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I. INTRODUCTION 

In papers 11 - 51 the classical theory of the relativistic 
string was considered from the pure geometrical point of view. 
In this approach the role of the dynamical variables was 
played not by the string coordinates but by the differential 
forms defined on the string world-surface. The coefficients 
of these forms are determined by the solutions of the nonli
near equations for the scalar functions. The well known, for 
example, is the connection of the nonlinear Liouville equa
tion with dynamics of the free relativistic string 1 1.3-7/, 

If in the string theory the Lorentz-invariant gauge is used, 
then the evolution variable is one of curvilinear coordinates 

on the world-surface of the string. This variable is con
nected in a very complicated way with the time t in Minkowski 
space-time. Therefore many attempts were undertaken to const
ruct the relativistic string theory so that the parameter of 
the time evolution r be equal to time t (the so-called t = r 
gauge in the string theory 12 ·5/ ) • 

In f= t gauge the corresponding nonlinear equations for 
...:;;;" ... '"'-~dJ. 1uuu::, ui Lile worici-suriace or tne relatlVlStlc 
string interacting with an external field were obtained by 
F.Lund and T.Regge 12~ For the free string these equations are 
simplified and have the form 15
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In paper'S.! the general solution for this system was obtained 
1n which the functions fJ(u 1.u 2 ) and "(u 1 ,u 2 ) were expressed 
1 n terms of four arbitrary functions of one variable u ±,. ul±u2. 

In the present paper it will be shown that the world-sur-
face of the free relativistic string in t z r gauge can be 
described by one linear equation on the scalar function ~(~u) 

~~ -1/r 0. 
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..................... --------------------------------
The paper is organized as follows: In the second section 

we formulate the classical theory of the relativistic string 
in the t,. r gauge using the method of the co-moving frame and 
the exterior differential forms in the surface theory. In the 
third section the moving frame on the string world surface 
will be chosen in a special form. As a result, the theory of 
the free relativistic string in the t~r gauge is reduced to 
one equation (1.2). We shall prove that this choice of the 
moving basis is possible always by virtue of the gauge freedom 
in the geometric theory of the string. Other applications of 
the proposed method are discussed in the Conclusion. 

2. THE MOVING FRAME ON THE WORLD-SURFACE 
OF THE STRING AND THE BASIC EQUATIONS 
IN THE SURFACE THEORY 

In the four-dimensional space-time the string coordinates 
x11 (r,a) obey the equations/9,10/ 

X ll -xll 0 .11 .22 = • 
(2. I) 

2 ) = 0, 
(2. 2) 

In the gauge x0 ~t=r=u 1 the vector x(t,t7-) describes the 
surface in the three-dimensional Euclidean space !xl ,x 2 ,x3 1 
and eqs. (2.1), (2.2) take the form 

-x .11 - -x.22 =- 0• 
(2. 3) 

i. 1 x.2 ~ o. (2.4) 

Let us introduce the co-moving frame on the world surface of 
the string x(u1 ,u2) using two unit tangent vectors el 'e2 
e

1 
e 

2
,0 and unit normal e 3 . The origin of this frame is de

fined by vector x(u 1 ,u 2). It appears to be very convenient to 
use here the Cartan exterior differential forms. We have the 
following equation for the infinitesimal displacement of the 
basis !x;e1 ,e2 ,e 3 ! on the surface

11
1.

121 

2 

..... i -+ 
dx = w e i , (2.5) 

.. 

...... 
eaeb=8ab, i.j,k, ... =1.2; a,b,c, ... =l,2,3, 

where wi and nab are linear differential forms ("one
forms")in the basis !du 1, du2!: wi=w~dui, n b"'n . dui 

(2.6) 

Th · d · ff · · J • a abl1 · e exter1or 1 erent1at1on of the l1near eqs. (2.5) and 
(2.6) dAdx=O , dAdea=O gives the conditions of their 
integrabi 1i ty 

(2. 7) 

(2.8) 

dnb=a 1\nb. a ac c 
(2.9) 

Eqs. (2.7)-(2.9) are the basic equations in the surface theo
ry because to any their solution w i , nab there corres
ponds unique surface x(u1 ,u2 ) up to its motion in a space 
as a whole. 

The quadratic differential forms of the surface 113•1 4
/, that 

were introduced in the geometry bv Gauss. can he exnre~~en 1n 

terms of w' and {lab· For the first fundamental quadratic 
form of the surface we have 

2 
(dx)2 = I d i d j i,j=1 gij u u • 

(2. I O) 

This form defines the intrinsic geometry of the surface. Sub
stituting (2.5) into (2. 10) we obtain the relation 

k k 
g ij = {,) i ~() j • (2. II) 

The second quadratic form1131 determines the external curvature 
of the surface. The coefficients of this form b-. give us the 

• • IJ 
proJ~Ctlon of the second derivatives of the surface radius vec-
tor x (u1,u 2 ) on the normal e3 

-x • b,.J. e3 ;ij 
(2. 12) 

The semicolon means the covariant differentiation with respect 
to the metric gij (2.10). From eqs. (2.5), (2.6) and (2.12) 
it follows that 



(2. 13) 

The quadratic forms gij and bij determine the surface also 
uniquely if they satisfy the Gauss equation 

(2. 14) 

and the Peterson-Codazzi equation 

bij;k = bik;j i,j,k,f ~1.2, (2.. 15) 

where Rijkf is the curvature f I 
. 1:3,141 tensor or t1e metr1c g 1 j • 

These equations are equivalent 
conditions (2.7)-(2.9). 

actually to the integrability 

The world-surface of the string defined by eqs. (2.3), 
(2.4) on the radius vector x (u 1,u 2 ) can be specified 1n 
terms of the quadratic forms ~ij and bij as follows 

g11 + g22 = 1 · 

btl= b22' 

(2.. In) 

(2. 17) 

To obtain eq. (2.17) we have to substitute eq. (2.12) into 
(2.3) and to use the Christoffel symbols for metric tensor 
(2. 16) 

(2. 18) 

r:! ol 2 
t ~ J U 21=c-gf•l,1 

5, 
Eqs. (2. PI) and (2.l'J) are reduced to the system (1.1) ln 
which 

We can obtain the system (I. I) using the technique ,,f 
moving frame also. For this purpose we have to impos(· 
and nab!f conditions (2.16) and (2.17) 

11 2:! 11 2•> 
wl w 1 + '" 1 '" 1 + '" 2 w 2 + '" 2 w 2~ l ' 

w 1 (JJ 1 + (I) 2 {I)):! :::::= 0 
1 2 1 2 • 

(2.19) 

the 
I 

on (:J 

(2.20) 

(2.2.1) 

But on this way there is another possibility which leads to 
the more simple eq. (1.2). 

3. THE ROTATION OF THE MOVING FRAME 
AND THE INTEGRATION OF THE NONLINEAR EQUATION 
DETERMINING THE STRING DYNAMICS IN THE t = r GAUGE 

At any point of the surface the moving frame le1,e2 ,e 3 1 
can be rotated around the normal e3 on the arbitrary angle 
A(ul,u2). By this rotation the basic equations (2. 7)-(2.9) de
termining the surface keep obviously their form. We shall 
use this freedom and clwose the angle .\(u 1,u2 ) so that the 
matrix elements Oahli• j d,2 will satisfy some conditions. 
It appears to be very convenient to take this condition in 
the following form 

j == 1.2. (3. I) 

The appearance here of the imaginary unit should not confuse 
us because the rotation of the moving frame is the auxiliary 
mathematical method that simplifies eqs. (2.7)-(2.9) only. 

Let us prove the possibility to impose conditions (3.1). 
By the transition from the basis lea I to the new one le~ I 

tJ .L) 

with the matrix 

cos A sin,\ 0 

0 (3. 3) 

0 0 

the differential form 0 lS transformed as follows 

- -1 -1 
n-.n.RnR ,_dR.R . (3 .4) 

Imposing the condition 

(3 .5) 

we get from (3.4) 

(3.6) 
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This equation will define the angle A~~u 2 ) if its integra
bility condition will be fulfilled 

Taking the exterior differential of the right-hand side of 
eq. (3.6) and using eq. (2.9) we are convinced of the validi
ty of eq. (3.5). The change of the basis (3.2) leads to the 
following transformations of the differential forms w 1 

-k = i (R -1 ) w w ik. i,k=l,2. (3. 8) 

Without loss of generality we can put 

;;:, 1,o 
2 • wi. cos q,. (3. 9) 

Indeed it is easy to prove using eq. (3.3) that the condition 
(2.20) are satisfied for w 1 obtained from (3.8) and (3.9). 
Equations (2.7)-(2.9) and conditions (2.21) keep their form 
in new variables wi, n obviously. 

From eqs. (2.7)t.. (2.8), (2.21), (3.5) and (3.9) it follows 
that the matrices nab! j • j -1.2 have the form 

0 -c/>,2 icf>,1·Ctgcf>l icf> ctgcf> I .2 
0 -¢ 

• 1 

0 icf>,2 nab!2= icf> 
.1 

-i¢ .2 0 

The compatibility conditions (2.9) for 
in one equation which we write here in 
7)=u1-u2 

q, ~ + ctg ¢ · ¢ ~ • q, = 0 . 
• ':,l1 ·~ ·TJ 

-i¢ •Ctg¢ -icf> 0 
.2 .1 

(3. I 0) 
matrices (3.10) result 
variables (= u1 +U2 , 

(3. II) 

On substituting t/1= cos¢ Eq. (3. II) reduces to the D# Alembert 
equation 

t/1,
11

-1/', 22 -o. (3.12) 

So, the classical dynamics of the relativistic string in the 
t"' r gauge is described by one equation (3. 12) for the sca
lar function t/l(t, a). If the string is of finite extension, 
or closed, or it has the point mass at the ends, then eq. 
. (3.11) must be supplemented by the corresponding boundary 
conditions. We shall not consider these possibilities here 
believing for simplicity that the string is infinite 
-""<u1 <+oc, i•l,2. 

6 

4. CONCLUSION 

The reduction of the relativistic string theory to one 
equation (3.12) for the scalar. function t/J(t,a) can be useful 
not only on the classical level but also for the construction 
of the quantum theory of this object. An important advantage 
of this approach as compared with the Liouville equation in 
quantum theory of the relativistic string 16 •7 1 is the well 
defined meaning of the evolution parameter r=u1 which is 
equal to the time t of the Minkowski space. As a consequence 
the Hamiltonian theory of the relativistic string in our ap
proach can be formulated straightway. 

The possibility of describing the classical dynamics of the 
string by the D' Alembert equation (3.12) does not mean that 
the quantum theory of this object is trivial. The problem 
arising here is the following. The commutation relations im
posed on the function t/J(t, a) must be coordinated with the 
commutators of the string coordinates xll(r,a). 
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Bap6amoB B.M., HecTepeHKO B.B. E2-82-364 
reoMeTpH'leCKa.R TeOpH.R peJI.RTHBHCTCKOH CTPYHbl B KaJIH6pOBKe t= T 

CTpoHTC.R KJiaCcHqecKa.R TeOpH.R peJI.RTHBHCTCKOH CTPYHhl 
B KaJIH6pOBKe t=r C HCUOJib30BaHHeM ~OpMaJIH3Ma UO~B~Horo pe
nepa H BHeWHHX ~H~epeHI.J;HaJibHblX ~OpM B TeOpHH UOBepXHOCTeH, 
TIO~B~HbiH 6a3UC Ha MHPOBOH UOBepXHOCTH CTpyHbl Bbi6HpaeTC.R cne
I.J;HaJibHhlM o6pa30M, B pe3yJibTaTe TeOpH.R cTpyHhl B 4-MepHoM 
UpOCTpaHCTBe-BpeMeHH CBO~HTC.R K ypaBHeHHID ~'AJiaM6epa Ha O~Hy 
CKaJI.RPHYID ~yHKI.J;HID, 

Pa6oTa BblllOJIHeHa B na6opaTOPHH TeopeTuqecKOH ~H3HKH mum .• 

Barbashov B.M., Nesterenko V.V. E2-82-364 
Geometrical Theory of the Relativistic String in t=r Gauge 

By making use of the co-moving frame method and the 
exterior differential forms in the surface theory the classi
cal theory of the relativistic string in the gauge is const
ructed. The moving frame on the string world-sheet is chosen 
in a special form. As a result, the theory of the free relati
vistic string in the four-dimensional space-time is reduced 
to the D~Alembert equation for one scalar function. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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