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1. Introduction

In the present paper we shall discuss several methods for
the description of the topological vacuum degeneracy in gauge
theories/1/. The main conclusion of the paper consists in that
the nontrivial topology of the nonAbelian gauge symmetry group
leads to the infrared renormaligation of ,S -matrix in QCD.

The topological degeneracy of the classical vacuum in Yang-
~Miils theory has been firat discovered in ref./1/. It stimula-
ted a great amount of works of papers investigating the vacuum
degeneracy in QCD by semiclassical methods (see review/2 )e

The essence of the vacuum degeneracy consists in the dis-
crete ambiguity of the phase of nonAbelian gluon fields. The
manifold of the classical gluon vacua has the same properties
ag that of one-dimensional paths on a two-dimensional plane
with a hole: each path belongs to one of the equivalence classes
characterized by an integer giving the number of windings
around the hole.

There is the same ambiguity of the phase of the wave-func-
tion in the experimentally observable Aharonov-Bohm effect, 1i.e.,
electron scattering on an infinitly long and thin solenoid. All
electron trajectories lie in the space, where the magnetic field
1s equal to zero and the scattering occurs owing to the point
of the discrete variation of the phase.

The phase jumps lead to the undamped current in the ground
state of a superconductive ring around the solenoid, that is the
essence of the Josephason effect (if we abstract ourselves from
the way of preparation of the phase jump). Our task is to show
that the nontrivial topology of the gauge fields leads to non-

vanishing vacuum fields in the ground state of the quantum gauge
theory (i.e., the field Josephson effect). The cause of this effect
is the nonlocalizability of the "wave function" which is given in
the whole field space and "feels" its topological structure/S/.

In section 2 we shall consider in detail the topological
vacuum degeneracy in the two-dimensional QED and we shall show
that the same local dynamics (Hamiltonien and the local gauge
condition) with different topological properties of gauge
transformations leads to different physical pictures in quantum
theory.

In section 3 we try to answer the question of why the semi-
classical description of topological vacuum degeneracy does not
work.

In section 4 we discuss the vacuum degeneracy in QCD start-
ing with the identical definition of the physical vacuum both
for Abelian and nonAbelian theories.

2. Quantum Electrodynamics in Two-Dimensional Space-~Time

Let us consider first the simplest gauge field theory, the
free "electromagnetic field", in the one-dimensional space

¢oldbdx AR5 - R =0A-2A (1)

ooy & ‘ot 7 ' 04 [P 100
From the point of view of the usual four-dimensional QCDsy,,
the theory (1) has no physical degree of freedom as the free
field is transverse and the transverse field is absent in the
one-dimensional space.

We shall show here that this result is not always correct
and depends on the gauge symmetry group.

Theory (1) is invariant under gauge transformations

A== Aulxt)+ Gu A (x1) (@)

We use this ambiguity for removing the temporal field component

A=A+ JA=0 3

up to the integration constant A (X)

A(xt)=- j* dt A, (X t)+ Ax).
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As a result, we obtain the Lagrangian

L=—“'jdxA , A«'z'ﬁlsg—/'h:ao/}., (4)
which is invariant under the stationary gause transformations
(xt) "*A: (x,t)=A.(xt)+ ) A(X). 59

These transformations by definition of gauge fields belong to
the gauge group U(1)
..4, A(X)

A (xt)= 2”0‘)(:4 (xt)+ LD) (6)

and have to be chosen in the class of nonsingular functions
vanishing at infinity

cA(x)
beme ™ =1 - A(Ee==)-AC=)=2Tn
7 =+ ( :
[ X|oo n=x(014,2,..).
The total gauge group of nonsingular transformations differs
from the one of QED 544 by a discrete ambiguity. The function

(xpitA(x)E is a map of line R (1) into circle (/(1). The map
13 cﬂarﬂcierlzea Dy tne inaex L'k} carlea tne aegree ol mapping,

(7)

which indicates how many times the line R (1) turns around U(1).

Therefore the total gauge group is a product of the gauge group
G = (5, end the group of integers £ :

n-o
G =GxEz
The classical vacuum R é)A is degenerated in the number (n=
zrfdxa A(X)). A8 is ahown in ref. 1/, the Yang-Mills theory
gauge symmetry group has the same topological properties.
For both theories there is a relativistic invariant quan-

tity, called the Pontryagin index, which for gauge fields 6&A= A4

as t =% > has a form of the difference of the degrees of
mapping. In our case the Pontryagin index is defined by ‘the
expression

VIA]= o= [dxdtF,= (®)

o tzteo
:#]dtg%[]dx'q‘]=wxn‘/¢_- =n,,-n,*0 9

The quantization of the theory (4) consists in the change of the
electric field by its operator

A~ 4+ 585-Ee0 ; [E0, AR~ 186y o

L

and in the solution of the Sghrodinger equation
Y . . 1 2
HW¥(A)=E¥(A) o H-= -‘?—fde (11)
and the gauge invariance condition

Y= Y(R) ; n=012, . (12)

The last equation means also the invariance under the infinite-
simal transformations from subgroup C}o

S = fdx ® THB 9 Xtx=0 = JEW(@R)=0 (13)

Eq. (13) is an analog of the transversality condition in QEDg,,.

T+ 10 enav +n ochaw that tha samman anlutian af ans f44Y (42} 4
By » cshoaw that thae samman go_uTl2Zn 22 232. i sviar ==

a continual product of plane waves with the same momentum

Y(R)=cexp [ikfaxA)=coxp{tkn),
N =J‘dx 'q' , (15)

where ( is a normalization constant, k 1is an eigenvalue
of the electric field operator, which does not depend on the
coordinate X, due to condition (13), N[A] 1s the collective
variable, which is transformed covariantly under the nontrivial
topological transformations (6,7):

N[A™]=N[A]+2mm =T "N
T = exp (2 VdN).

(16)




Thus, the gauge invariance condition may be written in the ope-
rator form

TY¥(N) = ¥(N+2F) =Y (N). (17

From the point of view of the usual QEDy 4 the solution (14)
is physically unacceptable as the constant electric field
appears without external sources of the field (for example,
~ plates of a condensator). If we limited ourselves to the
transversality condition (13) and the topologically trivial gauge
tranasformations from (}o , the contradiction would consist in
that we should obtain the representation of the group of trans-
lations (plane wave) without the corresponding group. Therefore
system of equations (11), (13) has a trivial solution
HY =evy e~ weC - ¢ -
EV=0 > 0

in the correspondence with results of the usual quantization
of QEDg,q ’%/.

However, in the theory with the topological vacuum degene-
raocy (8), (17) both contradictions disappear as the group of
tronalationel dmvorionce sxicts and ks Soaditisn {3V) weaus
physical identity of points N N+R% ..., i.e.,the system is
closed w,r.t. N. In the closed system the collective excitations
exist and correspond to the "“circular' motion of the field with-
out the external sources. This situation is realized in quantum
liquids /9'10'11/. Thus, the discrete gauge ambiguity leads to

a physical picture different from (A)

JE¥=0 B> Y=ce (B)
Ty=ey =%(014,2,..).
The condition (17) is here written in a covariant form where O

is called the quasimomentum, and € is the number of the Bril-
louin gone. Vacuum of such a theory (which is usually called the

B-vacuum) ia the stationary electric field with the finite energy

density 8/I.dx _ ‘(72 o

There is a charge confinement in the theory as stationary
states of the charged particles in the electric field are absent.

It is not difficalt +to be convinced of that the solution
(14) describes the infrared dynamics and does not depend on the
choice of gauge.

It is known that the clasical and quantum dynamics of gauge
fields are completely defined by the action functional

S = & [dtdxfy (19)

given on class%cal solutions of equation for the component
(see rerg.’/12+13/)

S5 <0 b AAdAA-

The temporal component, which has no canonical momentum, in prin-
ciple, cannot be considered as & quantum operator in contrast
to the component 94 . Therefore eq. (20) is treated as an
auxiliary condition or a constraint equation.

The general solution of eq. (20) is

AL 0)=Cot)+ Ci(x + e’ oy Ay (X)), @

where C_(t) and C,(t) ere the integration constants. Prom
eq., (21) we obtain for FO4 the expression

F'01 (xt) =-C, (¢)- (22)

If we neglect the infrared singular solutions of the homogeneous
eq. (20)

9, AO('LA)‘):D b Ao(mjf Co (J() + C'(t)x , (23)

we obtain for the action (19) zero: S =( that corresponds to
the usual electrodynamics.

However, the condition of the topologicel vacuum degene-
ration (9)

Y =5k [dtdxfy, = o [dtN == 5% [dte,@)(fdx) 0

leads to the Lagrangian

-4



L = 4 R[]

expressed in terms of a "covarient variable"

N =-C,t)(Jdx) (25)

It is easy to show that the results of quantization of the
theory (24) are completely equivalent to the ones obtained in
the gauge H‘,-‘-O .

Thus the topological vecuum degeneration in the considered
theory is described by the introduction of singular infrared
fields into the explicit solutions of the constraintequation/zo/.
Therefore the constructicn of the classical Lagrangien in
terms of the physical variables requires an infrared regulari-
zation ([dx)<co . The removal of the regularization in eq. (24)
leads, generally speaking, to the known trivial result G =)
However, the size of the region of validity of the quantum
theory [ @ » “hich is defined by the effective mass in Lag-
ranglan (24) rnrv(fdx>'4 , coincides with the macroscopic size
of the space, where the gauge field is given

~ (fdx) (26)

Therefore, no classical analogy of infrared topological dyna-
mica does exist. It is physically clear, as we describe the "zero"
frequence field excitation.

3. Topological Vacuum Degeneration in QCD (Instantons)

The topological vacuum degeneration of gauge fields was
first considered in the nonAbelian theory
4 _‘a a abc b AC
""_Jd ( ) Fu OR ‘Q»’A/u+?& @HAQ (1)

In ref./1/ classical solutions with a finite Euclidean action
and zero energy (instantons) were found with the global charac-

teristics, the Pontryagin index,

SILIEE: fdxp“ RiA Wjdxﬁ R

¥ -4 *p
Fi:ﬂ TR E%/40¢13 F1 J
E° B? —are electric and magnetic fields

. RS-V AL W)= - g €AY,
7 &

The instantons in gnuge Ho =0 are transitions between clas-
sical vacua

im H; (;,t) :U(‘m)(;)@ l)(;-r:) (;); A£=9 ;?a '

f-»_too

T
o g
(+

(3)

o
g
n

(4)

where the matrix y(x) satisfies the condition

dim U, (x)=1. (5)

| X|--en
It is lmown”’zl that SU(2) -valued matrices U"(f) and
the condition (5) define the regular (smooth) mapping of space
R(3) into SU(2) and are characterized by the integer
index (degree of mapping)

n - (,J}\,C 4 A./nr—‘ W wl"/v r’ ‘v\/ -1 B \—-\
ie 121"”“ TG of jUNU Ay

-~
[{a)
S

indicating how many times the space R(3) turns around S|J(2) .
The total group of the gauge transformations

A (%)= V(R)(A+ ) (%)™ @

is topologically disconnected and it is a product of a "small"
gauge group and the infinite cyclic group of all integers

G = G(n_:o)xz :

The classical vacuum is degenerated in number (6). For fields
with asymptotics (4) it 1s easy to show that the expressionm (2)
has the form of the difference of the degrees of mapping(}k07n99

Y = [dt d’x 9, A [5% B: 1= [dtd X o) A -
- (SNIA) A )= [dt AN =ng -1y » ®



where N [H] is a functional

NIA - g o€, (FAAA EERHA) o

which is equal to the integer (6) for the gauge fields (4).
According to (8) a variational derivative of the functional N
equals magnetic field (3)

CS‘C%N( ;= 8'.7' B (x). (10)

ILike the "collective variable"™ N in section 2, the functional
(10) is transformed covariantly under the topologically nontri-
vial gauge ’cransfc;:rma’ci.on/1

N[A™] =N[A] +n =(T)"NA] a1
T =exp (%N) dN =jdsx % JA . (12)

From the point of view of invariance principles this theory
does not differ from OED:'1
of the quantum nonAbelian theory with transformation group
G=G,XZ -

The investigation of the topological quantum~-vacuum dege-
neration is usually based on the analogy with quantum mecha-
nics and on the interpretation of instantons as tunnellings
between different classical vacua. In quantum mechanics the
semiclassical expansion of the (Green function around these solu-
tions allows one to calculate the ground atate energy. The emall
parameter of the expansion (o() is proportional to the diffe-
rence of the ground state energy (Eo) and the tunnelling energy

~ AE = E’o__ E—‘l' : (13)

. The nrohlam 1a tha sanatwmintdian

To caloculate AE , one takes the limit of the Green function
spectral ropresontation as t -

lim A5 00l ™A 6= &mz:e”‘vf [A"’]?/f[ﬁ‘”]

T—. [ -]

(14)
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whera '% , 'LIJ: are physical solutions of the system of equations

ey () e

A A'.' = Q 1 d‘ 2
V.E ¥ 2 :T AA (82)
TY=¢ ¥ (8)

Thig system differs from the analogous one (B) in section 2 by
the transverse degrees of freedom with the potentiml of oascil-
lator type V(A)‘-‘-Bz/g and by the dependence of the covariant
"collective variable" N[AJ on the oscillator transverse va-
riebles locally, at each point of space (10). According to equa-
tion (10) the operators of energy and topological translation
do not commute ['T' H]#O . These operators may have common eigen-
functions, if only an eigenvalue of one of these operators is
equal to zero. Such en operator may be only H (as Ie‘el =4 ).
Therefore we have

E =0. (15)

However, this eigenvalue is unphysical. It is easy to conatruct
the corresponding wave function. using ea. (10)

W = exptiferl *GIN[AL} 5 (2-7r€+e)=iﬁf§~ (16)

The plane wave (16) is not normalizable in the field space.
Thus the system of equations (B H~(8) has no physical solution
and the Green function (14) is identically equal to gzero. One
can say that the quantum tunnelling energy STAO which is an
eigenvalue for the dual wave function (16) ( E?,V B‘q,/) is
situated in the deeply unphysical region of the posaible spectrum
for infinite number of oscillators ( £ = €,= ). The amall
parameter of the instanton approximation in gauge theory does
not exist. This fact is beginning to be more recognized by the
followers of the semiclassical approach 2

The absence of exact phyasical solutions of system (B ) does
not still mean the same for the system

RY = EY (")

11




The properties of the infrared gluons resemble more those
of nonideal Bose-gas in the microscopic Bogolubov theory of su-
perfluidity /10/.

The difficulty of the physical interpretation and under-
standing of the obtained results consists in the extension of
the quantum representations to the whole macroscopic observable
region, where the nonAbelian fields are given. Following the
quantum liquid ideology we should propose the unique macroscopic
wave function for the observable world, which is defined not
only by the local equations, but also by the symmetry group
topology

Y~ exp {Lpo} P=(25¢ +8)
£=+(0,1,2,.);, 0<0<T

We have shown in section 2 that in the "quantum world" the
classical fields with internal singularities without external
sources may exist, that is forbidden in the classical Yang-Mills
theory. These singularities are conditioned by "rotation" of
the system of the nonAbelian fields as a whole over the circu-
ias “zero” VAriaoie Q.lne equations of quantum hydrodynamics for
such QCD suprefluid vacuum may be written in the form

Ei~Vo eY
B~V ; VE:=VB=V'0=0, )

where E and B are electric and magnetic vacuum fields
and (P 1is the singular classical sclution of the constraint
" equation (1). Equation (3) is a consequence of the stationarity
of the quantum liquid and equation (4) follows from the relati-
vistic covariance (if one neglects the interaction with matter
fields, then the electric and magnetic fields should enter into
the theory on equal footing).

The unique solution of eqs. (3), (4), satisfying the condi-
tions of isotropy and stability (i.e., the quasiparticly being
energetically disfavoured) is the singular field

a 4 —a P ' i
(A/-l)vuc— ? Z/u\? 9 gn’f y DP‘O (5)

14

tkot Bdink,T . Y (6)
t SnKe & , T =1x]

pet
Z Q: EOCf/u\?‘.- (.'30./4 ?\)O_ L?G\J?Juo .

This vacuum field minimizes the effeotive action, expressed in
terms of the conserved topological momentum.

As is shown in ref./21/ the physical picture of the asymp-
totic states of coloured fields in such a vacuum is a relati-
vistic version of the hadron bag model/21'22/. The nonAbelian
vacuum represents the manifold of "empty" hadron bag obtained
from (5), (6) by various Poincare group transformations. All
physical observables are equal to zero and in this sense
the physical vacuum is relativistically invariant.

The analogy of the "gize® of a physical
device in QED for QCD 1s the bag size (K_°), , which
should be considered as the phenomenological parameter, because
of the necessity to consider the system "as a whole" (for exampl-
le, for the calculation of singularity parameters in the super-
fluid rotating helium. it ia& nacesaarv tn taka inta arcant tha
macroscopic-rotation energy, vessel sire, and the microscopic
parameter of an average distance between the helium atoms n
i.e.,t0 give a physical mechanism of the infrared regularization
of an expression of the type of [Id%(&@)z]).

In QCD for results to be finite such details may not be
needed, as there are eigenvalues of the topological momentum

(£~ 2%)_4 = Vir

for which the action and the Pontryagin index are finite and
physical results do not depend on parameters and the mechanism
of infrared regularization.

The topological description of gzero mode Q allows one
to make the infrared renormalization in QCD in the spirit of
ref./19/, in which the QED S -matrix is formulated without infra-
red divergences.

The infrared factorigation in QCD , like in QED, is
justified by the general solution of the Dirac equation in arbit-
rary vacuum fields (5); the solution is obtained in ref./23/ vy
the Newman-Penrose method.
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Conclusion

In the paper we have shown that the topological vacuum
degeneration in QCD may lead to the infrared renormelization of
QCD expressed in the redefinition of the classical action by
surface terms. In such a theory the quark confinement emerges
as a macroscopic quantum phenomenon which cannot be obtained by
the renormzroup methods, by the analytic calculation at a com-
puter, or by the exact calculation of the ususl Faddeev-Popov
functional integral.

The confinement might be understood if we proceeded from
the definition of the physical vacuum of any gauge theory as
the manifold of all infrared fields which have no physical ob-
gervables, but the interactions with them must be necessarily
taken into account for removing the infrared catastrophe. (For
example, in QED the infrared divergences are removed in the
long run by taking into account the interaction with all long-
wave photons). Whereas in QED the vacuum is the gas of free
photons, in QCD, cwing to the strong interaction of infrared
gluons, the vacuum is the quantum liquid, singularities of which
form the hadron bags.

P | =Y SO,
The anthavr ia orataful +a B M Bavhashoo AV Do <7,

J.HoTe§Si, and especially Ya.A.Smorodinski for useful discus-
sions.

Appendix

We present the results of the formal calculation of the
nonAbelian action functional on extremals

J%AT, U = (VQAO)Q = (VL h AJQ, (A1)

Into the solution of equation (A.1)
¢ H { yab =) b (A.2)
A =c)p”+ (o) (Zah
o

we include the solution of the homogeneous equation (A.1):
V72¢)=(] with coefficient C (t) , defined by the Pontryagin
index

16

Cinl $E [ Rk 1.3)
Q —J‘dfv 1672 fd XF/:“) F‘ A,=AOEC(t),@°A;] \

Then the action expressed in terms of the topological conserving

variable .
p= 9% = (25l + ©)

5 (5, 396n0) = fete ek (€8 (a1
EE-vo(x);,  B=B-vox,(x)
E'ri,: (CS:J—V‘._Vi"—VJ>Jo AJ 7 B;_z—:')—&(jk ik :

The functionals
x = [O%(E.VD); Az [lx(BVE); Xz [dX(@R) . .6
Owing to the transversality conditions

VE=VB=v(Vp)=0

(A.4)

(A.5)
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Pervushin V.N. E2-82-365
On Topological Vacuum Degeneracy in Gauge Theories

It is shown that the nontrivial topology of gauge fields
leads to the Josephson effect in the field space, i.e., to
nonvanishing vacuum fields. The same definition is proposed
for the physical (infrared) vacuum for Abelian (QED) and
nonAbelian (QCD) theories. The equations and the topological
Josephson effect for the gluon vacuum are discussed.
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