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INTRODUCTION

For some two—dimensional field-theoretical models (comp-
lete~integrable models) there exists an infinite set of in-
tegrals of motion. In the relativistic invariant case these
are, for instance, the sin~Gordon model, Thirring model, and
chiral models. For the chiral models there exist local and
nonlocal conserved quantities. In papers/1:2/ it was shown
that the nonlocal currents for the chiral models have the
Noether character and the correspondin% hidden symmetry group
was found in ref.”3/ (see also refs.”*®/ ). In paper/e it
is shown that the higher local conserved energy-momentum ten-
sors for the conformal invariant two-dimensional models and
the higher conserved charges for models invariant with res-
pect to global gauge and yg—gauge transformations also have
the Noether character.

In the first part of the present report the group structure
of hidden symmetry transformations giving the local conserved
charges for the massless SU(N) Thirring model is investigated.
It is shown that among the on-shell hidden symmetry transfor-
mations there exists a class of transformations which change
tiie Lagrangian by Lie full derivactive for arbitrary rfieids.
There are found also generators of the hidden symmetry trans-
formations which form an infinite-dimensional Lie algebra of
the Kac-Moody type /7'8:3/ ‘

In the second part the group structure of hidden symmetry
transformations for the supersymmetric chiral models is con-
sidered. This problem was solved in ref. %/ only for the on-
shell case, and there was not given the explicit form of the
corresponding generator functions. We show that the off-shell
generators can be constructed from the on-shell ones found
in ref/19/ The method of deriving these generators as soluti-
ons of a system of differential equations, allows us to find
an additional infinite series of generators/zAO/. It is shown
that all these series are equivalent and the corresponding
nonlocal equivalence operators are obtained. Such equivalent
series of transformations and the corresponding conserved cur-—
rents exist also in the case of ordinary chiral models. It is
shown that the off-shell transformations survive after the
quantization, like the on-shell transformations’/!!12/, and
consequently, we are able to use them for deriving also the
nonlocal Ward identity 713/




I. SU(N) THIRRING MODEL

1. Hidden Symmetry Transformations

Consider the massless SU(N) Thirring model for which the
Lagrangian is given by

E@=-idg; 0dy, D+8(F ;09 @G, @y ¥ (), (1.1

where j.k=1,....N are isotopic indices and 8 is a dimensionless
coupling constant and consequently £(x) is conformal invari-
ant. It is evident that £(x) is invariant also with respect
to the global gauge transformations as well as to the global
v ~gauge transformations. The corresponding conserved cur-
rents are given by

(3,0 =¥ Dy ¥y,
(1.2)
.9 -~ LV
(]U-(X))_]k = WJ(X)Y5Yu'/’k(x)= qu] ]k (x)!

where € ="€on 5> €105 €017 1  and the following representati-
ons for the y -matrices are used

nf=/? {\ »y,=(0. {\, Ye = ¥Y1Yg= ({ 0‘). (1.3)
iy

\—1 vy \ U —iy

Then introducing the light-cone coordinates X, =1/2(x; ¥ D
the Lagrangian £(x) can be written in the form

Liuf (Mo (W+ivh 0, v, s 8WE P NbE by ), (1.4)

where indices 1,2 denote spinor components of . In terms of
the eight-cone variables the currents (1,2) and the correspon-
ding continuity equations are written

Gy =gk 9 @ (@), =gy g, 0, Gk=L..N)  (1.5)

and
di,(x)=0, d,j_(x)=0. (1.6)

From (1.4) it is evident that the Lagrangian (1.1) of the
massless Thirring model obeys a more wide symmetry than global
gauge and ys —gauge transformations /8’ These are the trans-
formations 78/

g1 = em lin)) (x,)0 () 1oy,

(1.7)
, ; (k) (k)
¢2(x)= exp{lnz_a (x_)w -a.2}¢2(‘)'
where ng“z (x_) and 1;( ) L (x,) (a=l 1,...N%21) are arbitrary

functions only of X, 2on and x_, i.e., they are solutions of the
equatlons

. (k) (k)
tl'{]+0__n1'a(x)}=0. trij_ E) PN )} = (1.8)
and for convenience we choose n(o)— (0) =T, which are
generators of the isotopic group du (ﬁD and wikn are

parameters of the transformations under con51derat§5ns. It
may be pointed out that the transformations (1.7) do not
break the Lorentz invariance. However, the invariance with
respect to the space-reflection, can, in original, be broken.

The Noether currents’®/ corresponding to the transforma-
tions (1.7) have the form

(k
19w AP @1, 30 <G, (1.9)

(k)
+.4
which are conserved. i.e.,

5. 1® -0, 1% o, (1.10)
when the equations of motion are satisfied. To provide exis-

tence of the conserved charges, corresponding to (1.8), the
following boundary conditions are supposed

lim 17,(1‘?2“(:)[ <M< . (1.11)

From the Lorentz invariance it follows that the Lorentz dimen-
sion of n(k)(x) is opposite in sign to the Lorentz dimen-
sion of the correspondlng parameters wgtz). Consequentlv

) (k) &) (K k) (g
71291 22%2a are scalars. Note that if 7 ( )

g)(x ), then the corresponding transformations (1.7) do
not break the invariance with respect to space-reflections.

Consider also the polynomial in the field ¢ solutions of
eqs. (1.8) (only on the on-shell case d,j =0 )

and g

(m, n) . n

=9 ’(J+). a2 G, 9T, %G, i,y N (1.12)



.

where m; and n; are integer satisfying the following condi-
tions

m

Sm.=m, n,=n.

=1 ! =1 .
In this case the corresponding parameters of transformations
(1.7) have the Lorentz dimensions (m+n).

To find the class of transformations (1.7) which preserve
the Lagrangian (1,1) wup to the full derivative, consider first
the abelian case’8’. Then consider the transformations with
generators j{®™a (j+)". Inserting these generators into the
invariance condition, we get

. . n n . . n+1

i.e., the Lagrangian is changed by the full derivative for
arbitrary fields configurations (aij$£ 0). On the nonabelian
case, it can be checked that linear combinations of (1.12)
with the form

0, . n . n . ,n—1
U(i.:)=(l i‘) T& +Ta(]i) +(n—l)J+TaJ + (] . ]4)

also change the Lagrangian (1.1) by the full derivative,
It can be verified that the transformations (1.7) also are
the symmetry of equations of motion for the Thirring model.

2. The Group Structure of the Hidden Symmetry Transformation
for the Thirring Model

Now the group structure of the transformations (1.7) can be
investigated. For this aim consider the commutator of two in-
finitesimal transformations of the kind (1.7), i.e.,

(U1U 2"U2U1)jk¢‘k(x) = sjﬂ"' inip)(¢m+i(n(:)’mn¢n 5&)(:) ) it X

o (q) (q) )
"5‘0?)”8&;“("3 Vg Sy Yy - 18 “71§,Q)L¢m+

@.1)
: ( :
16y 50T 1y wPlsy +i6), 0Py, -

a

(p) (q)
5 » 5 :
=R @ 1P @, + _éﬁ’i&_).u‘(,,(bqh/,)m J 20y )

518 ) ik ®, 5 {;i&“‘
(@ g = ng), 8 (g Dy SIDIE g

* a

x8dP80 D = [2P®, 4P @1, ¥, @®5D 8D ,

where the symbol [ , 1} is introduced for the commutator of
two generator functions and [,] is the ordinary matrix com-
mutator. It is evident that when the generators n;k) do
not depend on fields i, the commutator (2,1) coincides with
the ordinary matrix commutator. From (2.1) it also follows
that when the symmetry group G is abelian, the corresponding
hidden symmetry transformations also form an infinite-para-
meter abelian group.
Consider the following generator functions

"where v is an arbitrary (in general) complex number and T,

are generators of the group SUN). Then substituting (2.2)
into (2.1) we find

w’)

[28 @, "fik”“=["§qa(”' (%)}

Ny
-t ‘ - (2.3)
v+v

’ . (+ ’
—, ) T, Ty 1= i Cypeny r L.

Here C,,. are the structure constants of the group SU(N).
It may be pointed out that (2.2) with Rev>0 does not satisfy
the boundary condition (1.11).

Consider also the polynomial in ¢ generators

(n‘a‘:;_'“)’(x»jk=[(j(+_))'"T,1jk =Gy ) B, ) (2.4)
m=1,2,...
and
~(0,m) ; m *
G =1 0 Ty = g ¢ )T )y, - (2.5)

It can be checked that ng.m

as well as ﬁg'm obey the in-
finite~-dimensional algebra

Il (0,m) (0 m+n)

n @ @1 =iCpen (2.6)

c,*
i.e., the generators (2.4) and (2.5) satisfy the subalgebra
(for integer+ ) of algebra for generators (2.2). The last al-
gebra coincides also with the hidden symmetry Lie algebra for
the chiral models’®~® and with those suggested earlier in/7:8/
And finally, we note that we have not found the closed Lie
algebra of a gauge type for the generators with derivatives
n:“mlizx as well as for the polynomial generators (1.14)



which change the Lagrangian by the full derivative for arbit-
rary fields (d+i ¥ #0). It may also be pointed out that our
considerations are valid in both the cases of Thirring models
with commuting and anticommuting classical spinor fields.
However, in the second case the number of generators (2.4)
and (2.5) is finite (n=0,1,...,N).

II. SUPERSYMMETRIC CHIRAL MODELS
3. O0ff-Shell Transformations

The action for the supersymmetric two-dimensional chiral
models is given by

8- ra*xa®ouiD® 6™ (x,6)D, Gx.0)t, (3.1)

where §(x,0) is a superfield with values on some group G
(principal chiral fields) or §" % G=1-2 ? (x,9), where P%7%
is the projective field and

D .29

T Hga

+ i(;f‘e)aa“, (a=1,2) (3.2)

is the spinor covariant derivative. For the y-matrices the
representation (1.3) is used. From (3.1) we have the equations
of motion, which for convenience are written in the form

D% A _(x,0)=0, (3.3)
where
-1
A=Y (x0)D, §(x0). (3.4)

From (3.4) and the zero curvature in superspace, i.e., {D,D,}0
(which follows from (3.2)) we have

Jo=Fp1 =D A, + DyA +A A L AA L =0 (3.5)
However, here ¥y £0 , $90#% 0 because of the nonzero torsion
in the superspace, i.e., {D,D 1£ 0 , IDy.D,y1#0.

Consider the following generalized supergauge transforma-
tions

o, . - k
G(x,0)= G(x,0)U(x,0)= Q(xﬂ)expilﬂ(akx.o)u}:)l. (3.6)

tk) .
where @, (x:0) (k=0,1,...,a=1,....M, where M is the number of
independent parameters of G ) are generators of the hidden

6

symmetry group transformations,Qqn =T, the generators of G
and (¥ the corresponding parameters (they are only even
numbers). It can be pointed, that under the ordinary super-
transformations the generators (1 ) are transformed as the
fields Q(x,ﬁ). The generators Q(lt) can be found from the
invariance (up to the full spinor divergence) of the Lagran-
gian

k k
508t A (0,0 (x,0)180 % = 1D K, 180K . (3.7)

(k . : . .
To find Ka?l without using the equations of motion (3.2)
(i.e., the transformations (3.8) are off-shell symmetry) we

adopt the following ansatz for @

Ansatz: there exists an infinite set of matrix functions
Qg”(x,o), which satisfy the equations (only for a=1 or 2)
(k+1) (k) (k)
D, 0%, x0)=(7,D) Q3 (x.0) + [(y5A), . 0 1(x.0), 3.8)

k . .
where Qg_0)=Ta and for (2:) there exists the following repre-
sentation

Q,(x0.0) = X(x.0, T, X~ (x,0,1). (3.9)
Here
2,x0.0)=% £a x0), (3.0

A is an arbitrary parameter and for the nonsingular matrix
function X(x,9,A) the Taylor decomposition

SodlR 3
X(1,6.0) = 32 x®(x;9) (3.11)
=0

is supposed also.
Then eqs. (3.8) in terms of 2,(x,6) and X(x,0,A) are
written as

(I—Ays)aBDBQl(x.e.A)-A[(ysA)a Q,x0,0], (a=1,2) (3.12)
1-Ay ) DgX(x.0.0) = (15A), @O X®0.1)  (a=12), (3.13)

Substituting (3.11) in (3.13) we have also

k+1 k
D X x,0)=(r D) X 1.0+ (A XY x6) (x=0.1,..).3.14)

7



The integrability conditions for eqs. (3.8), (3.12-3.13)
(for a=1 and 2) are satisfied only in the on-shell case
(D’Aa=0) and they have the following form (see’/10/)

D°D X +A%’D X -0, .
a a
(3.15)
D*D @ ,+[A"D,Q,] =0.

The on-shell solutions of eqs. (3.8) were found in paper/l?/
To find the corresponding off-shell transformations we will
prove that the transformations (3.10) with generators (3.9),
where X is a solution only of one of equations (3.13) (e.g.,
for a=1), are invariance of the Lagrangian (up to the full
divergence). Then, solutions of the first (for a=1) egs.
(3.14) can be found without usjng the equation of motion (3.2),
i.e., off-shell. Then

o0

k (k) a
5a£=k§0 A8y £= trfA D0, (x,6, M)}=tr{A,D Q, -

~A D0, (%0, )} =tr{AAD Q, +AA[A,A,] - (3.16)
-4, Dy Q,} = r{AD"[(y, A),Q, 1+ (-0 X7y D) XT, 1L,

where eqs. (3.14-3.15), the representation (3.11) and the equa-
lity (3.7) are used.

Moreover, the transformations (3.8) are invariance also of
the equations of motion (3.2). Indeed,

D*5 A, =D%(D, D, + [A,,0,])=

(3.17)

* 1+ A 1-A
=D Dy @, - 2Dy D0, - -==DgD,0, =0,

where

8,A,=D,0,+[4a,,0 ] (3.18)
is substituted and eqs. (3.12) are used.

Now we solve the first (a=1) of eqs. (3.13). In terms of

the components of X(x,4)

X(®,0)=x®)+0% (0+060% @ (3.19)

we have

2y
k 2 k (k)
= O+ 1 v, v ® - a1, 500,

K ‘1‘” ® =« -a;0x® @,
(3.20)
(k+1 ® L ot (%)
< )@)zxz + [ dyT(aé +by X W, X_)

(k+ 12

k
£ % - e i@ rmn™ @)+ ia (kP (), (k=0,1,..).

Here a, v , r ,p and b are components of the spinor super-
current (3.4), i.e.,

By(x0)= 2,0+ 0, p(® + Byg), 10+ (YO),V, +

(3.21)
1,2
+0°60%b,(x) (a=1,2).
and we are starting from one trivial solution y (OLT , x O
=£0L o, of the equation
- (0)
WLy +AX,0)X  (X,6)=0. (3.22)

Note that x ¥ and <& are determined up to functions of x.
It can be checked that in the on-shell case (D”A_=0) which
in terms of components (3.21) reads jda(x)=b(x) a“v#(xﬁg,
p=0 | r - arbitrary the functions X with components
(3.20) satisfy the integrability condition (2.15), and conse-
quently, the second eqs. (3.14).

In paper 10/t was shown that the solutions of eqs. (3.14)
can be found starting from some nontrivial solution of eq.
(3.22). There were found two such solutions:

-1
X(zo)(x.0)= § x6) (3.23)

and Xi?) is given with the following components

X
x P @=Pexi- [ day* v, (v, x_)1V(x_),

(g )y = 3, 0xY 0,



X
~ (0 Lt
(x (30) )y= K (2) (X_)Pexph_[gdyJ'a,a 17y x ) x

l+ y
x | [ dy (b ,~ja (r+p)Pexpf-i [+dz+ala b - (3.24)

0)

()} .
£ @e~i(p@+r)x g +ia Py,

where the Lorentz scalar V(x_) and second component of spi-
nor «x,(x_) are arbitrary functions of x_ only. The last two
functions can be determined in the on-shell case from the
second eq. (3.22), i.e., (D2.+A2)Xg ) o. Then as has been
shown in/10/ there exist two additional sequences satisfying
eqs. (3.16)
(—k) (O)X(k)

X =X

(1) J(0)= (k)
2 3

X5 =Xgx, (3.25)

where iﬁkkr=2£) can be found from (2.20) by the substitution

~ 0) - . .
A~ A27=(Xi)) lAaxfo) (r=2,3). The corresponding inverse

(0) )—l

functions (X, can be found from

-1 -1
X (x, 0,0 X, (x,0,0)=X, (x,0,0)X,(x,0,})

(3.26)
0 1 0
=@ aax Py o art e
Then we have
0) 0y ,—1 (1) (0) = (1, (0) .-
e Sl VR LG & T O
(3.27)
(2) (0),71,(2) (0 —1 (0 =1_(1) (0) =1_(1) _(0) —1
Y - XY X X, ) X Py x Y x )
(0) (0) .
where X, ‘=l and X; 3 are given by (2.24) and (2.25).
Substituting (3.27) into (3.9) we have
0 1 1 2
”(1.). =T, Qf: -xP, 1), o®ux? T, 14T, X hx' . (3.28)
(0) (1) 1
-gng . ol .gliy M, 8. (3.29)
0 (0 0 -1 (1 0 -
- Xy, Q)" agaxy (X, T 1x® )7L, (3.30)

10

Consequently, Qp , and @3, are coupled with €,, by simi-
larity transformations, where the spinor supercurrent A,
is given by (3.28). To find other representations for G
consider ordinary chiral models.

4. Additional Symmetry Transformations
for Ordinary Chiral Models

All results of the previous paragraph can be obtained for
ordinary chiral models, for which there exist the transforma-
tions (3.23) and (3.24) (see ref. 2/, Moreover, we shall

show that there exist additional trépiformations. In the or-
2

dinary case eqs. (3.14) are written as
3™ =29, 0™ A, 00 %m, k=-10,.), 4. 1)
where n(_l) is one of solutions of the equation
atn(—liXHAin(-lthO (4.2)
and consequently, 6+1fo?-0.However, if there exists the con-
served current ju v (0% T ,..=0)for which the condition
9,3, =0 (4.3)

- ny
1s satistied also, then as a starting runction n {(X), the so-
lution of the equation

00D =Ty (4.4)

can be used. The integrability condition for (4.4) is satis-

fied because of (4.3), which is the case of (higher) energy-

momentum tensors (T(_)(+ )"a=1,2..and T*,+ -TK6+ g"la+ g)T, -T‘+_0
)

Then substituting T,, into (4. 4), we have

x+—
l(im)  (®)= n, l(x)+ fdy+(A+X’ ‘ MY X ) (4.5)
2n—1
where
0 o+
n
ICE 1ay"(T, ) (4.6)
We point out that the Lorentz weight of ﬂ{+; is equal to

2n-1. We introduce a nonsingular one-parameter matrix function

11



ZM (x,t) = E ¢ n;k;(x) 4.7)

k
which has the same Lorentz weight as n( ) given by (3.5).

We denote by C{ ? the eoefficients of the Taylor decomposi-

tion of x,} . for which from (2.27) we have
(0) -1 (1) (1) (O) -1
X) = X)), =-7 seeeey .
The Lorentz welght of C} ; is -(2n-1). From (4.1), (4.4) and
(4.7) it follows that th satisfies the following equations
. n
(A-1)0,Z 1) (x)=tA Zy 3+ (T, ),
4.9)
(1+t)a_._Z’+l(x,t)=-tA_Z{” R
Then the generators of the transformations (3.8)
(n) -1
Sl (x,t)-Zl”TLZh‘ (x,t) (4.]0)
satisfy the equations
. n -1
(l—t)a+sa’t[A+ 'Sl]+(T++) [Zh,l ' Sa]r
(4.11)

(1+t)a_S, =-t[A_,S,].

Note that the second eqs. in (4.9) and (4.11) are satisfied
only in the on-shell case. Then as in the supersymmetric case
(see also ref.’2?’ ) we have

o0 k ’
5,8 -kfotk 32)53 .tr(A"ausa)=(w tr hau (tA, S, )+
(4.12)
1 -1
+(T"t)zi+lav Zi, 3 T

where the zero curvature ¢ (8 AL+AA)) =0 and both eqs.
(4.9) and (4.11) are used, i.e., the transformatlons with ge-
nerators (4.10) are symmetry of the action only in the on-
shell case.

It may be pointed out that (4.10) are representations of
the same infinite Lie algebra, which is considered in ref.”3.
Moreover the representations (4.10), with Zy, given by

12

(4.5-4.7) and the representation found in ref.’8/ are equiva-
lent. It can be proved that if we have two representations of
the hidden symmetry transformations, which can be written in
the form (4.10) (with the same T, ), they are equivalent.
Indeed, suppose that we have two one-parametric functions 2,
and Z, (with the same matrix dimensions), then we can const-
ruct the following matrix

-1
Uip(x,7,0) = 2,(2,A)2 5 (x,1), (4.13)
. . @ .
which couples the representations SS) andSL), according to
(1) 1
8, ®A)=U,S, U, . (4.14)

It may be pointed out that all results of this paragraph
can be generalized to the supersymmetric case also.

5. Group Structure of the Hidden Symmetry Transformations
in the Supersymmetric Case

To find the group structure of the supergauge transforma-
tions (3.6) consider the commutator

G(UU, ~UpUy ) = GHQ,(x,1), 0, (x,1)] +

N
n
.
.-

N~

+ 8,0, 1) -8,0,(x, V) 180ls0]

where 5,0, is the change of the generator function @, from
the transformat10nl]1_1+9 &» , L.e.,

8,0p= 0,8 +80, 80, )-0 (8). (5.2)
Following paper/S/ the generators of transformations (3.6)
are written in the form

T W)= [d°2d% G(x,0)0,(x,0,1) =2, (5.3)

56 (x,0)
After integration over 8, we have also

T =rd%18 @y (x,A)-%:+h(x)xl(x,A) 2

Sh(x)
é
+g(x)£ (x, A)m+ Q(X)K (x,A) —m S (5.4)
se@K, , @A=Lt F @y, N s,
o€ (x) 8¢ %(x)

13



where the following notation is used

G ®0)= S +6% (®+ 0'9%n(x).

Note that to compute the commutator (5.1), it is necessary
to find the change §,, . For this purpose/S/.the equation

(1-:7)D1839b(x,0,-r)- !5a[A1,Qb(x,0,7).]-<
= r[8,A, Qp 1+r[A,5,0,]. (5.5)
T
=i':;'[[A1vQa(xvonk)]lnb(XIO'r)]‘F r[A118aQb]i

which follows from (5.2), (3.12), (3.18) and (3.5), is used.
The solution of (5.5) satisfying the boundary condition
5, 11, (0 =83Tb =0 has the form

8,0, = 2—[2a (V-0 (), B y(1) ] =

(5.6)
- X').L?"m"m' 0y (N1=Cape oD )
Here
(2, (0. 8, 001=X(DIT, Ty )X 7 ) = Gy (1), (5.7)

where C,;, are structure constants of the group G which are
substituted in (4.6). Then inserting (5.6) into (5.1) we find

() AL (A) F)
A-r 5G )

Substituting the power decomposition (2.11) into (5.8), we
get

[ja()‘)’ jb(')]'cabc fdzx d 20 g

(5.8)

(m+n)

(m)
(7, 9301 = Copde (5.9)

which coincides in from with the hidden symmetry Lie algebra
for ordinary chiral models’3’. However, according to (4.4) the
transformations (3.7) are supertransformations of the gauge
type. With respect to these transformations the scalar compo-
nents §(x) of G(x,0) form an invariant subspace. Moreover,all
parameters of these transformations are commuting numbers.

14

6. Quantum Transformation Laws

Because of nonlinearity of the transformations (2.8) for
classical fields in the quantum case these transformations
should be correctly determined. This concerns also the gene-
rators of the transformations (2.11) as well as the corres-
ponding conserved currents. First consider the quantum trans-
formation laws. In an infinitesimal form the transformation
law (2.8) can be written as

8 xo)= 81+ 0 su®), 6.1)

k
where nﬂ) is given by (3.11). In the quantum case we have,
by definition

5 . o ~(k
88, = 1im 5 8 =505 (88} (x,6)—sing.term OPE], (6.2)
r20
r2<0

where § are the corresponding quantum (renormalized) fields,

{}, are quantum generators, which will be determined later,
and the singular terms of the pperator product expansion at
short distances of operators § and @, can be determined
in a nonperturbative way from the dimensional consideration
only.

In the case of scalar fields with the zero scale dimension
we have

0(x,0) @ (x,0)=cIn{u2(x,-x)%~ic] § + reg. tems, (6.3)

which is the case of an ordinary chiral field, as well as the
supersymmetric case. Consider also the product of one conser-
ved vector current and one scalar field

12 v

. C4X € X ~
(&8, (xy)~ ’ELJ‘T'Sa(xz)+°2“E§V"—1'E“‘Sa("2)+ (6.4)
Xig—1e Xig—ie

+ reg. term.

in the ordinary case and one spinor conserved supercurrent
and one scalar superfield with the zero scale dimension,i.e.,

AL (2,,0)0,(x,0)= C(y D), In(u? x122—if ), + reg.terms. (6.5)

Here u is a parameter with the dimension of mass, and the nor-
malization constant C can be determined from equal-time commu-
tators.
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The quantum generatory of the transformation (6.2) can be
determined from the corresponding quantum equations (3.12)
and (3.13).

12y, P00 0.0 = A (g A) 028, (x +5.6, 1) -

(6.6)
~C(ygD) In(u2r2-ie)Q ,(x+8, 6, 1),
B .
(I-Ayg), DgX(x,36,M)=(y,A),(x,0)X(%+8,6,}) 6.7)
—C(ygD), In(u2r? ~ie)X(x+ 8, ),
where
ﬁi.ﬂi(x) Tai_l(x+8) - sing terms . (6.8)

It can be checked that , form the same infinite Lie algeb-
ra as the corresponding classical generators.
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3aiikos P.II. E2-82-441

'pynnoBasa CTPyKTypa HeKOTODbIX Mpeo6pasoBaHuil
CKDHITHIX CHMMeTpHH

O6cyxnmaercs BOMPOC O CymeCTBOBAHMH CKpHITBIX CHMMeT pHI
AJ1A KJlacCHYeCKHX ABYMepHbx Mopesned TuppuHra M cynepcummeTpHy-—
HbIX KHpaJbHbIX Mopaesna2ii. [lokasaHo, YTO I'€HepaToph, MNOPOKIANMHe
BpICIHe JIOKAJIbHbIE COXpaHAWMHecsA 3apafn, o6pa3yioT 6ecKoHeYHOMep—
Hylo anre6py Jlu. To xe caMoe noxasaHO H IJIA HeJOKAIbHBIX reHepa-
TOPOB B CyHepCHMMETDHYHLIX KHPAJIbHBIX MOAEJIAX,

Pa6ora BumosnHena B JlaGopaTopuu TeopeTHYeCKOH dusuxku OUAH.

MpenpuHT 06BbEAMHEHHOrO UHCTUTYTa RAEPHNX MccnegoBanui. flyGna 1982

Zaikov R,P. E2-82-441
Group Structure of Some Hidden
Symmetry Transformations

The question about the existence of some hidden symmet-
ries for the classical two-dimensional Thirring models and
for the supersymmetric chiral models is discussed. It is
shown that the generators creating the higher local conserved
charges, form an infinite-dimensional Lie algebra. The same
is proved about the nonlocal generators for the supersymmet-
ric chiral models.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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