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I. The geometric structures inherent in the superspace 
description of supersymmetric gauge and supergravity theories 
radically differ from those in ordinary space-time. Gauge 
potentials in superspace have no chance to be the fundamental 
quantities as they carry too much degrees of freedom even in 
the fixed gauge. Therefore, in any self-contained superfield 
gauge theory they are expected to be composed of a lesser 
number of unconstrained superfields directly related to the 
physical field content of the theory, prepotentials. These 
are known for the N=l Yang-Mills 111 and supergravity 12"41 

theories and, on the linearized level, for their N=2 counter­
parts 15•61 *. 

The prepotentials provide an adequate realization of the 
minimal invariance group of a given superfield theory and 
hence can be regarded as natural carriers of its intrinsic 
geometry. But only in the case of N=l supergravity this role 
of them was exposed quite clearly. Ogievetsky and Sokatchev 
have shown/3~ that the prepotential of minimal N=l supergra­
vity Hm(x,8,8) ~pecifies the position of a real hypersurface 

R4
'
4 =1 xm. ea. (:ja I in the complex suoersoace c 4 • 2 =1X~- fl_a l· 

L L 
- -. + - . 

H m ( 8 8) R m m 8 a= 8 a 8 a ~ (8 a} - 0 a 
X, ' ' e X L = X ' L ' R - L - ( I ) 

The prepotentials of nonminirnal N=l supergravity have a simi­
lar interpretation 171 • It is desirable to understand in ana­
logous terms the other cases listed above and, before all, 
the text-book case of N=l Yang-Mills. A deeper insight into 
its group and geometric structure may help in achieving a cnm­
plete unconstrained superfield formulation of gauge theorie 
and supergravities with higher N . 

Actually, the underlying geometry of the N=l Yang-Mills 
theory reveals a strong resemblance to that of minimal N=l su­
pergravity and it is the aim of the present note to explicitly 
demonstrate this. The N=l Yang-Mills theory is shown to be 

*The objects suggested in ref. 171 as prepotentials of full 
N =2 supergravity seem not to be the true ones as they are 
still subjected to certain constraints. 
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associated with embedding of R 4 •4 in the extended complex 
superspace c4+M,

2 ==I x;:, cbi,, ~I (i=l, ••• ,M),where cb£ are local 
coordinates on the group 0°, the complexification of the 
gauge group 0 , and M = dim G. The N=l Yang-Mills prepotential 
V 1 (x, fJ, O) is nothing but Imc/Jl restricted to the hypersur­
face R 4 •4 • It specifies the position of this hypersurface 
with respect to 0°/G -directions in C 4 +M, 2 

2. Let a be a compact group of internal symmetry with M 
Hermitean generators T 1 • Our basic idea is to extend it to 

0 • 1 i 1 + complex noncompact group G w1th 2M generators T L, T R = (TL) 
which satisfy the commutation relations: 

[Ti, 'I't)"" ic 1kl T~, 

[TL, T:) = 0, 

(2. I a) 

(2. !b) 

where c 1kl are totally skew-symmetric structure constants of G. 
The group. a 0 has the structure of direct product GJ..x GR with 
G L and Ga generated, respectively, by T( and Tft (e.g., if 
G .. SU(n), then G c .. SL(n, C)). The initial group G appears as 
a diagonal in this product. Its generators are identified 
with the sum T£ +Ti"'T1 while the remaining generators 
i(Tk- rr:> =Air. span the M-dimensional coset space 0°/G •• The 
lat1er 1s real and symmetric. 

we ctet1ne the complex super space L!: :.!,::: = t x~, cp! , tJt l as 
a direct sum of ordinary chiral N .. 1 ·superspace CJ-'4•2 = lx~ fJLI 
and the group 9L considered as a complex manifold with local 
coordinates c/J~ : 

C 4+ M,2 "" C 4,2 e GL • (2.2) 

For convenience, we choose the exponential parametrization 
of group elements: 

(2.3) 

Note that Recb£ and Imc/J i, provide, respectively, a parti-
cular parametn.zation of G and 'G 0/G. Since the_ <;oordina-
tes x~, 8~ are related to their conjugates x~, o.; by P-. 
parity, it is natural to accept the same convention for c/J£,c/J~: 

2 

,~. 1 P ,~.I 
'~-'L ....... '~-'g' 

. i 
Correspondingly, if T 1 are scalars, -A should be pseudo scalars: 

i p 1 
TL ....... TR' (2.4) 

Clearly, (2.4) is the automorphism of the algebra (2 .1). 
The group ac has a natural realization as the group of 

left multiplications of g 0 (c/JL ,c/J R): 

iAk'l'k lc/JkLTt icPLk'(rf.. ,AL)T~ 
e LL e =e "L 

iAk T k 
e R R 

lc/J k T k 
e R R 

k' k 
lc/J R Cc/Ja , AR ) T R 

== e 

(2.5) 

thus inducing nonlinear transformations for c/J 
1
, cb!. To promo­

te the global G 0 -transformati~ns to the locat ones, we assu­
me that the group parameters A 1 in ( 2. 5) are arbitrary analy-

L d" tic functions of ordinary superspace coor 1nates: 

(2.6) 

The gauge group thus defined fo.rms a semi-direct product with 
supersymmetry realised on xm, oa* . This product is contained 

L L · d" as a subgroup in the supergroup of general analyt1c coor 1-
nate transformations of c 4 +M, 2 (to be more exact, in its 
"triangular" subgroup which leaves C ,.,;:: invariant). As im­
plied by the relation (2. lb); the left and right components 
of the gauge group Q 0 = G x G commute with each 

• . loc L loc R,\oc f " d " · h " ld other, so at the 1n1t1al stage the le t an r1g t wor s 
are entirely disjoined (though conjugated). 

Now we wish to show that the N==l Yang-Mills theory has 
G 0

1 as an invariance group and it naturally emergep UP.2on 
oc . C <t+ M, 

extracting a special hypersuface 1n the superspace -·. 
This hypersurface is the real superspace R 4 ·4 ==I X m 'oa 'f) a I' 
just as in the case of N=l supergravity 181• But it possesses 
now purely interual degrees of freedom besides those re~resen­
ted by Hm (x, 8,()), because of additional bosonic dimens1ons 
in C 4+ M.2. So, the embedding conditions (I. I) should be aug­
mented with 2M conditions 

1 1 -
lmc/JL=V (x,fJ,fJ), 

I I -
RecjJ L = U (x, fJ, ()), (2. 7) 

* Our consideration proceeds in the same way for rigid and 
local supersymmetries. 
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where V 1 imd U 1 are real pseudoscalar and scalar superfields. 
Their transformation properties in Gfoc are uniquely de-
termined by those of ¢£, ¢~ (2.5). These superfields para­
metrize, respectively, the coset space Gc/G and the sub­
group G , hence they are of the Goldstone character with 
respect to corresponding transformations. We want G to be un-

1 -broken; then U (x,8, 0) should be made to have no dynamical 
manifestations. To achieve this, one may proceed as in stan­
dard nonlinear a -modles (see, e.g., ref. 181 ) and arrange 
the theory to be invariant under the right gauge G-transfor­
mations: 

(2.8) 

I I - i -where A "'A (x, 8,8) are M real superparameters. Then U (x,O,O) 
represent purely gauge degrees of freedom. From the geometric , 
standpoint, the invariance under (2.8) means that different 
G -directions in C4+M, 2 are indistinguishable; the dynamics 
is required to depend only on the position of the hypersurface 
with respect to the directions spanning the coset space Gc/G . 

On imposing the natural gauge condition 

i -
U (x, 8, 8) .. 0 (2.9) 

we are left with M pseudoscalar super fields V 1 (x, 8, 0) which 
live un r:ne coset space U ::/U and transtorm under Gfoc accor­
ding to the generic formula of nonlinear realizations/Ill 

I(ReAtTk+ImAtAk) IVkAk lvk'Ak IK1(V,A)T 1 

e e = e e 
(2. I 0) 

with AL given by (2. 6). The transformation rule of matter 
superfields ~(x,8,~) is then defined following general pre-

. . f f 191 scr1pt 1ons o re s. : 

k - k 
~, (x, IJ, ji)"' e IK (V,A) T -

~(X, 0, 0), ( 2. II) 

- k 
T being a proper matrix representation of TIt. 

A simple consideration exploiting the automorphism (2.4) 
shows that the transformation law (2. 10) admits the equiva­
lent form: 

ze (2. 12) 

.4 

(and the conjugated one, with T~ instead of ( 1L ) . Since TL 
satisfy the same commutation relations as T, eq. (2.12) 
coincides with the standard transformation law of N =1 Yang­
Mills prepotential 1 1/ • In fact, its conventional form is 
recovered when choosipg a particular, non-self-conjugated 
representation for A 

( 2. I 3) 

I, 
(this choice is quite permissible because the structure of V , 
K 1(V, A) in (2.10), (2.12) is determined solely by the com­
mutation relations of generators). Using the general connec-

. . 1' 1. . 191 t1on between representat1ons and non 1near rea 1zat1ons 
one may always pass from superfields with the standard non­
linear transformation rule (2. II) to those transforming in 
Gtoc linearly, according to the representation (2.13) or 
to the conjugated one: 

~R, 

( 2. 14) 

The relations (2. 14) can be regarded as describing the tran­
sition from the real basis in the group sparP of ac to it~ 
complex left and right bases, in a perfect analogy with the 
connection between real and chiral bases in superspace. These 
formulas were known earlier /4,1°1, but our approach renders 
to them the clear group meaning. Note that the substitution 
of (2.13) into (2.10) yields the transformation of N=1 pre­
potential in the form given by Siegel and Gates 141 • Also, 
the invariance under the right gauge group (2.8) reduces to 
the well-known freedom of complexifying the prepotential. 

To summarize, we have derived the N-1 Yang-Mills prepo­
tential from simple geometric and group principles similar 
to those constituting the basis of the Ogievetsky-Sokatchev 
formulation of minimal N-1 supergravity 131 • 

3. It follows from the above analysis that the Nc1 gauge 
theories can be thoug~t of as a kind of generalized nonlinear 
a -models* (exp(2iVkA I is nothing but a "chiral field" on 

*An analogous fact for ordinary gauge theories has been 
established in ref. /11/ 
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the coset space ac;a ). So, relevant invariants and other 
geometric characteristics should have an adequate expression 
in the universal language of Cartan differential forms which 
is of a common use in nonlinear realizations 191• In the pre­
sent case the basic forms are spinorial ones, they are intro­
duced by the relation: 

(3. I) 

and by the conjugated one. Here Da is an ordinary covariant 
spinor derivative (it mal correspond to the flat as well as 
curved geometries on R4 • ) and QL = QLk Tk is the spi-
nor connection on the group GL: 

a a L 

"L' tAlTL 7~L -!AtTi 1 iAtTl D e-tA'i_Tl 
ua =e ua e ot 7 e a (3. 2) 

1 

One easily checks that under the nonlinear realization (2. 10) 
the objects wt, n 1 possess the standard transformation pro-
perties of Ca~tan ~orms. -

It is essential that the gauge superpotentials QL, O~ .. (v~+ • a a a 
are purely subfidiary as they can be covar1antly expressed 
in terms of V (x, 0,0) by imposing the manifestly invariant 
conditions 

that is a particular case of inverse 
constraints (3.3) are algebraic with 
they can easily be solved to give 

(3.3) 

Higgs phenomeron1121• The 
respect to Q , 'fj.R, so 

a a 

(3.4) 

i - 1 
Thus, we are finally left with the forms 0 , n. which are 
the connections on the coset space Gc/G: a a 

(3.5) 
- - i i 1 V kT k - - VkT k 
0 . = 0. T = -e D · e a a a 

All other quantities of the theory: the vector Cartan fo~, 
covariant derivatives and strengths are built up from n ,n. a a 
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following the standard procedure of refs. 1131 • They have 
a familiar appearance, for this reason we do not present them 
here. The point to be emphasized is that our approach allows 
us to obtain all necessary quantities starting solely with 
the structure relations (2. I) and the standard nonlinear reali­
zation formula (3. I) supplemented by the constraints (3.3). 
Perhaps, it would be of interest to relate this formalism to 
the Levi' superform approach advocated by Schwarz 1 141 as the 
adequate geometric language for treating real hypersurfaces in 
complex superspaces. 

4. The most interesting question following from the above 
consideration is how to generalize the proposed construction 
to higher N Yang-Mills theories, at least to the case N-2. 
The necessity to complexify G in the N=l case can be traced to 
the fact that the fundamental superspace of N=1 sypersymmetry 
is complex superspace C4 •2. Its true analog in the N=2 case 
seems to be a superspace the bosonic coordinates of which 
form a quaternion 1 16~ So in the N =2 case one may, instead of 
theextension T 1 ... {T 1 ,iTkJ, trytheextension Tk-. 
-.(Tk, qieTk, •.. l, where qi (i = 1,2,3) are imaginary quater­
nion units·. Then the corresponding prepotential should acquire 
an additional triplet index. That is just what occurs in the 
N =2 electrodynamics 151 • A work along this line is now in 
progress. 

Other possible applications concern the N=1 Yang-Mills 
theory itself. Once it is a kind of the nonlinear u -model 
on the coset ac;a, the idea arises that the corresponding 
linear u -models may exist, with ac as the vacuum symmetry 
group. In the conventional N=l Yang-Mills theory, the non­
compactness of ac has no dynamical manifestations since the 
vacuum stability subgroup is compact and, besides, the Gold­
stone fields associated with spontaneous breaking Gc/G are 
purely gauge degrees of freedom (they are contained in the 
superspin zero part of V1 (x, 0, 0) ) . In the relevant linear 
a-model, the noncompactness would result in appearance of 
infinite-dimensional field multiplets, for any unitary repre­
sentation of ac is infinite-dimensional. We also note that 
the geometric analogy between the N =1 Yang-Mills and N-1 
supergravity naturally suggests their unification within a 
larger theory of the Kaluza-Klein type. One may treat RecP£ ~I 
as an independent coordinate like xm in eq. (l.l), choose 

4 M 4 · a -a the base super space to be R + • -=I x m, cjJ 1 
, 0 , 0 I 

rather than R4,4, and construct a 4 + M-dimensional exten­
sion of minimal N=l supergravity through embedding R4+M,4into 
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C 
4+M,2 . 

. The standard theory ~s expected to be recovered as 
the lowest order in a proper expansion in ¢ 1. 

It is a pleasure for the author of thank A.Galperin, 
V.Ogievetsky, E.Sokatchev, and K.Stelle for interest in the 
work and useful discussions. 
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Msanos E.A. 0 reoMeTpHqecKoM CMbicne rrperroTeH~Harra 
cyrrepcHMMeTpHqnoli N=l -TeopHH Rnra-MHrrrrca 

EZ-82-427 

BbiHBrrena o6~HOCTb BHyTpeHHHX reoMeTpHli cyrrepcHMMeTpHqnofi 
N=l-TeOpHH Rnra-MHrrrrca H MHHHMarrbHOH N=l-cyrreprpaBHTa~HH. 

iloKa3ano, qTo rrperroTeH~Harr N~l -TeopHH Rnra-MHrrrrca rrapaMeTpH-
3yeT ~aKTOp-rrpOCTpaHCTBO 0°/Q, r~e 0°-KoMrrrreKCHOe pacmHpeHHe 
KarrH6posoqnoli rpyrrrrbi G . 

Pa6oTa BbiiTGJIHeHa B JlauopaTopHH TeopeTHq€cKoli ~H3HKH OlliiM. 

llpenpHHT UObe~HHeHHUrO HHCTHTYTd RAeiJHbiX HCCIIeAOBdHMH, AYOHd 1;:10£ 

Ivanov E.A. On the Geometric Meaning of the 
N=l Yang-Mills Prepotential 

EZ-82-427 

A deep similarity between intrinsic superspace geometries 
of the N= 1 Yang-Mills theory and minimal N=l supergravity is 
established. The N= 1 Yang-Mills prepotential is shown to take 
values in the coset 0°/G , G0 being the complexification of 
gauge group G • 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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