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I . INTRODUCTION 

Usually, when we are dealing with the relativistic two­
particle problem in the framework of QFT, it is convenient 
to use the Bethe-Salpeter equation. However, in this case 
there arise some difficulties because of the nondefinite 
sign of the norm of the two-particle amplitude. The origin 
of these difficulties is the existence in the theory of one 
nonphysical parameter, relative-time or its conjugate, rela­
tive-energy. ·An extremely useful procedure for removing these 
difficulties has been suggested by Logunov and Tavkhelidze11( 
The main idea of Logunov-Tavkhelidze is the equality of times 
of both particles in the cent,r-of-mass system, i.e., there­
lative time is put to be zero 11. The theory developed on the 
base of this idea as well as its manifestly covariant modifi­
cations12-6/ constitute a powerful method for studying the 
two-particle problem in QFT 17 •81. 

On the other hand, in the last years supersymmetric quan­
tum field theories are intensively developed. An essential 
characteristic of such theories is the unification of thP 
bosonic and fermionic fields in one multiplet. For this rea­
son some of divergences from the bosonic sector are cancelled 
with the ones from the fermionic sector. On the whole super­
symmetric QFR's have less divergences than the ordinary theo­
ries. There is a promise that in some case of extended super­
symmetric theories the divergences do not exist. As an example 
we can point out the supersymmetric SU(4) Yang-Mills theory, 
where there is no charge renormalization in the three-loop 
approximation 19·1°1. There is a hope that these renormaliza­
tions do not exist in any order of perturbation theory as 
well. In that case the supersymmetric SU(4) Yang-Mills theory 
is a good candidate for the theory which is able to describe 
the quark confinement phenomen. 

In the present report a possibility to construct supersym­
metric three-dimensional two-particle equation of the quasi­
potential type is discussed. Here is considered only the Logu­
nov-Tavkhelidze approach, however, the same can be made also 
in the case of light-cone variables1111 and for the approach 
in which the Markov-Yukawa condition is used 12•6 •61• In all 
the cases, for simplicity, we restrict ourselves only to 
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simple scalar supermultiplets, i.e., superfields describing 
one scalar, one pseudo-scalar, and one spinor particles. 

With the help of these equations the bound-states problem 
in various supersymmetric theories including the supergravity, 
supersymmetric electro-weak and Grand Unification theories can 
be investigated. The quasipotential can be determined in a 
perturbative way from quantum field theory. In the case,when 
the Lagrangian contains supersymmetry breaking terms they are 
included in the quasipotential. 

2. SUPERSYMMETRIC BETHE-SALPETER EQUATION 

Consider the supersymmetric four-point Green function 

(2. I) 

where z.(x ,0"), 0 is, in general, the four-component anti­
commuting ~jorana spinor variable and ~ are superfields. It 
is supposed that G is invariant with respect to the super­
Poincare transformations. For the Green function G the follow­
ing supersymmetric Bethe-Salpeter equation1121 can be written 

(2.2) 

where D0 (z 1,z 2) is the supersymmetric free-particle propagator 

(2. 3) 

and K is the invariant Bethe-Salpeter kernel. 
As in the usual case, we can introduce a complete system 

of intermediate states. Then G can be represented in the fol­
lowing form 

(2.4) 

where by 

1fl n ( z 1• z 2) • < 0 I T ( Cl> ( z 1 ) Cl> ( z 2)) I n > (2.5) 

2 

• . d a b the Bethe-Salpeter amp11tude 1s denote and x 0 >y 0 (a,b=l,2) 
is assumed. Then, substituting (2.4) into (2.2) we obtain 
the corresponding homogeneous supersymmetric Bethe-Salpeter 
equation for the two-particle amplitude 

8 8 -1 8 8 8 8 
( d u 1d u2G 0 (z1'z 2 ;u 1 ,u 2 )Yn(u 1 ,u~- (d u1d u 2d-v 1d v 2 

(2. 6) 

In eqs. (2.2) and (2.6) it is convenient to introduce the 
collective coordinates. In the equal-mass case, we restrict 
ourselves to 

z • ..l..(z1+Z2)=!.(X1+X2 01+02) 2 2 1.1 1.1 • a a (2. 7) 

and 

1 2 1 2 
z .z 1-z 2 .(xll -x~.~ • . Oa- Oa) (2 .8) 

are the super-center-of-mass coordinate and the super-relative 
coordinates, respectively. It is easy to see that with respect 
to the supertransformations the center-of-mass coordinate 
(2.7) is transformed as a coordinate in the superspace but the 
~TAnQfnrmA~inn 1Aw nf ~hP TPlativP ~oordinate (2.8) is 

z-.z'-lx1-X2+.!..£y (01-02) 01_.021 
1.1 j.l 2 j.l • • 

(2. 9) 

where £ is the anticommuting spinor parameter of the super­
transformations. 

Transition to the momentum space, with respect to x, is 
performed as in the ordinary case. Then the Bethe-Salpeter 
eq. (2.2) can be written symbolically in the following way: 

(2. 10) 

where 0 0 is the two-particle supersymmetric disconnected Green 
function, and the integration over intermediate spinor vari­
ables is denoted by v , the intE·gration over intermediate mo­
mentum variables also being taken into account. The solution 
of eq. (2.10) can be found by iteration, i.e., 

(2. II) 
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In the supersymmetric case in (2.11) there are, in gene­
ral, less singular terms than in the ordinary case. However, 
there also exist unphysical parameters: the relative coordi­
nate or ots conjugate relative energy. 

~. SUPERSYMMETRIC TWO-TIME GREEN FUNCTION 

To make the theory free from the difficulties caused by 
the relative time (energy), we following Logunov-Tavkhelidze1!1 

put the relative time in (2.1) and (2.5) to be zero in the 
c.m.s., i.e., 

(3. I) 

However, from (2.8) it follows that this operation is not in­
variant with respect to the supertransformations. As is well 
known, the equal-time operation also is not invariant with 
respect to the Lorentz transformations; the operation (3.1) 
can be made meaningful in a fixed reference frame, e.g., in 
the c.m.s. In the supersymmetric case the operation (3.1) also 
has sense in a fixed reference frame in the superspace. Such 
"supercenter-of-mass" system is introduced by the conditions 

p .. o. c .. o. (3. 2) 

- -Ln an aro1crary rererence rrame tne equa!-t1me cona1t1on 
(3.1) can be written in the following invariant form 

II 1 2 1-
(Lp)O [xii-XII+2cyll(81-82))==0, (3.3) 

II 
where (L P ) are matrix elements of the boost operator, for 
which ll 

(L )II = 
p 0 v'P 2' 

Here p is the total momentum of the two-particle system. Note 
that the momentum p is invariant with respect to the super­
transformations. 

Transition from the four-time Green functions to the two­
time ones and from the two-time B-S amplitudes to the one-time 
wave function can be made in a covariant manner according to 
the formulas 

(3 .4) 

4 

and 

(3.5) 

Going to the momentum space from (3.4) and (3.5) in the "su­
percenter-of-mass" system we have 

O(E ,q ,q' .e1• 8 2• e 1,e2 ) - fdq0dq~G(E ,q,q', 81.82, e1,e2 

and 

(3.6) 

(3. 7) 

Consequently in the momentum space the "equal-time" operation 
(3.1) is replaced by the integration over the relative energies, 
as in the ordinary casef1< 

For the two-time Green function (3.4) or (3.6) we have 
the following equation 

(3.8) 

which can be found from the B-S eq. (2.10) by the "equal-time" 
operation (3.1). Then, as in the ordinary case, in the super­
symmetrical case the quasipotential is determined from the 
equation 

- -1 - -1 1 
[ G 1, .. [ G0 1 - -V. 

2rri 
(3.9) 

Here the inverse operator is determined by the following con­
dition 

(3.10) 
(]-1 (E , , n" n" n' ') .,(3)( ')"r( , r 

X ,q ,q '"1 •" 2 ' 0 1 •82 •u q-q 0 8 1-81 )l) (82-82 ), 
r where l) (9) is the Grassmannian l> -function1131

• 

4. QUASIPOTENTIAL EQUATION FOR SCALAR 
CHIRAL SUPERMULTIPLETS 

In this section we restrict our consideration to scalar 
chiral superfields (see Appendix A). The four-particle Green 
function for these fields can be represented in the following 
form 

5 



G++.++ G ++.-+ 

G -+.++ G -+.-+ 
(4. I) 

G. 

G __ , __ , 

where 
a,~,y,lJ a· f3 -y 8 

G -<Ol T(~ (x 1,0 1 )~ (x2,0 2 )~ (x8,(J 8 )~ (x4,(J 
4

))10> (4.2) 

are the four-point Green functions (4.2) for the chiral scalar 
superfields. Here the following notation is used: 

where -· means the complex conjugation. For the two-particle 
wave function we have 

(4.3) 

+-' 
'I' (xl'x2; 81 .82) 

where 

a .• ~ " ~ 
9P • <O!T('CI (x 1 .8 1 )~ (x 2 ,02 )!p,J,J 8 >. (4.4) 

Superfields ~ contain components with spin 0 and 1/2 consequent­
ly the states I p, J , J 8 > have the spin 

J- t. t± 1/2, f±l, (4.5) 

where t is the orbital momentum with respect to the center-of­
~ss system. The transformation law of the states I p,J,Ja > 
w1th respect to the supertransformations are not discussed 
here. 

6 

) 

From (3.9) it follows that the determination_of the quasi­
potential requires the inverse Green function G01 to be 
found. The corresponding supersymmetric four-particle two­
time Green function according to (3.6) is given by 

Go (E .ci. q'; (Jt , •••• (J 4)- r dqodq (,G(E. q. q'; (J 1 ••• (J J· (4.6) 
-eo 

Here G
0 

has a matrix form (4.1) with matrix elements in the 
free case 

a~,y8 "'Y f3lJ , (4) 
Go -Do (E,q,(Jt,(Jg)Do (E,q '(JI,(J4)8 k(q -q'), (4. 7) 

where D0 are free supersymmetric propagators given in Appen­
dix A. In the integral (4.6) there are divergent terms. To 
avoid this difficulty, the Pauli-Villars regularization can 
be used for the propagators (A.3). Then inserting (4.7) into 
(4. 6), after integration over CJo and q 0 and removing the 
regularization we have (in the c.m.s. frame) 

o
0
(E,q,q',8

1 
... o

4
>·-,f §o <!l't· 0 t· 8s> ~ §o<Qs,02,(J4) + 

Ew E-2w 

+ §o <fa .01 .Os>~§o<Qs·Os!·04) 
E+2W 

where 

r 
exp2 (J Pi' 

(4.8) 

(

mB (8-e> 

§o· .. ) (4. 9) 

np2 (j'Pe r -· _, ma ((J-8) 

and 

and E is the center-of-mass energy. 
It can be verified that the two-fermion component of § 0 

coincides with the correspondin~ two-time Green function for 
the free spiE 1/2 particles 12•14 • This Green function can be 
found from Oo (4.8) as the coefficient of the first power 
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. 0 (} 0 d a H . . k 12 ' 141 h h ~n 1 , 2 , 3 an u 4 • owever, ~ t ~s nown t at t e 
two-time fermionic Green function has no inverse in the whole 
16-component spinor space. The resolvent operator can be 
found only in the 8-dimensional subspace only with equal sign 
of energy of both the particles*. This subspace can be sepa­
rated using the projection operator A± onto subspaces with 
the positive and negative energy. Operators A± have a simple 
form in the Foldy-Wouthuysen representation. The transition 
to the F-W transformation is made by operators 

( 

m+W uP>.q ) (1) ... 
T (1) (ih '"' m + w + Y __!!.._ = __ ....,1 __ _ 

--- ' ->(1) ... y2w(m+W) y2w(m+W) -u .q m+w 
(4 .10) 

T(2) (q) = .~.;!:.!.::2'---=.!L •= ---1.--. 
y2w(m+W) v2w~;) (;(2).q m+W . 

(2) ( m +W _;<2>,-q ) 

For the matrix y 0 we use the representation y 
0 

= ( ~ ~\The 
superscripts 1,2 in (4.10) indicate the particle on lhich 
T(q) acts. 

In the supersymmetric case the wave function (4.3) is de­
composed in 01 and 02 .The corresponding coefficients, the com­
ponents of the superwave functions are denoted.by 'f(a,b), 
where (a, b =0,1,2). 

Then, the Foldy-Wouthuysen transformation in the supersym­
metric case is defined in the following way 

tPF (q,1,1)-T0 >(q)T( 2)(q)Y(q,t,1), 

- (1) -
'fF(q,l,a)-T (q)'l'(q,1,a) 

(4. II) 

- (2) -
'fF(q,a,l) .. T (q)'P(q,a,1) 

WF(Q,a.~)=~(q,a.,$) (a,~ .. Q,2). 

The corresponding projection operators on the state with de­
finite sign of energy in the F.W. representation are given by 

* That is the case of Majorana spinors. 
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I (1.2~ (1.2) - l1 0 l I 1.2 + !'·" ] 
(A~ )1.2 .. Yg 1 

2 
...... :-·2: 

+ ( 1.2) I ( 1,2) 
(4. 12) 

_ao 

which act on the fermionic components. For the Majorana spi­
nor 'P( x) we have A_~=O and consequently 

(1,1) 
A_, '1'(1,1) .o. (4. 13) 

Then, without loss of invariance with respect to the spatial 
reflections, the following projection operators 

n, [: :]· "··[~ ~] (4.14) 

can be introduced, where I is the 2x2-identity matrix. Apply­
ing these operators to the components of the wave function 
(4. II) we have 

- (1,2) -
y F • ll{1,2)'f F (q,a,b) . (4. 15) 

Then the following super-wave functions can be formed 

r 
A+ 

1 
A(l) 'I' (x 1' 0 1 ,x 2' 02 ) 

IJIF = A-
l y 

tX11Jl' x2• 02) J 

(4.16) 

and 

A(2) [ ·_-<·,.:; ·····:) 
] y F •· 

Y(xt 0 t• ~.02) 
(4.17) 

A+ 
where components of the super-wave functions 'P- are given 
by (4.15). Corresponding two-time Green functions are given 

by [~a~; 1Gtir' I a;;·++ a~~-+ ] 
o1 

. - (4.18) 

OF- 1 A-+ 1 A--· - --+,++ (j-+.-+ 

and [ .~:: 2 ~:~ ] [G~:-.+-· ::-.--1 0 oF 0 oF G OF GoF 
A2 
GF. • (4.19) 0 2,.. -+ 2" -- - --.+- - --,--· 

0 oF 0 oF 0 oF 0 oF 
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Here (jaf3y8 
OF can be obtained from (4.8) by the substitution 

... -· ... 2 r r-exp201 q(;lk ... 1 +4Q 8 (Oi )8 (Ok) 
(4.20) 

r r · r 
m8 (Oi-0 11) ... m8 (Oj)+m8 (Ok)+W0i£0k, 

where w • .Jq2+m2, i.e., the F.W. transformation is performed. 
From the condition (3.10) we can determine the correspond­

ing to 0~1.;,2 > resolvents. The explicit form of G~F is gi­
ven by 

( 
1a~; )++ • ~ hr[8r(0

1 
)8r(O 

2
)+8r(O 

1
) 8r(O 

4
) +8r(O 

2
)8r(O 

3
) 

r r 2w 2 r r 
+8 (9 3)8 (9 4)]+-·01 £0 3 [8 (0 2 )+8 (0 4 )].+mO £0 

m 2 4 

(4. 21) 

- ~ 

1 1 -
x [8 (9 2)+8 (0 4)l+E(01 03)02£0

4 
+ 

2 

+ 2 lm2+2<~--·w2>lo2£o4tF(et )8r<o3 >I. 

Remaining element~ of 1 a0J can be found from (4.21) by comp­
lex conjugation of variables 01 and 03 . The Green function 
2 GoJ can be obtained from 1 or;; by complex conjugation of 
all variables 9 • 

Now we can write a supersymmetric quasipotential equation 
of the Logunov-Tavkhelidze type for the two-particle super­
wave-functions. In the super-center-of-mass system it is ~iven 
by 

(1.2>a-1w0.2> v •<1.2) (4.22). 
~F '" (1,2) F ' 

h . t t' ~h . d' . w ere 1n egra 1on over t e 1nterme 1ate momentum and sp1nor 
variable~ 0 should be taken into account. Here the quasipo­
tential V can be determined in a perturbative way from quan­
tum field theory, as in the ordinary case. These potentials 

10 

have the matrix structure as the Green functions (4.18) and 
(4.19), respectively. The explicit form of the potential de­
pends on the interaction Lagrangian. Because of a cumbersome 
structure of the equations corresponding to (4.22) for the 
components of the super-wave function they are not written 
here. Note only that after eliminating the nondynamical com­
ponents 9(2,a) and 9(a,2) (a -0,1,2), the equations for scalar and 
spin 1/2 particles coincide in form with the corresponding 
quasipotential equations in the ordinary theories /1,21. We 
also pointed out that when the supersymmetry breaking terms 
are present in ~he Lagrangiaa, these terms are added to the 
quasipotential V(x, 9) only. In the last case after elimi­
nating the nondynamical components of the wave-function we 
have a suitable mass splitting between bosonic and fermionic 
masses. As in the ordinary theories, the supersymmetric three­
dimensional eqs. (4.22) can be used for investigation of the 
bound states, as well as the scattering in various supersymmet­
ric theories. 

APPENDIX A 

The simplest scalar chiral superfields are determined by the 
-----~.: __ _ 
-"'.U.U. ...... - ... ~ 

(A. 1) 
• 

(a, a -1. 2). 

0 0- . d . . ( f /13/) Here a , 1 are supercovar1ant er1vat1ves see re • • 
For our purposes it is convenient to use the two-component spi­
nor formalism. In the nonsymmetric representations the fields 
e~~+ and 'ell-· are given by 

ell +(x, 9) • .J..(A(x)- i B(x)) +0 a.¢ (x) + .!.9£ 9 (E(x)+i G(x)), 
2 a. 2 

(A.2) 

- _, + 
'ell (x, 0 ) • (ell (x, 9)) *, 

where A and F are real scalar fields, 8 and G are real pseudo­
scalar fields and ¢two-component spinor fields. The corres­
ponding supersymmetric propagators are given by: 
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++ I + + I D (x1 -x
2

.e1 .e2 )-<0 T(«<l (x,.e 1 )cll(x 2.e2 )) O> ... 

r 
-m8 (8 1 -e2 )~c (x 1-x2 ,m) (A.3) 

+-' _, 1 ... 
D (x 1 -x2 ,el'e 2 )- 2 exp(-2ie z8 2 )~c(xcx 2 ,m ), 

where ~c(X,m) is the Feynman propagator and ~"' a al-L , ao is 
the identity 2x2 matrix and a j (j = 1,2, 3) are the Pa~li matrices. 
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3attxos P.n. E2-82-442 
CynepcHMMeTpHqffiWe KBa3unoTeHQHanbffiWe ypaBHeHHn 

B pa6oTe npegnaraeTcn cynepcHMMeTpnqHoe o6o6~eHne xsasu­
noTeHQHanbHoro DOAXOAa noryHOBa-TaBXenHA3e. HCXOAHWM RBnReTCR, 
KaK H B o6~HoM cnyqae, cynepcHMMeTpuqnoe ypaBHeHue BeTe-Con­
nHTepa. llepeXOA OT qeT~eXBpeMeHHOH K AByxBpeMeHHOH ~YHKQHH 
rpuHa AenaeTCR B ~HKCHpOBaHHOH CHCTeMe B cynepnpOCTpaHCTBe. 
Pe30nbBeHTHWH onepaTop HaitAeH C HCDOnb30BaHHeM Mai\:opaHOBCKoro 
XapaKTepa AByx~epMHOHHOi\: BOnHOBOH ~YHKQHH. 3anHCaHO cynepcHM­
MeTpuqHoe KBa3HOOTeHQHanbHOe ypaBHeHHe H o6Cy.KA~TCR B03MO·­
ffiWe Hapym~e cynepCHMMeTp~ qneffiW B KBa3HOOTeHQHane. 

PaOoTa B~nonHeHa B naoopaTOpHH TeopeTnqecxoa ~H3HKH OHHH. 

Zaikov R.P. E2-82-442 
Supersymmetric Quasipotential Equations 

In the paper supersymmetric generalization of the Logu~ 
nov-Tavkhelidze quasipotential approach is supposed. As in the 
ordinary case, the starting point is the supersymmetric Bethe­
Salpeter equation. Corresponding transition from the four­
time Green function to the two-time one is done in the fixed 
reference frame in the superspace. The resolvent operator is 
find using the Majorana character of the two-fermionic wave­
function. The supersymmetric quasipotential equation is writte 
down and the symmetry breaking terms are discussed. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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