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1. INTRODUCTION

In papers/l's/ the classical theory of the relativistic

string was considered from the pure geometrical point of view.
In this approach the role of the dynamical variables was
played not by the string coordinates but by the differential
forms defined on the string world-surface. The coefficients
of these forms are determined by the solutions of the nonli-
near equations for the scalar functions. The well known, for
example, 1s the connection of the nonlinear Liouville equa-
tion with dynamics of the free relativistic string’/13-7/,

If in the string theory the Lorentz-invariant gauge is used,
then the evolution variable is one of curvilinear coordinates
7 on the world-surface of the string. This variable is con-
nected in a very complicated way with the time t in Minkowski
space—time. Therefore many attempts were undertaken to const-
ruct the relativistic string theory so that the parameter of
the time evolution 7 be equal to time t (the so-called t=;
gauge in the string theory’2:%/ ),

In t=7+ gauge the corresponding nonlinear equations for
dififvivuitial {orms of Lile worid-surface ot tne relativistic
string interacting with an external field were obtained by
F.Lund and T.Regge/24 For the free string these equations are
simplified and have the form/°8/
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In paperZS/ the general solution for this system was obtained

in which the functions #(ulu?) and k(ulu?) were expressed
in terms of four arbitrary functions of one variable u?aul:y®

In the present paper it will be shown that the world-sur-
face of the free relativistic string in t=7r gauge can be
described by one linear equation on the scalar function y(t,e)

¢J1 —022= 0. (1.2)



The paper is organized as follows: In the second section
we formulate the classical theory of the relativistic string
in the t =+ gauge using the method of the co-moving frame and
the exterior differential forms in the surface theory. In the
third section the moving frame on the string world surface
will be chosen in a special form. As a result, the theory of
the free relativistic string in the t=7 gauge is reduced to
one equation (1.2). We shall prove that this choice of the
moving basis is possible always by virtue of the gauge freedom
in the geometric theory of the string. Other applications of
the proposed method are discussed in the Conclusion.

2. THE MOVING FRAME ON THE WORLD-SURFACE
OF THE STRING AND THE BASIC EQUATIONS
IN THE SURFACE THEORY

In the four-dimensional space-time the string coordinates
x(r,0) obey the equations’/?:10/

xHyy ~xfp =0, (2.1
b2 o R i _ (2.2)
(x.1 )+(x'2 )y =0, x’1 xu,2 =0,

where x“:;:(xo,x1 ,x° ,x3)=(x°,_§ y » ¥ =9x*/3u’, i=1,2;u=0,123,
UL=1‘, uz=g-,

In the gauge %0 =t=7=u! the vector X(t,s) describes the
surface in the three-dimensional Euclidean space {x1,x2, %3}
and eqs. (2.1), (2.2) take the form

X 13~ X =0 (2.3)
$2 433 -1, %, 7, -0 (2.4

Let us introduce the co-moving frame on the world surface of
the string X (u!,u2) using two unit tangent vectors €1 5 € >
613 =0 and unit normal é,. The origin of this frame is de-
fined by vector X(ul,u?)., It appears to be very convenient to
use here the Cartan exterior differential forms. We have the
following equation for the infinitesimal displacement of the

basis [%;€&,83 .83} on the surface” ™"
d;=wi€i, (2.5)
2

déa ='Qa»beb ’ Qab ='Qba'
(2.6)
€a8b=8ab' i.jk,..=1,2; ab,c,..=1,23,

where o' and Q,, are linear differential forms ("one-
forms")in the basis {dul, du®} : wi-_—w}duj. Qap=Doy); du’ .
The exterior differentiation of the linear eqs. (%.5) and
(2.6) dAdf =0 , dAde,=0 gives the conditions of their
integrability

i - 2.7
ol AQ. =0, (2.7)
dwi= (,Jj/\jS, (2.8)
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Eqs. (2.7)-(2.9) are the basic equations in the surface theo-
ry because to any their solution w! , Q,, there corres-
ponds unique surface % @',u?) up to its motion in a space

as a whole.

The quadratic differential forms of the surface/131%/, that
were introduced in the geometry by Gauss. can he expnressed in
terms of w' and ,,. For the first fundamental quadratic
form of the surface we have

> 2 2
(dx) = X g.
ij=1 1

i gy >

i du duv , Bij=X;-X; - (2.10)
This form defines the intrinsic geometry of the surface. Sub-
stituting (2.5) into (2.10) we obtain the relation

Bij=w; 0 - (2.11)

The second quadratic form’ 13/ determines the external curvature
of the surface. The coefficients of this form b;; give us the
projgction of the second derivatives of the surface radius vec-
tor X ulu?) on the normal eg

X =b.e 2.1
x:ij beg - ( 2)

The semicolon means the covariant differentiation with respect
to the metric Bij (2.10). From eqs. (2.5), (2.6) and (2.12)
it follows that




= (R 8 =(X; 8) ==(k 63.1.):_,“‘;9 (2.13)
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The quadratic forms g;; and b;; determine the surface also

uniquely if they satisfy the Gauss equation

Rijk[" = Djgbjp —~bybyy (2.14)
and the Peterson-Codazzi equation

. 2.15

bi];k =bik3j ° l,],k,f’. =12, (2.15)

where Rijyf is the curvature tensor for the metric gi43J4/

These equations are equivalent actually to the integrability
conditions (2.7)-(2.9).

The world-surface of the string defined by eqs. (2.3),
(2.4) on the radius vector X (ulu?®) can be specified in
terms of the quadratic forms Bij and bij as follows

ey - -~ sin? r _cosi 2.16
Biyt Bop=1, B ,=8,=0, &  =sind, g, ~cos, ( )

22"
- 2.
byy=by,. (2.17)
To obtain eq. (2.17) we have to substitute eq. (2.12) into

(2.3) and to use the Christoffel symbols for metric tensor
(2.16)

.1 1 1 1
I' =1 =ctgo.9 ,, 1., =1 =ctgn-d
1 24 i1 12 21 2

e (2.18)
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l“.‘-.[22 ;-t,g().(}'g, l12 ,:l‘“ ==tgt.d .
Eqs. (2.14) and (2.15) are reduced to the system (l.1) > in
which

b11= b22=(ng0-x.2, hlzzbzl.(ng(/.xll. (2.19)
We can obtain the system (1.1) using the technique of the

moving frame also. For this purpose we have to iLmposc on o
and Qablf conditions (2.16) and (2.17)

1

0 o
wlw} + (uimi’ + mglwé + mzwé:l,
) v (2.20)
1,1 2 2 _
(:_)1 w + (:)2 = 0,
k k ,
"’1931({1 “2 k' 2 (2.21)

But on this way there is another possibility which leads to
the more simple eq. (1.2).

3. THE ROTATION OF THE MOVING FRAME
AND THE INTEGRATION OF THE NONLINEAR EQUATION
DETERMINING THE STRING DYNAMICS IN THE t=r GAUGE

At any point of the surface the moving frame {51,85,€3}
can be rotated around the normal 33 on the arbitrary angle
A(ulu?). By this rotation the basic equations (2.7)-(2.9) de-
termining the surface keep obviously their form. We shall
use this freedom and choose the angle A(ulu®? ) so that the
matrix elements Q,y);, j=1,2 will satisfy some conditions.
It appears to be very counvenient to take this condition in
the following form

012“ :1023“ , =12, 3.1)

The appearance here of the imaginary unit should not confuse

us because the rotation of the moving frame is the auxiliary

mathematical method that simplifies eqs. (2.7)-(2.9) only.
Let us prove the possibility to impose conditions (3.1).

By the transition from the basis lé;i to the new one{E;i
2. o
\,azu,ahch + B, =L, (j.z)

with the matrix

COS A sin A 0
R{Aulu®)= —-sin A coS A 0 (3.3)
0 0 1

the differential form @ is transformed as follows

1 1

Q -0 ~ROR '+ dR.R™ . (3.4)

Imposing the condition

Qugij = 0y . =12 (3.5)

Twe get from (3.4)

AA=-Q 5+ (55 cO8 A= Q43 siDA). (3.6)



This equation will define the angle A (ulLu®) if its integra-
bility condition will be fulfilled

dZx= dAadr=0. (3.7)

Taking the exterior differential of the right-hand side of
eq. (3.6) and using eq. (2.9) we are convinced of the validi-
ty of eq. (3.5). The change of the basis (3.2) leads to the
following transformations of the differential forms '
5k=wi(R_1)

" ik=12. (3.8)

Without loss of generality we can put

-l . - - _.

wlasu1¢, w;=0. w$=0. w§=COS¢- (3.9)
Indeed it is easy to prove using eq. (3.3) that the condition
(2.20) are satisfied for ! obtained from (3.8) and (3.9).

Equatlons (2.7)-(2.9) and conditions (2.21) keep their form

in new variables i, 0 obviously.
From eqs. (2.7), (2.8), (2.21), (3.5) and (3.9) it follows
that the matrices Qaplj» i=1,2 have the form
0 - id - - i
¢, 10, ctgcbl ' 0 ¢, o, ctgg
Qad1= ¢ 0 ig, ) QaM2= 6, 0 i¢,1
—iqs'l.ctgd; s , 0 —iqs'z-ctgd, -iqs'l 0

(3.10)
The compatibility conditions (2.9) for matrices (3.10) result
in oFe %quatlon which we write here in variables ¢=ul+u?
n=ul -1
. . = (3.11)
b, ¢p tOBS qs.f qs'n-O. '

On substituting yy=cos¢ Eq. (3.11) reduces to the D" Alembert
equation

¥ - V.ge =0 (3.12)

So, the classical dynamics of the relativistic string in the
t=r gauge is described by one equation (3.12) for the sca-
lar function ¥ (t, o). If the string is of finite extension,
or closed, or it has the point mass at the ends, then eq.
«(3.11) must be supplemented by the corresponding boundary
conditions. We shall not consider these possibilities here
believing for simplicity that the string is infinite

-0 <ui <+o0, im=1,2.

-
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4. CONCLUSION

The reduction of the relativistic string theory to one
equation (3.12) for the scalar. function y(t,s) can be useful
not only on the classical level but also for the construction
of the quantum theory of this object. An important advantage
of this approach as compared with the Liouville equation in
quantum theory of the relativistic string /®7/ is the well
defined meaning of the evolution parameter r=ul which is
equal to the time t of the Minkowski space. As a consequence
the Hamiltonian theory of the relativistic string in our ap-
proach can be formulated straightway.

The possibility of describing the classical dynamics of the
string by the D’Alembert equation (3.12) does not mean that
the quantum theory of this object is trivial. The problem
arising here is the following. The commutation relations im-
posed on the function ¢/(t,0c) must be coordinated with the
commutators of the string coordinates x*(7,0).
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Bap6amos B.M., Hecrepenko B.B. E2-82-364
l'eoMeTpHuecKkas TeODHsi PENIATHBHCTCKOH CTPYHH B KaJMOpoBKe t=r1

CTpPOHTCH KjlacCHUeCcKas TeOpHN PEeNIATHBHCTCKOH CTPYHbI
B KajmubpoBKe t=r C HCHoJIb30BaHHeM dopMamniMa NOOBHXHOI'O pe-—
nepa U BHemHHX OubdepeHUHMANBLHEIX GOPM B TEOpPHH NOBEpPXHOCTEMH.
lNogBwxHbit 6a3HC HAa MHPOBOI NOBEPXHOCTH CTPYHhl BribHpaeTcsa cle-—
uHanpHeM o6pasoM. B pesynbTaTe TeopHsa CTPYHH B 4—-MepPHOM
NMpPOCTPaHCTBe-BpeMeHH CBOOHUTCH K ypaBHeHHio n’AnamMbepa Ha oOHY
CKanspHyw GyHKIHIO,

Pa6oTra BhmonHeHa B JlaBopaTopHH TeoperTHueckoit déu3anku OUAH.
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Geometrical Theory of the Relativistic String in tar Gauge

By making use of the co-moving frame method and the
exterior differential forms in the surface theory the classi-
cal theory of the relativistic string in the gauge is const-
ructed. The moving frame on the string world-sheet is chosen
in a special form. As a result, the theory of the free relati-
vistic string in the four-dimensional space-time is reduced
to the D"Alembert equation for one scalar function.
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