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1. Introduction 

In the present paper we shall discuss several methods for 
the description of the topological vacuum degeneracy in gauge 
theories/11. The main conclusion of the paper consists in that 
the nontrivial topology of the nonAbelian gauge symmetry group 
leads to the infrared renormalization of S -matrix in QCD. 

The topological degeneracy of the classical vacuum in Yang­
-Mills theory has been first discovered in ref./11. It stimula­
ted a great amount of works of papers investigating the vacuum 
degeneracy in QCD by semiclassical methods (see review/21). 

The essence of the vacuum degeneracy consists in the dis­
crete ambiguity of the phase of nonAbelian gluon fields. The 
manifold of the classical gluon vacua has the same properties 
as that of one-dimensional paths on a two-dimensional plane 
with a hole: each path belongs to one of the equivalence classes 
characterized by an integer giving the number of windings 
around the hole. 

There is the same ambiguity of the phase of the wave-func­
tion in the experimentally observable Aharonov-Bohm effect, i.e., 
electron scattering on an infinitly long and thin solenoid. All 
electron trajectories lie in the space, where the magnetic field 
is equal to zero and the scattering occurs owing to the point 
of the discrete variation of the phase. 

The phase jumps lead to the undamped current in the ground 
state of a superconductive ring around the solenoid, that is the 
essence of the Josephson effect (if we abstract ourselves from 
the way of preparation of the phase jump). Our task is to show 
that the nontrivial topology of the gauge fields leads to non-
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vanishing vacuum fields in the ground state of the quantum gauge 
theory (i.e., the field Josephson effect). The cause of this effect 
is the nonlocalizability of the "wave function" which is given in 
the whole field space and "feels" its topological structure/51. 

In section 2 we shall consider in detail the topological 
vacuum degeneracy in the two-dimensional QED and we shall show 
that the same local dynamics (Hamiltonian and the local gauge 
condition) with different topological properties of gauge 
transformations leads to different physical pictures in quantum 
theory. 

In section ) we try to answer the question of why the semi­
classical description of topological vacuum degeneracy does not 
work. 

In section 4 we discuss the vacuum degeneracy in QCD start­
ing with the identical definition of the physical vacuum both 
for Abelian and nonAbelian theories. 

2. Quantum Electrodynamics in Two-Dimensional Space-Time 

Let us consider first the simplest gauge field theory, the 
free "electromagnetic field", in the one-dimensional space 

<:! = frltrlx i f.'
2 =:JA -;:}D. 

J j;'. 'Ot ' Ot v · '1 1 • ·v 

From the point of view of the usual four-dimensional QCD3• 1 
the theory (1) has no physical degree of freedom as the free 
field is transverse and the transverse field is absent in the 
one-dimensional space. 

We shall show here that this result is not always correct 
and depends on the gauge symmetry group. 

Theory (1) is invariant under gauge transformations 

(2) 

We use this ambiguity for removing the temporal field component 

A: : Ao + ~ 1\ = 0 
up to the integration constant J\ (X) 

1\ (x 
1 
t) =- f dt Ao (x') t) + A (x). 

.-......-·....:,...:....:_ --- . . 
:I!.' 

l 
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As a result, we obtain the Lagrangian 

(4) 

which is invariant under the stationary gauge transformations 

AJx,t)-- A; (x,t)= AJx,i) + ~ A(X). (5) 

These transformations by definition of gauge fields 
the gauge group U(-i) 

belong to 

") -I- ;~<(x) A
1
' (x,t) = e~"c""> (AJxJ) + l.cJ1 e 

and have to be chosen 
vanishing at infinity 

JJ C:A(J<.) ·i 
c.l.m e = 
lXI- coo 

in the class of nonsingular functions 

'} 

A ( + oo) - l\ (- oo) = 211 n 
rt = ± ( o, i ~ 2 J ••• ) • 

The total gauge group of nonsingular transformations differs 

(6) 

(7) 

from the one of QED'5+i by a discrete ambiguity. The function 
e.J(pFA(x)I is a map of line R(O into circle U(i.). The map 
~a cnarac•er~zea oy •ne ~naex l'~) ca~~ea •ne aegrae ox mapp~ng, 

which indicates how many times the line R ( {) turns around U( 1) • 
Therefore the total gauge group is a product of the gauge group 

G = G and the group of integers :l. : rt ·'0 ° 
G = Gxc. 

The classical vacuum A," CJ, A is degenerated in the number ( n:: 
=zi.-fdxc9

1
A(X)). As is shown in ref. / 1/, the Yang-Mills theory 

gauge symmetry group has the same topological properties. 
For both theories there is a relativistic invariant quan­

tity, called the Pontryagin index, which for gauge fields cV'" A1 

as t =:!: <><:> has a form of the difference of the degrees of 
mapping. In our case the Pontryagin index is defined by the 

expression 

(8) 
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t. + ..... 

= z~[dt it [JdxA.)= jdxA1 L~.., = '\.,- nc->f 0 
The quantization of the theory (4) consists in the change 
electric field by its operator 

. i \ 1\ -A -- ;:- r5'Arx) = [(x) ~ [E(x) 1 A(Y)] = -Ld'(x->') 

and in the solution of the S~hrodinger equation 

1-l'YI(A) = E 1JI(A) \-1= ~fdxE~ 
and the gauge invariance condition 

n=O,I,2, ... 

(9) 

of the 

(10) 

( 11 ) 

( 12) 

The last equation means also the invariance under the infinite­
simal transformations from subgroup G

0 
• 

1\ 

Jt EV(A) = 0 (13) 

Eq. (13) is an analog of the transversality condition in QED3+i• 

a continual product of plane waves with the same momentum 

?f(A)= C exp (t.kj dx A1 (x)} = C exp { i.kN}, ( 14) 

N=JdxA 1 , ( 15) 

where C is a normalization constant, k is an eigenvalue 
of the electric field operator, which does not depend on the 
coordina"te x 1 due to condition (lJ), N[A) is the collective 
variable, which is transformed covariantly under the nontrivial 
topological transformations (6,7): 

N [A'(rt>J = N [A]+ 21fn = Tn N 

T = exp (2'11 o/dN). 

,) 

(16) 



Thus, the gauge invariance condition may be written in the ope­
rator form 

(17) 

From the point of view of the usual QED'5+i the solution (14) 

is physically unacceptable as the constant electric field 
appears without external sources of the field (for example, 
-plates of a condensator). If we limited ourselves to the 
transversality condition (13) and the topologically trivial gauge 
transformations from (7 0 , the contradiction would consist in 
that we should obtain the representation of the group of trans­
lations (plane wave) without the corresponding group. Therefore 
system of equations (11), (13) has a trivial solution 

Ho/ =E. 'o/}. I=> '<V= c d"'E<v=O E..=O (A) 

in the correspondence with results of the usual quantization 
of QED:s+~ /BI. 

However, in the theory with the topological vacuum degene­
racy (8), (17) both contradictions disappear as the group of 

physical identity of points N, N + 211, .•. , i.e.~ the system is 
closed w.r.t. N. In the closed system the collective excitations 
exist and correspond to the "circular" motion of the field with­
out the external sources. This situation is realized in quantum 
liquids /9, 10 • 111. Thus, the discrete gauge ambiguity leads to 
a physical picture different from (A) 

I=> <f=ce 
LkN 

' 
(B) 

e = ± (o' ~) 2) .. .). 

The condition (17) is here written in a covariant form where 8 
is called the quasimomentum, and e is the number of the Bril­
louin zone. Vacuum of such a theory (which is usually called the 
8-vacuum) is the stationary electric field with the finite energy 
density ~;. - kJt c/ fd.x - 12 ( 18) 
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There is a charge confinement in the theory as stationary 
states of the charged particles in the electric field are absent. 

It is not difficalt to be convinced of that the solution 
(14) describes the infrared dynamics and does not depend on the 
choice of gauge. 

It is known that the clasical and quantum dynamics of gauge 
fields are completely defined by the action functional 

S = + S d t d X Fo: ( 19) 

given on classical solutions of equation for the component 
(see refs. 112

•
131 > 

J %
0 

= Q f=> d,' Ao = J. do A, (20) 

The temporal component, which has no canonical momentum, in prin­
ciple, cannot be considered as a quantum operator in contrast 
to the component Ai • Therefore eq. (20) is treated as an 
auxiliary condition or a constraint equation. 

The general solution of eq. (20) is 

where C0 (t) and C1(t) 
eq. (21) we obtain for 

are the integration constants. From 
Poi the expression 

~ (xt)=-C 1 (t). 
01 J 

( 21 ) 

(22) 

If we neglect the infrared singular solutions of the homogeneous 
eq. (20) 

(23) 

we obtain for the action (19) zero: S:: 0 that corresponds to 
the usual electrodynamics. 

However, the condition of the topological vacuum degene­
ration (9) 

V = 2~ JdtdxFot = 2~ JdtN=- 2~11 JdtC~(t)(fdx)::fO 
leads to the Lagrangian 

i 



(24) 

expressed in terms of a "covariant variable" 

(25) 

It is easy to show that the results of quantization of the 
theory (24) are completely equivalent to the ones obtained in 

the gauge Ao '"'0 • 
Thus the topological vacuum degeneration in the considered 

theory is described by the introduction of singular infrared 
fields into the explicit solutions of the constraint equation/ 201. 
Therefore the construction of the classical Lagrangian in 

terms of the physical variables requires an infrared regulari-
zation (fctx)<oo. The removal of the re;;ularization in eq. (24) 
leads, generally speaking, to the known trivial reaul t S :: Q • 
However, the size of the region of validity of the quantum 
theory L a , which is defined by the effective mass in Lag­
rangian (24) m~(fdx)-~ , coincides with the macroscopic size 
of the apace, where the gauge field is given 

( r dx). (26) 

Therefore, no classical analogy of infrared topological dyna-
mics does exist. It is physically clear, as we describe the "zero" 
frequence field excitation, 

). Topological Vacuum Degeneration in QCD (Instantons) 

The topological vacuum degeneration of gauge fields was 
first considered in the nonAbelian theory 

S = - -~ fd It (F' a )I! . r.' a = d A a - d (-( + E abc A b A c 
4 X/'~ 1j.~ /' v "!" ~ :tv (1) 

In ref./ 1/ classical solutions with a finite Euclidean action 
and zero energy (instantons) were fow1d with the global charac­
teristics, the Pon tryagin index, 

( 2) 
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u i r.a 
(J) 

Bl = 2 E.~ik rile. · 
The instantona in gauge are transitions between claa-

sica! vacua 

tim A~(x7t)=v;ln/X)~ 1.{:-~;(x); A~=~ 6;~a (4) 
t -±oo 

where the matrix If (X) satisfies the condition 

lim lJn, ( x) = I 
lXI-.,., 

(5} 

It is known/1 • 2/ that SU(2) -valued matrices IT(X) and 
the condition (5) define the regular (smooth) mapping of apace 

R (3) into S U (2) and are characterized by the integer 
index (degree of mapping) 

., __ -~- LJ3,/c ~ _(.,..-f 1 ,,..)(,,..-r l . ..-V . ...--11 ,_\ 
·~- 121i"ZJ ..... /''-i.jkl..~\.v v.:v;\v CYjV)\...U Clk.U) 

I C. \ ,_, 

indicating how many times the space R(.~) turns around SU(Z). 
The total group of the gauge transformations 

(7) 

is topologically disconnected and it is a product of a "small" 
gauge group and the infinite cyclic group of all integers 

G = G(n=o) XC . 
The classical vacuum is degenerated in number (6}. For fields 
with asymptotics (4} it is easy to show that the expression (2} 

has the form of the difference of the degrees of mapping c~+hr1H) 

V = jdt d 3
X do A~[~ B~]= Jdtd 5xdaA~ · 

· (JN[AJ,/c)A~ )= f dt JoN= rlc+>- Tlc-> , 
(8} 



where N [A J is a functional 

(9) 

which is equal to the integer (6) for the gauge fields (4). 
According to (8) a variational derivative of the functional N 
equals magnetic field (3) 

JN - £ a ( ) J A~ (x) - S1/2 B.: X . (1o) 
L 

Like the "collective variable" N in section 2, the functional 
(10) is transformed covariantly under the topologically nontri­
vial gauge transformation/14/ 

N [A (en>] = N [A] + n = ( T )n N [A] ( 11 ) 

dN = jd3
x 1~ JA ( 12) 

Prom the point of view of invariance principles this theory 
does not differ from OED .. 

I •, 

of the quantum~onAbelian theory with transformation group 

G =G
0

X l • 
The investigation of the topological quantum-vacuum dege-

neration is usually based on the analogy with quantum mecha­
nics and on the interpretation of instantons as tunnellings 
between different classical vacua. In quantum mechanics the 
semiclassical ezpansion of the Green function around these solu­
tions allows one to calculate the ground state energy. The small 
parameter of the ezpansion ( o<.) is proportional to the diffe­
rence of the ground state energy (E

0
) and the tunnelling energy 

( 13) 

To calculate ~E. , one takes the limit of the Green function 

(i) iTHI (2) \\. o. ~ ln. ?tr• A 7/r A ~ e spectral representation as t -- i. 00 
:. [j (f)] [ (")]I -'tEo 

b.m(A.(x)le A; (x2,--=U:mL...e ~ i TE j IV c14 } 
T- 00 ~ 'T' ... oo E T:::Lt 
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where ~ , ~: are physical sol~tions of the system of equations 

H = t f d 5 x ( E ~ + B 2) 

Ea 1 d /. a 
.=y /JA. 
l l 

Th:i.s system differs from the analogous one (B) in section 2 by 
the transverse degrees of freedom with the potential of oscil­
lator type V(A) = B2 /2 and by the dependence of the covariant 
"collective variable" N [AJ on the oscillator transverse va­
riables locally, at each point of space (10). According to equa­
tion (10) the operators of energy and topological translation 
do not nommute [T,H] :i= Q • These operators may have common eigen­
functions if only an eigenvalue of one of these operators is 

' ·a 
equal to zero. Such an operator may be only H (as I e' I ::: 1 ). 
Therefore we have 

E = 0 · (15) 

However, this eigenvalue is unphysical. It is easy to construct 
the corresnondinR wave function. using ·~· (10) 

.-</{ = ~xp { ±l.(21i-l +B)N[AJ} .; ( 211f + 8) = i r2 

• <16) 

The plane wave (16) is not normalizable in the field space. 
Thus the system of equations (B 1)-(B~ has no physical solution 
and the Green function (14) is identically equal to zero. One 
can say that the quantum tunnelling energy Er = 0 , which is an 
eigenvalue for the dual wave function ( 16) ( E 1ft;,"" B 1ft) is 
situated in the deeply unphysical region of the possible spectrum 
for infinite number of oscillators ( C

0
- tr= 00 ). The small 

parameter of the instanton approximation in gauge theory does 
not exist. This fact is beginning to be more recognized by the 
followers of the semiclassical approach/21. 

The absence of exact physical solutions of system (B ) does 
not still mean the same for the system 

H'o/ = co/ 

ll 



The properties of the infrared gluons resemble more those 
of nonideal Bose-gas in the microscopic Bogolubov theory of su­
perfluidity / 101. 

The difficulty of the physical interpretation and under­
standing of the obtained results consists in the extension of 
the quantum representations to the whole macroscopic observable 
region, where the nonAbelian fields are given. Pollowing the 
quantum liquid ideology we should propose the unique macroscopic 
wave function for the observable world, which is defined not 
only by the local equations, but also by the symmetry group 
topology 

?.f(, "'-/ exp {t.pv 1 
VC<C ) 

p=(21f(+8) 

We have shown in section 2 that in the "quantum world" the 
classical fields with internal singularities without external 
sources may exist, that is forbidden in the classical Yang-Mills 
theory. These singularities are conditioned by "rotation" of 
the system of the nonAbelisn fields as a whole over the circu­
........ ··ze~·o·· varl.&Die v. Tne equatl.ons or· quantum hydrodynamics for 
such QCD suprefluid vacuum may be written in the form 

(3) 

( 4) 

where E and 8 are electric and magnetic vacuum fields 
and ~ is the singular classical solution of the constraint 
equation (1). Equation ())is a consequence of the stationarity 
of the quantum liquid and equation (4) follows from the relati­
vistic covariance (if one neglects the interaction with matter 
fields, then the electric and magnetic fields should enter into 
the theory on equal footing). 

The unique solution of eqs. ()), (4), satisfying the condi­
tions of isotropy and stability (i.e., the qussiparticly being 
energetically disfavoured) is the singular field 

(A a '\ - j__ La d v fn 
fA lvac - ~ ;v f 
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(5) 

f' = .ei.kot 7. = lxl ( 6) 

L7:= Eon.f" + L~Oj'~vo- l~a"~_fo 
This vacuum field minimizes the effective action, expressed in 
terms of the conserved topological momentum. 

As is shown in ref./21 1 the physical picture of the asymp­
totic states of coloured fields in such a vacuum is a relati­
vistic version of the hadron bag model/21 • 221. The nonAbelian 
vacuum represents the manifold of "empty" hadron bag obtained 
from (5), (6) by various Poincare group transformations. All 
physical observables are equal to zero/21 / and in this sense 
the physical vacuum is relativistically invariant. 

The analogy of the "size" of a physical 
device in QED :for QCD is the bag size ( K ~ i) , , which 
should be considered as the phenomenological parameter, because 
of the necessity to consider the system "as a whole" (for exampl­
le, for the calculation of singularity parameters in the super­
fluid rotatinlr helium. it 1a nAnARAAT"Y t.n +Air• in+"""""""+ +h .. 

macroscopic-rotation energy, vessel size, and the microscopic 
/11 I parameter of an average distance between the helium atoms , 

i.e., to give a physical mechanism of ths infrared regularization 
of an expression of the type of [f d\~cp )2]). 

In QCD for results to be finite such details may not be 
needed, as there are eigenvalues of the topological momentum 

( f + z~)-~ = ~x1l 
for which the action and the Pontryagin index are finite and 
physical results do not depend on parameters and the mechanism 
of infrared regularization. 

The topological description of zero mode V allows one 
to make the infrared renormalization in QCD in the spirit of 
ref./191, in which the QED 5 -matrix is formulated without infra­

red divergences. 
The infrared factorization in QCD , like in QED, is 

Justified by the general solution of the Dirac equation in arbit­
rary vacuum fields (5); the solution is obtained in ref./2)/ by . 

the Newman-Penrose method. 
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Conclusion 

In the paper we have shown that the topological vacuum 
degeneration in QCD may lead to the infrared renormalization of 
QCD expressed in the redefinition of the classical action by 
surface terms. In such a theory the quark confinement emerges 
as a macroscopic quantum phenomenon which cannot be obtained by 
the renormgroup methods, by the analytic calculation at a com­
puter, or by the exact calculation of the usual Faddeev-Popov 
functional integral. 

The confinement might be understood if we proceeded from 
the definition of the physical vacuum of any gauge theory as 
the manifold of all infrared fields which have no physical ob­
servables, but the interactions with them must be necessarily 
taken into account for removing the infrared catastrophe. (For 
example, in QED the infrared divergences are removed in the 
long run by taking into account the interaction with all long­
wave photons). Whereas in QED the vacuum is the gas of free 
photons, in QCD, owing to the strong interaction of infrared 
gluons, the vacuum is the quantum liquid, singularities of which 
form the hadron bags. 

+ ..... n '' nft._'h ... ,..\.. ...... 

·- -·----------·· .. ,, """"----·· ....... _ ... -.. ...... , 
J.HoreJsi, and especially Ya.A.Smorodinski for useful discus­
sions. 

Appendix 

We present the results of the formal calculation of the 
nonAbelian action functional on extremals 

Into the solution of equation (A.l) 

A: = c(t)¢a + (J2rb (9L ;;JoA)b 

we include the solution of the homogeneous equation (A.1): 

(A. 1) 

(A.2) 

V 2r/J= 0 with coefficient C (t) , defined by the Pontryagin 
index 
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(A.3) 

Ao = Ao[c(t ),dofl.:J ' 
Then the action expressed in terms of the topological conserving 
variable 

p = cfo/c)~ = (211l + 8) 

iS(P~J%Ao=o)= ~ fdt{Jct~(E~-B:)+[~~J-ux: x~' 
Ex:= E,.-v 0 (xE X~1

) ; 

E.rL= (~j -vr Jz VJ )~ Ai 7 

The functionals 

Owing to the transversality conditions 

vE =VB=v(vC/J)= 0 
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llepsymHH B.H. E2-82-365 

0 TOITOJlOrH<IeCKOM BbiPOlK,ll,eHHH BaKyyMa B KaJJH6pOBO'IHbiX TeOpHHX 

TononorH<IeCKOe BblpOlK,ll,eHHe BaKyyMa B KaJJH6pOBO'IHbiX TeOpHHX 
paCCMaTpHBaeTCH KaK KBaHTOBOe HBJleHHe, He HMeW~ee aHanora 
B KJlaCCH'IeCKOH lPH3HKe. lloKa3aHO, 'ITO HeTpHBHaJlbHaH TOITOJlOrHH 
KaJ1H6pOBO'IHOH rpynnw gaeT B03MO~HOCTb npOBOgHTb HH¢paKpacHyw 
nepeHOpMHpOBKY Hea6eJleBOH TeOpHH, TaKyw ~e KaK B K3n. llpegna­
raeTCH egHHoe onpegeneHHe ¢H3H<IecKoro BaKyyMa AJJH a6eneBbiX 
H Hea6eneswx TeOpHR. 

P a6oTa BbmOnHeHa s J1a6opaTopm-I TeopeTH<IeCKOH ¢H3HKH OIDU1. 

Pervushin V.N. E2-82-365 

On Topological Vacuum Degeneracy in Gauge Theories 

It is shown that the nontrivial topology of gauge fields 
leads to the Josephson effect in the field space, i.e., to 
nonvanishing vacuum fields. The same definition is proposed 
for the physical (infrared) vacuum for Abelian (QED) and 
nonAbelian (QCD) theories. The equations and the topological 
Josephson effect for the gluon vacuum are discussed. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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