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Below we investigate the structural stability and dynamical
properties of soliton-type solution of the two-field model
of the classical field theory proposed by Makhankov /Y, It is
shown that the types of soliton interaction are the same as
for solitons in the range of the Klein-Gordon equation with
cubic non-linearity/2/.

The model under investigation consists of a complex ¢ -
field (with the zero boundary conditions at both infinities)
interacting with a scalar pn-field with a degenerate vacuum:
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This system of equations may be obtained from the variation
principle & (£dxdt = 0 with the Lagrangian density

jod 1t 1241
- ]

8 2,1, 2 2 2 2 %, 01412,
vl T f = Tx R AR

2 't B

The energy density corresponding to (2) is
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Suppose that a particular solution of (1) in the soliton rest
frame is as follows:
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Because of the U(l) symmetry of the model the 'charge"
of the soliton

Q=0 f o2 dx (5)
is a constant of motion.
Particular solutions of (1) are as follows:
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These solitons may be considered as a “bag'" of the n -

field in which charged "mesons" of the ¢ -field are lo-
/1/
cked .

To determine the stability region of the charged soliton
we use the so—called theorem of the Q-stability, proposed
by Makhankov/2/. It reads as follows:
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Putting (5) in the last expression we get the following
condition for the soliton-~like solution (6) to be stable:

0.5< lwgl < or 0<v<y3/2 = 0.866.

<0, (8)

The stability region of (6) can be found from the minimum
energy density condition &2} | >0, where
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gions are 0<v<—L(2— ! ) for ¢ and 0<v< 0.75
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for n. The stability region of the solution (6) is defined
by the following inequalities:

)

Fig. The types of quasi-
soliton (6) interactions in
ll the (v, g) plane. I-I11I, VI-the
regions where the singularity
of the field arises before
y the quasi-solitons interac-
tion; IV - the region where
the singularity of the field
l” arises as a result of the in-
teraction of the quasi-soli-
tons; V - the region of the
quasi-elastic interaction.

g<(1-v5)/4. (10)

As is shown in theFigure the stability region of the solu-
tion (6) found from the minimum energy density condition is
smaller than calculated from the e/

0< v< 10/(10 + 3/ 2(1-g)),

Q-stabily theorem’* .

3. Dynamical properties of the quasi-solitons (6) were stu-
died by means of the computer simulation. Using Lorentz
transformation we can easily obtain the quasi-soliton moving
with velocity Vv (in the light velocitv units) along the x-
axis:
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n = —2—0*'—2 (—g— y(x-vt)),

where ¥ being the relativistic factor and w=y1-v.

Depending on the frequency v and the coupling constant g
the following three types of the quasi-soliton interaction
take place in the framework of the model (1) (see the Figure):

I) quasi-elastic and weak inelastic interaction;

11) arasing of the field singularity at the moment of the
quasi-solitons overlapping;

I11) arasing of the field singularity before the quasi-
solitons interaction.

We want to stress that the quasi-elastic interaction takes
place in the stability region of the single quasi-soliton and
the collapse occurs on the boundary of the stability region
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before the interaction of quasi-solitons. As a result of the
collisions of quasi-solitons in the region IV (see the
Figure) the collapse of the quasi-solitons arises at the mo-

ment of the quasi-solitons overlapping, when there is maxi-
mal disturbance of each of them.
In the case of the phase shift Af=nx the elastic inte-

raction of quasi-solitons becomes of the repulsing charac-
ter. Otherwise at Af £ 0 the amplitudes of the quasi-solitons
pulsate and the field configuration becomes asymmetric. When
@ + 1(v » 0) the region of the elastic interaction of the
quasi-solitons expands (see region V in the Fig.). So as a
result of interaction of "heavy" solitons (6) (i.e., with
large amplitude) field singularity arises in contrast with
"light" quasi-solitons elastic interaction.
Computer simulation indicates that the interaction process
slightly depends on the quasi-solitons velocity (0.09 < v<0.9).
The types of quasi-solitons interaction in the framework
of the model (!) are nearly the same as found earlier in the
range of the Klein-Gordon equation with cubic non-linearity’3/
According to above discussion we come to the conclusion that
the quasi-solitons are of the pulson type and are stable for
the limited range of v, 8.

The authors express their gratitude to Prof. V.G.Makhankov
for his suggestion to study this model and valuable discus-
sions.
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Cayr6exos C,C., lliauka A.B, E2-82-413
YCTOAYHBOCTL M AHHAMHYeCKHe CBOIICTBA COJIMTOHOB B paMKax
OBYXNOJIeBOH MOMAENH KJIaCCHYECKOH TeopHH mojis

HccnenoBansl guHaMHuecKHe CBOHCTBa M HalifeHa o6J1acTh yCToOH-
YHBOCTH COJIMTOHONOAOGHOTI'O pemeHHA OBYXIOoJIeBOH CKalsapHOM MopelH
KJTaCcCHYEeCKOH TeOpHH noisa. [IMHAMHUYeCKHe CBOHCTBa KBAasHCOJIHMTOHOB
H THIbB HX B3auUMoAeHCTBHII H3y4YeHb MeTOLOM UYHCJIEHHOT'O 3KCHepHMeH-
Ta, [lokasaHo, YTO THHOb B3IAHMOOEHCTBHH KBA3HCOJIMTOHOB NpaKTHUeC—
KH CoBNajgawT c.obHapyXeHHbIMH paHee NPH HCCIIeOQOBAHHH CBOHCTB

NyJbCOHOB B paMKax ypaBHeHusa KieitHa-I'opmoHa ¢ Kyb6Hueckoil HeJlH-
HeHHOCThbIo,

Pa6ora BhmonHeHa B JlabopaTOpPHH BbIMHCIIHTEJIBHOH TeXHHKH H
aBToMaTH3anuu OUAH.
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Stability and Dynamical Properties of Solitons in the
Framework of Two-Field Model of the Classical Field Theory

The stability region of the soliton solution in the range
9f tonfield scalar model of the classical field theory was
1nvest%gated. Dynamical properties of solitons and the types
of soliton interaction have been studied by means of the
gomputer.simulations. It is shown that the types of solution
1nt?ract10n are the same as for solitons in the range of the
Klein-Gordon equation with cubic nonlinearity.
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