

Ооъединенный ПНСТИТУT ядерных исследований

дубна
V.M.Dubovik, S.V.Zenkin*

What quark theory gives FOR THE POTENTIAL DESCRIPTION OF THE PARITY VIOLATION IN NS INTERACTIONS

Submitted to XXI International Conference on High Energy Physics , (Paris, July, 1982).

In the last years the development of the quark theory has started the calculations of the parity-violating (PV) $\pi N N$, $\rho \mathrm{NN}, \omega \mathrm{NN}$ interaction constants:

$$
\begin{align*}
& H_{\mathrm{MNN}}^{\mathrm{PV}}=\frac{1}{\sqrt{2}} h_{\pi}^{1} \overrightarrow{\mathrm{~N}}(\vec{r} \times \vec{\pi})^{s} \mathrm{~N}+ \\
& +\overline{\mathrm{N}}\left[h_{\rho}^{0} \vec{r} \vec{\rho}_{\mu}+h_{\rho}^{1} \rho_{\mu}^{\mathrm{S}}+h_{\rho}^{2} \frac{\left(3 r^{3} \rho_{\mu}^{\mathrm{s}}-\overrightarrow{\mathrm{r}} \vec{\rho}_{\mu}\right)}{2 \sqrt{6}}\right] y^{\mu} \gamma_{5} \mathrm{~N}+ \tag{1}\\
& +\overline{\mathrm{N}}\left(h_{\omega}^{0} \omega_{\mu}+h_{\omega}^{1}{ }^{3} \omega_{\mu}\right) \gamma^{\mu_{\gamma_{S}} \mathrm{~N}} .
\end{align*}
$$

These constants enter into the PV NN potential and are determined by the matrix elements $\left\langle\mathbb{M N}^{\wedge}\right| \mathcal{H}^{\mathrm{PV}}|\mathrm{N}\rangle$, where $\boldsymbol{H}^{\mathrm{PV}}$ is the effective Hamiltonian of the PV quark-quark interactions with $\Delta \mathrm{S}=0$.

In the standard $\operatorname{SU}(2)_{L} \bullet U(1)$ electroweak model (SEWM)

Here $c_{i}^{\mathrm{f}}=\mathrm{c}_{\mathrm{i}}^{\mathrm{T}}\left(\sin \theta_{\mathrm{c}}, \sin ^{2} \theta_{\mathrm{w}} ; a_{\mathrm{g}}\left(\mathrm{m}_{\mathrm{c}}\right) / a_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{w}}\right), \quad a_{\mathrm{g}}(\mu) / a_{\mathrm{g}}\left(\mathrm{m}_{\mathrm{o}}\right)\right)$
are coefficient functions depending on the structure of th weak and quark-gluon interactions (μ is a renormalization point of the latter); \mathcal{O}_{1}^{2} are local operators; $1=0,1,2$ is 1 isotopic index; the index $r=\underline{27},(S, A, 5,6) \in \underline{8},(1 S, 1 A) \in \underline{1}$ denotes unitary and colour properties of the operators \mathcal{O}_{1}^{f}. The quark structures of the vertices (1) are shown in Fig.1.

The problem of evaluation of the factorizable (F)diagrams (Fig.la) has been solved in ${ }^{\prime \prime /}$. However, it is known that th: F parts of h_{ρ} and h_{ω} cannot explain the experimental data (see, e.g., ref. ${ }^{1 / 2 /)}$). As we have shown in ref. ${ }^{/ 8 /}$, the same also concerns ($\left.h_{\pi}^{1}\right)^{F *}$.

[^0]
M

 diagrams.
b

c

d

Fig. 1. The black circle stands for $\mathcal{H}^{\mathrm{PV}}$; (a) is the factorizable diagram; (b)-(d) are the nonfactorizable

The calculation of the nonfactorizable (NF) diagram contributions is a more complicated problem. For the $\pi \mathrm{NN}$ vertex it has been solved in the soft-pion approximation $/ 4,3 /$, which allows the reduction of the NF part of the amplitude $\left\langle\pi N^{\prime}\right| \mathcal{H P V}^{\mathrm{PV}}|\mathrm{N}\rangle \quad$ to the one-particle matrix element of a local operator. That reduction is impossible for the vector mesons and one has to apply to other approaches. Recently a unified treatment of h_{m} has been made $/ 6 /$ in the framework of the $\operatorname{SU}(\theta)_{w}$ symetry and nonrelativistic quark approximation. In this paper the NF contributions have been expressed through two parameters found from the known S-wave amplitu-

mental data, there have been introduced
s imitating the $\operatorname{SU(6)} \mathbf{w}$ symmetry breaobtained in ref. ${ }^{/ 5 /}$ are known as
Hely used to evaluate the PV effects E us show that the constants near the ained without any fitting parameters. ased on the following approximations: eduction of the operators \mathcal{O}_{1}^{2} and the $B>$, that permits us to factorize the $B=\left\langle M B^{\prime}\right| O_{i}^{I}|B\rangle N F \quad$ in the following $B^{b^{\prime}}$ MB' $^{\prime}$, where ${ }^{a_{M} M_{B}}$ is the lour part of $M_{M B \prime} B_{B}$, and $b_{M B \prime} B_{B}$ is $M_{M B}{ }^{\prime}{ }^{\text {B }}$;
which implies all the spatial parts for all $M \in \underline{35}$ and $B^{\prime}, B \in \underline{56}$, i.e.,
the contribution of the NF diagram

When calculating the matrix elements of the antisymmetric operators \mathcal{O}^{A} and $\mathcal{O}^{1 \mathrm{~A}}$, which determine the NF parts of h_{ρ}^{0} and h_{ω}^{0}, we take the value of b from the calculations of the S-wave amplitudes of nonleptonic hyperon decays performed in the MIT bag model ${ }^{/ 4 /}$. In this case b is proportional to the overlapping integral of quark wave functions $I_{\text {bag }}=$ $=\int_{0}^{R}\left[u^{2}(r)+v^{2}(r)\right]^{2} d^{3} r ; \quad$ its value equals $I_{b a g}=2.6 x$ xi0 $0^{-3} \mathrm{GeV}^{3}$. The matrix elements of the mixed operators \mathcal{O}^{6} and \mathcal{O}^{5} should be handled with more carefully, because for $\Delta S=1$ they determine the difference $2\left(\Lambda_{-}^{0}\right)^{N F}-(\Xi)^{\mathbf{N F}}$. In all the quark models its value is opposite in sign with the experimental results *. Therefore, while calculating the NF contributions to h_{M} with $\Delta I=1$, determined by operators \mathcal{O}^{6} and \mathcal{O}^{5} we express b through the experimental value 2. ($\left.A_{-}^{0}\right)^{N F}-\left(E_{-}^{-}\right)^{N F}$. O^{s} The matrix elements of the symmetric operators - ORZ, \mathcal{O}^{s} and $\mathcal{O}^{\text {IS }}$ vanish for the $N F$ diagrams by virtue of the antisymmetry of the quark wave functions in baryons (the Pati-Woo argument).

As a result, we obtain the following expressions for $\left(h_{M}\right)^{N F} \quad\left(O_{1}^{\text {P }}\right.$ are defined as in paper ${ }^{\prime / 3}$):

$$
\begin{equation*}
\left(h_{\pi}^{1}\right)^{N F}=-\sqrt{\frac{2}{3}} \frac{\left(c^{8}-c^{5}\right)_{\Delta S=0}}{\left(c^{6}-c^{5}\right)_{\Delta E-i}}\left[2\left(\Lambda_{-}^{0}\right)^{N F}-\left(E_{-}^{-}\right)^{N F}\right] \tag{3a}
\end{equation*}
$$

$$
\begin{equation*}
\left(h_{\rho}^{\sigma}\right)^{N F}=-1 \theta \frac{0}{i_{\pi}}\left(\frac{1}{\sqrt{3}} c_{0}^{A}+c_{0}^{1 A}\right) I_{b a g}, \tag{3b}
\end{equation*}
$$

$$
\begin{equation*}
\left(h_{\rho}^{1}\right)^{N F}=-\frac{\sqrt{2}}{3}\left(h_{\pi}^{1}\right)^{N F} \tag{3c}
\end{equation*}
$$

$$
\begin{equation*}
\left(h_{\rho}^{2}\right)^{N F}=\left(h_{\omega}^{0}\right)^{N F}=\left(h_{\omega}^{1}\right)^{N F}=0 . \tag{3d}
\end{equation*}
$$

Here $\left(\Lambda_{-}^{0}\right)^{N F}$ and $\left(E_{-}^{-}\right)^{N F}$ are ($)^{\text {oxp }}-()^{F}$. Let us emphasize, that expressions (3a) had been obtained in $/ 8 /$ without applying to the nonrelativistic picture.

[^1]The values of the constants h_{M} (the renormalization point of strong interactions is $\mu=0.35 \mathrm{GeV}$)

h	$F \times 10^{7}$	NF $\times 10^{7}$	$(F+N P) \times 10^{7}$	"best valuea ${ }^{n} \times 10^{7}$
h_{π}^{1}	0.055	3.5	3.6	4.6
h_{p}^{0}	11.0	-21.1	-10.1	-11.4
h_{p}^{1}	0.13	-1.7	-1.6	-0.19
h_{p}^{2}	-7.7	0	-7.7	-9.5
h_{ω}^{0}	-2.6	0	-2.6	-1.9
h_{ω}^{1}	-2.1	0	-2.1	-1.1

The total values of the constants h_{M} are defined by the sum $h_{M}=\left(h_{M}\right)^{F}+\left(h_{M}\right)^{N F}$ and are listed in Table 1. In the last column for comparison we present the "best values". Recall that in ref. $/ 5 /$ the "best values" were calculated with introducing some narametors, imitating tho montribution of the quark loops (of the quark sea) to the matrix elements. In our calculations the quark loops contributions are taken into account through the coefficient functions c_{1}^{f} of the effective Hamiltonian (2) ("penguin" terms).

For comparison with the experimental data we use the nuclear matrix elements from paper ${ }^{1 / 7}$. Our results are given in Table 2. As the constants h_{M} and the nuclear matrix elements are calculated up to the factor ~ 2, one may speak about a qualitative agreement of the theoretical and experimental results. However, a final conclusion requires a more exact experimental information, especially from the reaction with $\Delta I=1$.

We turn particular attention to the ratio of the F to $N F$ contributions in h_{π}, depending directly on the values of the intriguing parameters - the masses of confined quarks. There is a possibility to differ the contributions by measuring h^{1} (see Table 1). Therefore, the processes with $\Delta I=1$, where the π-exchange is forbidden by selection rules, (e.g. NN -reactions ${ }^{/ 8 /}$) are of a great experimental interest.

Table 2

The experimental and calculated values of the observables (Obs).

Reaction	Obs.	ΔI	Exp.	Theor.
$\begin{aligned} & \vec{p}+p \rightarrow p+p \\ & (\mathrm{E}=15 \mathrm{MaV}) \end{aligned}$	A_{L}	0,1,2	$(-1.7 \pm 0.6) \times 10^{-7}$	-1.6×10^{-7}
$\vec{n}+p \rightarrow d+\gamma$	A_{γ}	1	$(0.6 \pm 2.1) \times 10^{-7}$	-0.38×10^{-7}
$n+p \rightarrow d+\gamma$	P_{γ}	0,2	$<0.5 \times 10^{-6}$	0.043×10^{-6}
${ }^{16} \mathrm{O}\left(2^{-}\right) \rightarrow{ }^{12} \mathrm{C}+\alpha$	$\pm \sqrt{r_{\alpha}}$	0	$(10 \pm 0.1) \times 10^{-5}$	1.1×10^{-5}
${ }^{18} \mathrm{~F}\left(\mathrm{O}^{-} \rightarrow 1^{+}\right)$	P_{γ}	1	$(-0.7 \pm 2.0) \times 10^{-3}$	-3.4×10^{-3}
${ }^{19} \mathrm{~F}\left(\frac{1}{2}^{-} \frac{1}{2}^{+}\right)$	A_{γ}	0,1	$(-8.5 \pm 2.6) \times 10^{-5}$	-19.6×10^{-5}
${ }^{21} \mathrm{Ne}\left(\frac{1}{2}^{-} \rightarrow \frac{3}{2}+\right)$	P_{γ}	0,1	(2.3さ2.9) $\times 10^{-3}$	-27.6×10^{-3}
${ }^{44} \mathrm{~K}\left(\frac{7}{2}^{-} \frac{3}{2}^{+}\right)$	P_{γ}	0,1,2	$(2.0 \pm 0.4) \times 10^{-5}$	1.9×10^{-5}
${ }^{175} \operatorname{Lu}\left(\frac{9}{2}^{-} \rightarrow \frac{7}{2}^{+}\right)$	P_{γ}	0,1,2	(5.5さ0.5) $\times 10^{-5}$	6.1×10^{-5}
${ }^{181} \mathrm{Ta}\left(\frac{5}{2}^{+} \frac{7}{2}^{+}\right)$	P_{γ}	0,1,2	$(-5.2 \pm 0.5) \times 10^{-6}$	-5.5×10^{-6}

REFERENCES

1. Donoghue J.F., Phys.Rev., I976, D15, p. 194; Vainshtein A.I., Zakharov V.I., Shifman M.A. JETP, 1972, v. 72, p. 1275.
2. Dubovik V.M., Zamiralov V.S., Zenkin S.V. Yad.Fiz., 1981, v. 34, p. 837.
3. Dubovik V.M., Zenkin S.V. JINR, E2-82-195, Dubna, 1982.
4. Donoghue J.F. Phys.Rev., 1976, D13, p. 2064.
5. Desplanques B., Donoghue J.F., Holstein B. Ann.Phys., 1980, v. 124, p. 449.
6. Babaev Z.R. et al. Comm. IHEP, 81-164, Serpukhov, 1981
7. Desplanques B. Nucl. Phys., 1980, A335, p. 147.
8. Dubovik V.M., Tosunyan L.A., Zenkin S.V. JINR, E2-80-671 Dubna, 1980; Dubovik V.M., Tosunyan L.A. Pis'ma JETP, 1981, v. 33, p. 68

Received by Publishing Department
on May 241982.

Дубовик В.М., Зенкин С.В. Что дает кварковая Е2-82-370 теория для потенциального описания несохранения четности в NN взаимодействиях

В рамках кваркового описания мезон-нуклонных вершин рассчитаны константы нарушаюших четность π NN, $\rho \mathrm{NN}$ и $\omega \mathrm{NN}$ взаимодействий. Вычисления проведены в стандартной электрослабой модели $\mathrm{SU}(2)_{\mathrm{L}} \otimes \mathrm{U}(1) \quad$ с учетом КХД поправок. Полученные результаты находятся в разумном согласин с экспериментальными.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1982

Dubovik V.M., Zenkin S.V. What Quark Theory Gives E2-82-370 for the Potential Description of the Parity Violation in NN Interactions

The constants of the parity violating (PV) $\pi N N, \rho N N$ and $\omega N N$ interactions are calculated in the framework of quark picture based on the standard $\mathrm{SU}(2)_{\mathrm{L}} \oplus \mathrm{U}(1)$ ©U(3) ${ }_{c}$
model. Our constants are close to the well-known "best values", which provide a successful fit to the low-energy PV experimental data.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

[^0]: *As is shown in ref. $1 / 3 /$ the known estimates of $\left(h_{\pi}\right)^{\text {F }}$ are overstated because of the use of the chiral symmetry breaki parameters instead of the effective quark masses in the final expression.

[^1]: * Such a discrepancy may be caused not only by approximations of the quark models, but also by the existence of the righthanded hadronic currents different from SEWM currents ${ }^{\prime 8 /}$.

