can be obtained from（4．8）by the substitution

$$
\begin{align*}
& \exp 2 \theta_{j} \vec{q} \bar{\theta}_{k}^{\prime} \rightarrow 1+4 \vec{q}^{2} \delta^{\Gamma}\left(\theta_{j}\right) \delta^{\Gamma}\left(\bar{\theta}_{k}\right) \tag{4.20}\\
& m \delta^{\Gamma}\left(\theta_{j}-\theta_{\mathbf{k}}\right) \rightarrow m \delta^{\Gamma}\left(\theta_{j}\right)+m \delta^{\Gamma}\left(\theta_{\mathbf{k}}\right)+w \theta_{j} \in \theta_{k}
\end{align*}
$$

where $w=\sqrt{q^{2}+m^{2}, i} . e .$, the $F . W$ ．transformation is performed． From the condition（3．10）we can determine the correspond－ ing to $\hat{G}_{0 F}^{(1,2)}$ resolvents．The explicit form of $\hat{G}_{0 F}^{1}$ is gi－ ven by

$$
\begin{aligned}
& \left.\left({ }^{1} \hat{\mathrm{G}}_{0 \mathrm{~F}}^{-1}\right)^{++}-\frac{1}{\pi} \right\rvert\, w\left[\delta{ }^{\Gamma}\left(\theta_{1}\right) \delta^{\Gamma}\left(\theta_{2}\right)+\delta^{\Gamma}\left(\theta_{1}\right) \delta^{\Gamma}\left(\theta_{4}\right)+\delta^{\Gamma}\left(\theta_{2}\right) \delta^{\Gamma}\left(\theta_{3}\right)\right. \\
& \left.+\delta^{\Gamma}\left(\theta_{9}\right) \delta^{\Gamma}\left(\theta_{4}\right)\right]+\frac{2 w^{2}}{m}: \theta_{1} \epsilon \theta_{3}\left[\delta^{\Gamma}\left(\theta_{2}\right)+\delta^{\Gamma}\left(\theta_{4}\right)\right]+m \theta_{2} \epsilon \theta_{4} \\
& \left.\left.\times\left[\delta^{\Gamma}\left(\theta_{1}\right)+\delta \Gamma^{\Gamma}\right)\right]-2 w \theta_{1} \in \theta_{3} \theta_{2} \in \theta_{4}^{-}\right] \text {, } \\
& \left({ }^{1} G_{0, F}^{-1}\right)^{-4}=\frac{1}{\pi}\left\{\frac{w}{2 m}\left[\delta^{\Gamma}\left(\theta_{2}\right)+\delta{ }_{\left(\theta_{4}\right)}\right)\right]-\frac{w}{2 m}\left[m^{2}+2\left(\frac{E^{2}}{4}:-w^{2}\right)\right] \\
& \times \delta^{\Gamma}\left(\bar{\theta}_{1}\right) \delta^{\Gamma}\left(\theta_{3}\right)\left[\delta^{\Gamma}\left(\theta_{2}\right)+\delta^{\Gamma}\left(\theta_{4}\right)\right]+\frac{1}{2} \theta_{2} \epsilon \theta_{4}-\frac{\mathrm{Ew}}{\mathrm{~m}}\left(\bar{\theta}_{1} \theta_{3}\right) \\
& \times\left[\delta^{\overline{1}}\left(\theta_{2}\right)+\delta^{I}\left(\theta_{4}\right)\right]+\mathrm{E}\left(\bar{\theta}_{1} \theta_{3}\right) \theta_{2} \in \theta_{4}+ \\
& \left.+2\left[m^{2}+2\left(\frac{E^{2}}{4}-w^{2}\right)\right] \theta_{2} \in \theta_{4} \delta^{\Gamma}\left(\bar{\theta}_{1}\right) \delta^{\Gamma}\left(\theta_{3}\right)\right] .
\end{aligned}
$$

Remaining elements of ${ }^{1} \hat{G}_{0 F}^{-1}$ can be found from（4．21）by comp－ lex conjugation of variables θ_{1} and θ_{3} ．The Green function ${ }^{2} \tilde{G}_{0 F}^{-1}$ can be obtained from ${ }^{1} \hat{G}_{0 F}^{-1}$ by complex conjugation of all variables θ ．

Now we can write a supersymmetric quasipotential equation of the Logunov－Tavkhelidze type for the two－particle super－ wave－functions．In the super－center－of－mass system it is given by

where integration over the intermediate momentum and spinor variables θ should be taken into account．Here the quasipo－ tential \hat{V} can be determined in a perturbative way from quan－ tum field theory，as in the ordinary case．These potentials
have the matrix structure as the Green functions（4．18）and （4．19），respectively．The explicit form of the potential de－ pends on the interaction Lagrangian．Because of a cumbersome structure of the equations corresponding to（4．22）for the components of the super－wave function they are not written here．Note only that after eliminating the nondynamical com－ ponents $Y(2, a)$ and $Y(a, 2)(a=0,1,2)$ ，the equations for scalar and spin $1 / 2$ particles coincide in form with the corresponding quasipotential equations in the ordinary theories $/ 1,2 /$ ．We also pointed out that when the supersymmetry breaking terms are present in the Lagrangian，these terms are added to the quasipotential $\hat{\mathbf{V}}(\mathrm{x}, \theta)$ only．In the last case after elimi－ nating the nondynamical components of the wave－function we have a suitable mass splitting between bosonic and fermionic masses．As in the ordinary theories，the supersymmetric three－ dimensional eqs．（4．22）can be used for investigation of the bound states，as well as the scattering in various supersymmet－ ric theories．

APPENDIX A

The simplest scalar chiral superfields are determined by the ごびひたえころ

$$
\begin{equation*}
\overline{\mathrm{D}}_{\mathbf{i}} \Phi^{+}(\mathbf{x}, \theta)=0 \tag{A.1}
\end{equation*}
$$

$$
\mathrm{D}_{\mathrm{a}} \Phi^{-}(\mathrm{x}, \vec{\theta})=0, \quad(\mathrm{a}, \dot{\mathrm{a}}=1,2)
$$

Here D_{2}, \bar{D}_{1} are supercovariant derivatives（see ref．${ }^{13 /}$ ）． For our purposes it is convenient to use the two－component spi－ nor formalism．In the nonsymmetric representations the fields Φ^{+}and Φ^{-}are given by

$$
\begin{aligned}
& \Phi^{+}(\mathbf{x}, \theta)=\frac{1}{2}(\mathbf{A}(\mathbf{x})-i \mathrm{~B}(\mathbf{x}))+\theta^{\mathrm{a}} \phi_{\mathrm{a}}(\mathbf{x})+\frac{1}{2} \theta \in \theta(\mathrm{E}(\mathbf{x})+\mathrm{i} \mathrm{G}(\mathbf{x})), \\
& \Phi^{-}(\mathbf{x}, \bar{\theta})=\left(\Phi^{+}(\mathbf{x}, \theta)\right)^{*},
\end{aligned}
$$

where A and F are real scalar fields，B and G are real pseudo－ scalar fields and ϕ two－component spinor fields．The corres－ ponding supersymmetric propagators are given by：

$$
\begin{align*}
\mathrm{D}^{++}\left(\mathrm{x}_{1}-\mathrm{x}_{2}, \theta_{1}, \theta_{2}\right) & \left.=<0\left|\mathrm{~T}\left(\Phi^{+}\left(\mathrm{x}_{1}, \theta_{1}\right) \Phi^{+}\left(\mathbf{x}_{2}, \theta_{2}\right)\right)\right| 0\right\rangle= \\
& =\mathrm{m} \delta^{\Gamma}\left(\theta_{1}-\theta_{2}\right) \Delta_{\mathrm{c}}\left(\mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{~m}\right) \tag{A.3}
\end{align*}
$$

$$
\mathrm{D}^{+-}\left(\mathrm{x}_{1}-\mathrm{x}_{2}, \theta_{1}, \bar{\theta}_{2}\right)=\frac{1}{2} \exp \left(-2 \mathrm{i} \theta \dot{\partial} \vec{\theta}_{2}\right) \Delta_{\mathrm{c}}\left(\mathrm{x}_{1}-\mathrm{x}, \mathrm{~m}\right),
$$

where $\Delta_{\mathrm{c}}(\mathrm{x}, \mathrm{m})$ is the Feynman propagator and $\underset{\sim}{\partial}=\sigma_{\mu} \partial^{\mu}, \sigma_{0} \quad$ is the identity $2 x 2$ matrix and $\sigma_{j}(j=1,2,3)$ are the Pauli matrices.

REFERENCES

1. Logunov A.A., Tavkhelidze A.N. Nuovo Cim., 1964, 29,p. 380.
2. Matveev V.A., Muradjan R.N., Tavkhelidze A.N. JINR, E2-3489, Dubna, 1967; P2-3900, Dubna, 1978.
3. Kadyshevsky V.G. Nucl. Phys. B, 1968, 6, p. 125.
4. Bogolubov P.N. Elementarnie chastizi i atomie yadra. 1973, vol.4, No.1, p. 244.
5. Faustov R.N. E1ementarnie chastizi i atomnie yadra, 1972, vol.3, p. 238.
6. Todorov I.T., Rizov V.A. Elementarnie chastizi i atomnie yadra, 1975, vol. 6, p. 669.
7. Garsevanishvili V.R. et al. Elementarnie chastizi i atomnie yadra, 1970, vol.1, p. 315.
४. Mrr-Kasimov R.M. et al. Elementarnie chastizi i atomnie yadra, 1981, vol.12, p.651.
8. Tarasov O.V., Vladimirov A.A. JINR, E2-80-433, Dubna, 1980.
9. Griseru M., Rocek M., Siegel W. Brandes preprint 1980; Caswell W.E., Zanon D. Nuc1.Phys., 1981, B182, p.125-143.
10. Garsevanishvili V.R. et al. Teoreticheskaya i Matematicheskaya Fizika, 1975, 23, p. 310.
11. Delbourgo R., Jarvis P. ICTP, 1974, ICTP/74/9, London, 1974.
12. Ogievetskii V.I., Miziutschesku L. Uspechi Fizicheskich Nauk, 1975, 117, p.637.
13. Desimirov G.M., Stoyanov D.Ts. Commun. FI c. ANEB 1965, XIII, p.149.

Received by Publishing Department on June 101982.

Зайков Р.П.

E2-82-442
Суперсимметричные квазипотенциальные уравнения
В работе предлагается суперсимметричное обобщение кваэипотенциального подхода Логунова-Тавхелидэе. Исходным является, как и в обычном случае, суперсимметричное уравнение Бете-Солпитера. Переход от четырехвременной к двухвременной функции Грина делается в фиксированной системе в суперпространстве. Резольвентньй оператор найден с использованием майорановского характера двухфермнонной волновой функции. Записано суперсимметричное квазипотенциальное уравнение и обсухдаются возмохные нарушаюџие суперсимметрию члены в квазипотенциале.

Работа выполнена в Лаборатории теоретической фиэики Оияи.

Препринт Объединенного института ядерных исследований. Дубна 1982

Zaikov R.P.

E2-82-442
Supersymmetric Quasipotential Equations
In the paper supersymetric generalization of the Logu-nov-Tavkhelidze quasipotential approach is supposed. As in the ordinary case, the starting point is the supersymmetric BetheSalpeter equation. Corresponding transition from the fourtime Green function to the two-time one is done in the fixed reference frame in the superspace. The resolvent operator is find using the Majorana character of the two-fermionic wavefunction. The supersymmetric quasipotential equation is writter down and the symmetry breaking terms are discussed.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

[^0]: *That is the case of Majorana spinors.

