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I. INTRODUCTION 

The present paper is a sequel to our works 11-W; it is de­
voted to the investigation of lepton-hadron inelastic scat­
tering processes on the basis of relativistic wave functions 
(WF) of quark-antiquark bound states. As WF we will employ 
approximate solutions found here to the covariant three-dimen­
sional equation obtained in the framework of the single-time 
description of a two-particle system1+8/ and coincident in 
form with the equation that had been deduced within the Hamil­
ton formulation of quantum field theory 19"111 . The kernel of 
the equation is chosen in the relativistic configurational 
representation in a form of the Coulomb quasipotential that 
corresponds, as it is shown in refs.112• 131 • to the one-gluon 
exchange in quantum chromodynamics (QCD). For comparison the 
case of the quasipotential corresponding in the momentum . ,, ., . . . ,.. . . 
.;:)pen ... ~ t...U LUC: C:.l.C:L.L..LUlllCl.C)UCL.J..l,.. .l.ULt::l.d.LL.l.UU U.L l{UdLK.:; .LU l{UC::I.LlLUlll 

electrodynamic (QED) is also considered. 
Our paper is organized as follows: The next section will 

be devoted to the analysis of scaling properties of structure 
functions of the deep-inelastic scattering of the electron on 
a hadron calculated in ref.1w in the framework of the single­
time formulation of quantum field theory. In the third section 
the approximate solutions will be found for the quasipotential 
equation for the WF of the two-particle system with the inter­
action quasipotentials taken in the form of the one-photon 
and one-gluon·exchange amplitudes. These solutions in the 
fourth section are applied to obtain an explicit form of the 
mesons structure functions and for a numerical analysis of 
the scaling violation in a preasymptotic region. 

2. THE SCALING PROPERTIES OF THE STRUCTURE FUNCTIONS 
IN THE SINGLE-TIME FORMULATION OF QUANTUM FIELD THEORY 

In ref.
1

W the following expression was obtained for the 
structure functions of the electron-hadron scattering in the 
deep-inelastic region: 
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where the scaling variable ----
' = ~-:.i~~Q2 

M 

m 

(2) 

was introduced, W2 is the invariant squared mass of a system 
of hadrons in the final state, Q 1 and Q2 are charges of the 
quark and antiquark, <f>(x ) is tfie WF of the quark-antiquark 

d k k 'd' ... bound system that epends on the quar rap1 1ty Xk = ln(lk I + 
+ k0 )m-1 and is related to the meson WF in the relativistic 
configurational representation (introduced in ref. 1101 ) by 
the Fourier sine-transform over the rapidity (for details 
see ref. 1111 ) : 

<f>(x k ) = 4rr ( dr· r<f>(r) sin mrx k • 

0 

(3) 

The scaling variable ' namely 

1 _, = y'v2+Q2-v 
M --

(4) 

was firstly introduced in ref. 11~ but still did not get fur­
ther ap~lication because the upper limit of its change at 
fixed Q is not equal to I and depends on Q2 in contrast to 
the usual Bjorken variable x = Q2/2Mv. In the framework of 
the single-time formalism, as is shown in re£. 1151, it turns 
out to be more natural .to investigate the behaviour of struc­
ture functions in terms of variables' and w2 (instead of 
x and Q2 ) even in the case of many-particle intermediate 
states. In this case the difficulty mentioned in ref( 141 with 
the ran~e of changing the variable ' is eliminated because at 
fixed W the variable ' can take any value from the inter­
val [ o; 1]. Moreover the variable W 2 is a more natural charac­
teristic of inelasticity of the hadron electroproduction pro­
cess. 
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It is not difficult to show that the Bjorken variable x 
1s expressed through ( as follows 

W 2- (M 2 
X= (1- () -------. (5) 

W 2 - ((2-()M2 

From (5) it is clear that the appearance of the variable ( 
is connected with taking into account of the mass of the had­
ron-target because at M =0 these variables are in fact reduce( 
to each other: ,= 1-(. 

In ref. 116
•

17 the scaling variable ~has been proposed 
that is expressed through the variable ( in the following way 

1 -
~ = -(1-()(1+ v'l+ 4rn 2/Q 2 ) •· (6) 

2 
This variable was introduced in the framework of the parton 
model to take into account nonzero quarks masses and to ex­
plain the violation of Bjorken scaling. At first sight it 
seems that the structure functions are scale-invariant in ~ 
up to kinematical factors in the whole region of changing 
the inelastic electroproduction variables and a violation of 
~ -scaling appears because of the mentioned factors. However, 
it is to be noted that the upper limit of changing the vari­
able~ depends~on Q 2 ,: 

And finally, let us note that in our paper 1 21 one more 
scaling variable ~M was introduced. It is connected with the 
variable ( as follows: 

~M =- : ((1 + v' 1·-_-4rn-2/-W2) (7) 

and changes at fixed W2 in the limits: -(1+v' 1-4rn2/W2)/2 < 
_::: ~M _::: 0.. -

Let us investigate now the asymptotics of the structure 
functions (I) in the deep inelastic region W 2 » M 2• ·The asym1 
toties of the second integral can be represented in the form 

Z oo D 

2 r dxk.. :sinhxk. I.P<xk )j
2

:: ez l (-1)
0 

_!_j.p(z)j 2 

M( n=O dz 0 

llnml 
(8) 

where Z= ln( W2 /rnM() -. oo, therefore instead of (I) we have 

F2 ((, w2 ) =(1-().F 1((,W
2) =SM(Q;+Q:)·(l-() x 

z JU D (9) 
ooshxk -.,"./2m 2 oo n d 2 ,.;.__ ________ I<P<x )j - l (-1) -j.p(z)j ] . 

Sinhx k n=O dz 0 

k 

x £ r <Ix 
!In M( I k 

m 
The remaining integral is convenient to be divided into two 
parts (retaining only the leading terms at z~oo): 

4 
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( 10) 
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According to (9), (10) the structure 
divided into two parts 

functions can also be 

( 2 s ) p( 2 Fi (,W )= Fi(( -Fi (,W ), 

where F ~(() is the scaling part of 
(i.e., that depends on (only) 

Fs <0 = (1-(). Fs(O = 8~(Q2+Q2 )(1-() 
2 1 1 2 

ooshxk -~/2m 2 
x ---------------I<P<x )I • 

sinhxk. k 

(It) 

the structure function 

, r dx X 

lln~l k 
m 

(12) 

and Ff ((, W2 ) describes an approach to scaling at W 2 -. oo 

and according to above calculations it has the following lea­
ding asymptotic term 

F: ((, W2
) = (1- () · 'F: ((, W2 

) 

(13) 
oo n oo 

= 8M(Q2
1 
+ Q: )(1 -() ·: l (-1)

0 _d_ f dx k ·I.P<xk >I 
2 

n=O dz n z 

Thus, we come to the conclusion that in the deep inelastic 
region (W 2 » M2 ) the structure functions of a composite 
hadron become scale-invariant, i.e., they depend on the variab­
le ( only. Preasymptotic terms are completely determined by 
the asymptotic of the WF .P<xk) at x k-. "'• and in case when 
.P(xk) decreases in a power way in X~· the leading correction 
violating scaling will contain logar1thmic terms (leading 
log's) only. 

In the next section we will investigate the asymptotics of 
the WF on the basis of an approximate solution of the quasi­
potential equation and thereby we will determine a character 
of the behaviour of preasymptotic corrections. 

To conclude this section let us note that the difference 
of the results of our approach and refs. 116• 171 results from 
the different interpretation of composed systems in the single­
time formalism and parton model. In the latter all quarks 
composing a hadron are off-mass-shell, but while calculating 
the structure functions in a hard collision it is assumed that 

5 



the quark after collision belongs to the mass shell. In the 
quasipotential approach all quarks certainly have fixed masses 
(the way of continuation from the whole system energy-momentum 
shell is only defined) and the considered in our works scaling 
properties of the structure functions are obtained without any 
extra assumptions. 

3. APPROXIMATE SOLUTIONS OF THE RELATIVISTIC 
EQUATION FOR THE WAVE FUNCTION 

Quasipotential equations for the WF of the system of two 
spinor particles were found in refs.l 6• 11• 18, 191 in the 
helicity representation. In refs. 11~~/ the quasipotential 
equation was projected onto the spin states of the bound sy­
stem, and in notation of ref. 1 ~ (formula (2. 19)) it has fol­
lowing form: 

-1 ~ 

M~,mAp·(2rn) (M- 2~~.mAp)·'cf>s,a(~p,rnAp) = 
~ 

1 Mk,mAp s~a' ~ ~ . 
= --g· f -~-- V s, a (~p.mAp; ~ k,mAp) · 'cf>s',a' (~k,mAp) · 

(277) 2~~ \ .. ,m"p 
The quasiputeutial of quark-antiquark interaction in the 
helicity basis is natural to be defined in the form 

-+ ..... --+ -+ 

V(~p.mAp; ~k.mAp) = u(~p,mAp )y"' u(~k,mAp ) x 1 

xv(-K k,mAplYil v(-Kp,rnAp)· Vo(~p.mAp-Kk,rnAp ) ' 

(14) 

( 15) 

where V0 is a quasipotential local part corresponding to the 
gluon exchange in QCD and the photon exchange in QED. 

After simple calculations for the WF of a pseudoscalar meson 
introduced in ref.131 by relation (2.22) we arrive at the fol­
lowing equation 

M;,rnAp ·(2m) -l (M- 2~p0,mAp) · ¢o,o (~ p,mAp ) = 
~ 

4 ~k.mAp o - o 2 
= --- r (M \ . ~ A - m ) X 

(2r)3 2~k.mAp p,m"p k,rn p 

xVo (~,mAp -&k,mAp )·'c/>o,o <&k,mAp ). 

( 16) 

Let us note that unlike the case of spinless quarks the kernel 
of the obtained quasipotential equation is no longer local,as 
the factors ~~.mAp and ~k.mAp appear there. 

If we restrict ourselves to considering the s-state, then 
owing to the spherical symmetry it is convenient to pass in 
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eq. (16) to the quark 
~rnA = mcoshxK • p 

rapi~ities P';ltting ~~.mAp=mcoshxp and 
and 1ntegrat1ng over the polar-angle: 

(2m)3 
ooshx (OOSXo - ooSix ) . 'cf>(x ) = ---· r dxk X 

p p p 2(211) 2 0 

x [ oo8h(xP- xk) + oo8h(xP +xk ) - 11 x 
(17) 

xP+xk 
X r dy. sinhy. Vo (2m· Sinhy/2) . 'cf>(x k)' 
lxP-~1-

where oosx0 = M/2rn. Here we have introduced the WF¢(x ), de-
pending on the rapidity, by the relation P 

~ ~ 
¢0 0 (I~ A I>= ¢0 0 (msinhx ) = ------¢(x ) , (18) 

• p,m P • P m Binhx P P 
and entering into the expressions for the structure functions 
in the second section of this paper. Moreover, here the fol­
lowing parametrization of the transfer momentum in the quasi­
potential is introduced: 

Q 2 =-(p-k) 2 =-(~ , -~k , ) 2
= (2rn·Binhy/2) 2

• (19) 
p. ffi/\p ,ffi/\ p 

With the help of the transformation (3) it is easy to pass 
into the relativistic coordinate space where eq. (17) will be 
of the form 

Ho Ho ~ 
-(rosx --) · 4> (r) 
2m A o a,p o,o 

~ ~ ~ ~ ' ~ . 
= [ 2 ]iii v0 (r) 2m - V0 (r)]. 4> 0,0(r) •. 

There, as usual, 

and 

A i a 2i 
H =2m· oosh- -- +-

0 m ar r 
sinh_!_ _a __ 

m ar ' 

471 00 

V
0 

(2m·Binhy/2) = _. fdr.rV 0 (r) sinmry .-
m · Sl.nhy 0 

(20) 

(21) 

(22) 

In refs. 112• 1W it is shown that the Coulomb quasipoten-
tial in the relativistic coordinate space 

V0 (r) = - g2/r (23) 

can be identified with the QCD one-gluon exchange contribu­
tion because in the momentum space this quasipotential has 
the same asymptotics at large Q2 as the QCD one-gluon exchange 
amplitude: 
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2 2 
eff, QCD 4rrg _ 811g 

v (2m· sinhy/2) =- --~-- = - ------, (24) 0 m2ysinhy Q2-+oo Q2 .InQ 2/m 2 

where as the parameter A 
mass m stands. 

characteristic for QCD the quark 

In this case (QCD) eq. (17) has obviously the following 
form: 

ooshxP (roShxP - cosx0 ) · '¢(x P ) = 

g2 ·2m 00 

=--- fdxk·{oosh(x -xk) + cosh(x +xk )-1] x 2rr 0 P P 

Xp +xk 
x In---. '¢(xk ) . 

1~-xkl 

(25) 

For comparison, let us consider also the quasipotential of 
the electromagnetic interaction that in the momentum space 
according to QED equals 

QED 4rrg2 rrg2 
V (2m· Sinhy/2) = -- = --------x. (26) 0 

-Q2 m2.:sinh2y/2 

After substituting this expression into eq. (17) we find 

ooshxp (coshxp -cos)!())·'¢ <x P ) = 
Q --

~ ·= 
= --- ( dx · {cosh(x -X ) 

4rro k P k 
cosh(Xp+ Xk) - 1 

x ln---------- · '¢(x ) . 
cosh(x -x ) - 1 k p k 

Finally, let us consider as the 
one-gluon exchange contribution 
follows 

2 

+ ex>sh(xP + xk > - 11 x (27) 

quasipotential directly the 
represented usually in QCD as 

QCD 4rras (Q ) 
V (2m· sinhy/2) = -------. (28a 

0 Q2 

Restricting ourselves for a
8 

(Q 2) to the one-loop approxima 
tion 

2 4rr 
a (Q ) = ------· (28b) 

.\ 
I 

s i Q~>A2 f3o·lnQ2/A2 

where f3o= 11-2/3. nr (nr is a number of flavors), 
sent (28a) in the form 

QCD 2rr 2 
V0 (2m. sinh y/2) = ---~---------- -·---------------------

we repre- ') 

(28c) 
{30m2 . sinh2y/2 ·ln(2m/A · 'sinhy/2) 

8 

Signs of equality in (28a)-(28c) have a conventional charac­
ter because the quantity a8 (Q 2) calculated in QCD within 
perturbation theory is determined, strictly speaking, in the 
range of applicability of perturbation theory only, i.e., at 
Q2»A 2 . Therefore, the expressions (28a) and (28c) are ap­
plicable in the region of large transfer momenta only. 

•. Eq. (17) with the potential (28c) takes the form: 

ooshx (rosx 0- coshx ) · <P<x ) p p p 

2m 00 -- r dx .(cosh(x -x )+ cosh(xP + x k) - 1]. x 
(29) 

Q k p k 
~-'o o 

m2 
ln--{ ex>sh(x +xk)-1] 

A2 P 
x ln-----------·------ · '¢(xk ) · 

m2 
ln-- { ex>sh(x -xk) -1] 

A2 P 

In the case of spinless quarks in refi/ 21· 231 exact solu­
tions were found to the quasipotential equation in the coordi­
nate space for the potential (23) and 

2 
V (r) = - _g_ cth rrmr, (30) 
o r 

and what is more, the latter is the QED potential in the coor­
dinate space. However, one has not yet succeeded in solving 
-- /l')f'\\ -~·-- .C-~- .._, _____ .!_~_.., __ .._- __ _!, __ ..__ ._!,., 't ., 

'-"'1• \"-'\J,/ '-Y'-&..&. .&...'\J.L. ~a..L.._oJ..._ ~..L..a.u.y..a..'-UO~ "i.U'-i.UO.L.pu'-~l..L'-.L.GL.La CI.J.J.U CL.Lo:JV 

eqs. (25) or (27) in the momentum space. Nevertheless, one may 
try to find the asymptotics of the WF in the momentum space 
using eq. (17) because just this asymptotics determines the 
prescaling part of the structure functions (3) or to construct 
approximate solutions of the quasipotential equation. 

For this purpose we will pass to the limit Xp -+ oo directly 
in the integrand in the right-hand side of eq. (17) and sup­
pose that Xp » Xk. This assumption may be justified because 
with rapidly decreasing the WF it is just this region that 
gives the main contribution to the integral. As a result eqs. 
(25), (26) and (28) are significantly simplified and take the 
form 

"" 
(ooshx P- cosx0 ) · '¢(xp ) = ( dx k · L(xp, X k ) · '¢(x k), 

0 
where in the case of the effective QCD potential (23), 
the kernel has the form 

(31) 

(24) 

err g 2 Xp +xk 
L · <x , x ) = - ln 1-----1 . (32) QCD p k rr X -x 

p k 
Analogously, we find for the QCD one-gluon exchange amplitude 
(28) 
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m2 Xp +:\k 
lnl- sinh-1 __ _b:__ __ 3 __ . 

m2 )lj,-Xk 
ln 1- sinh-1 

A2 2 

L I 1 QCrtXp • X k ) = -- ln 
f3o 

(33) 

and for the QED amplitude (26) 

g2 Xp +xk Xp -xk 
L <x , x ) = --ln I sinh I sinh----· I QED P k 277 2 2 (34) 

L~t us consider first the case of QED. Upon integrating in 
the right-hand side of eq. (31) with LQED(xp'Xk) (34) by 
parts we obtain 

(ooshxP - cosXo ) ·¢QED <x P ) = 

g2.2m "" dxk · sinhxp . "" , , 
= -- ( -------' ( dxk '¢ ED (x k) 

(3S) 

~17 0 ooshxP-coshxk xk Q 
hence ~t follows at large values of Xp 

oon st · Sinh x P 
1> <x ) :: --------------~·. 

QED P x ... oo ooshx . (ooshx -oosx ) 
p p p 0 

(36) 

Thus for ~ =0 we have determined the asymptotics of the WF 
that is a solution of eq. (14) with the potential (IS), (26). 
Since eq. (14) with the potentials (IS), (2S) in the nonrela-
t-ivi c::t-i,... 1 imi ~ f-,,,..."" ~"""t-'""' t-'hn. c ..... 'h-gA.;- ........... - ........ .,~-~.: -- ~-! ._,_ ..._,_-- --- ------ ---- -------~··o-- _"'1 __ ,_..._ .......... , ...... ~ ...... Lo'-&"-

Coulomb potential, then, as it is easy to see, the interpola­
ting function 

QED 417 oonst 
¢ (m sinhx ) "'------¢ <x ) = ------ (37) 
o,o P msinhx QED P (coshx -oosy_)2 

p p '~ 

will have the right nonrelativistic limit as well as the asymp­
totics following from (36) 

QED _ 1 _ 1 
¢ (m sinh x ) - -------------- - --

0•0 P x ->OO ooshx ·(coshx - cosx0 ) oosh2 x p p p p 

The asymptotics of the kernel (33) has the form 

LQCD(Xp•Xk) :: ~. (38) 
X -•oo X 

After passing to th~ limi~ x 
11 

... ,., directly in the integrand of 
(31) in the case of the kernel (33) we find 

- 1 
Xp · ~h2;·(39) 

QCD oonst 
1> <x ) = --------------------o,o P x -•"" x . :stnhx · (ooshx - cosx ) p p p p 0 

It is interesting to note that in the asymptotic limit (38) 
the kernel (33) has lost the dependence on the QCD scale para-

10 

meter A. As a result, it does not enter into the asymptotics 
of the \{F (39) also. This result agrees with the fact known 
in the QCD perturbation theory /24/ that the magnitude of the 
scale parameter A is not of great importance when the one­
loop approximation (28b) is chosen for the "running" coupling 
constant a8 (Q2 ) and calculations are restricted to the first 
order in ( ln Q2/A2 ) -l . Therefore, to determine A. it is 
necessary to appl~ to formulae containing the two-loop appro­
ximation for a 8 (Q )oThe question of approximating the one­
gluon exchange amplitude with the two- and three-loo!J formulae 
chosen for % (Q2) by the effective. potential V

0
eff. Q D (24) 

is analysed ~n ref. 1251 • It is easy to check that the kernel 
Le~ (x x ) has limit analogous to (38) 

QCD p' k 

L eff. ( ) - xk 
X •X - --, 

QCD p k I X ... "" X p 
P • eff, QCD 

and, therefore, the asymptot~cs of the WF ¢ 0 0 and 

(40) 

¢~~D coincide also. ' 
'However, the effective QCD potential (23), (24) being re­

gular asQ2 ... oo allows, in contrast to the singular as Q2 ... A2 
potential (28a), (28c), one to find the WF in a region wider 
than the limit of large x P . Indeed, the expressions (23) and 
(30), i.e., the transforms of the potentials (24) and (26) in 
the relativistic configurational representation, coincide at 
large distances r > (m17)-1 , where ooth17rm ... 1. · According to 
the transformations (3) and (21) ,(22) to large values of r 
there correspond the regions of small values of rapidities 
which in these regions coincide with the corresponding momenta 
and transfer momenta 

P 0 + IP I IP I I cil I i- It I 
x = ln----- ... --, y ... --·"' --·. 

P m lii!->O m IQ.I ... o m m 
(41) 

Hence, in the region of small momenta and transfer momenta the 
potentials (24) and (26) coincide 

voefC.QCD(2m· Sinhy/2) jy-> 0 = v~ED(atJ· Sinh y/2) I y ... 0 .= 

417g 2 - 417g 2 
(42) 

- (my)2 - - liil 2 ' 

and, therefore, the WF's coincide also 

¢ eff.QCD (m Sinh ) 
o,o xP 1 xp ... o _ ,~,QED (m SinhxP )lx ... o - '~'o,o P (43) 

oonst 
= -------·---.... --

(oosh xP- oo sXo) 21xP ... o 

4· oonst 

<x/+ x; >
2 ' 

x~ =2(1-oosx 0 ). 
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0,001 

a) 

O,L. 0,6 0,8 10 X 
' 

Fig. I. The behaviour 
of the structure function 
F 2 versus Q

2 at fixed x.. : 

Fig.2. The behaviour of 
the structure function 
F2 as a function of x 

at fixed Q2. The curves 
corresponding to Q2 = 
=0.5 GeV 2 and Q2 = 
=10 GeV 2 practically 
coincide with each other 
at m=S/8 ~.L 

~ 

Fz (:t, Q2l 

b) 

m=2_M 
8 

Q2 = Q5GeV
2 , 

0,2 O.L. 0,6 0,8 1,0 X 

C . h . f WF ..!.. eff. QCD ( . h ) ompar1ng t e asymptot1cs o 'f'O,O m sm Xp of 
the form (39) with the form of this WF for small x -.0 we can 
conclude that the function P 

eff.QCD . oonst· Xp 
¢ (m s1nh x ) = -~---------------------~--

0•0 P sinhxp · (ooshxp -oosx0Hx;+ xl) 
(44) 

satisfies both boundary for Xp -.0 and x _, oo conditions (39) 
and i43), is defined in the whole inter~al of changing 
0 < I pI <"" and, therefore, it can be considered as an inter­
polating function. We will use a function of just this form 
for the numerical calculation of the prescaling part of the 
structure function F2 (,, W2 ) (13). 

In Figs. 1-3 the behaviour is depicted of the structure 
function parametrized by the variables ' and w2 as well 
as by the standard Bjorken variables x and Q2

• One may note 
the following properties. The structure function F2 comes to 
the scaling regime at increasing Q 2 or W2, and what is more, 
the '-scaling sets in before the x -scaling. The structure 
function decreases or increases with increasing Q2 depending 
on the value of the parameter, quark mass m. 

u,o 

0,6 

O,L. 

0,2 

r2~~ 
~=0,65 

,-~=0,3 

m = 1::1.... 
2 

Fig.3. The behaviour of the 
structure function F2 as 
a function of W2 at fixed'· 

4. CONCLUSIONS 

In the present work ap­
proximate analytic solu­
tions have been found for 
the quasipotential equation 
for the wave function with 
potentials corresponding 
to the one-photon and one­
gluon exchange and also 
with the QCD effective 
potential. These soluti-
ons allow us to obtain the 
explicit form of structure 
functions and other cha­
tacteristics of two-par­
ticle systems. The beha­
viour of the meson struc­
ture function is establi-

1 10 
z-

2 
shed in the case of the QCD 

100 1000 W, GeV effective potential. 
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KanwaH B.H. H AP· CTpyKTYPH~e ~YHK~HH nceBAOcKan~pH~X Me30HOB 
B COCTaBHOH MOAeflH C XpOMOAHHaMH4eCKHM B3aHMOAeHCTBHeM 

E2-82-36 

PeweHHe ypaBHeHH~ Afl~ BOflHOBOH ~YHK~HH KBapK-aHTHKBaPKOBOH CHCTeMbl C ~APOM 
B3aHMOAeHCTBH~, B3~T~M B BHAe aMnflHTYA~ OAHOrfl~OHHOrO o6MeHa, HCnOnb3yeTc~ 
Afl~ B~4HCfleHH~ aCHMnTOTH4eCKOro noeeAeHH~ CTpyKTYPH~X ~YHK~HH Me30HOB. nony4eH­
H~e B~pameHH~ COAepmaT 4fleH~, npHBOA~~He KaK K CTeneHHOMy, TaK H K norapH¢MH-
4eCKOMy HapyWeHH~ CKeHflHHra. 

Pa6oTa BblnOnHeHa B na6opaTOpHH TeopeTH4eCKOH. ~H3HKH OIUH1. 

npenpHHT 06beAHHeHHOrO HHCTHTyTa ~AePH~X HCCfleAOBaHHH. ~6Ha 1982 

Kapshay V.N. et al. lhe ~tructure tunctrons ot ~seudo-~calar 
Mesons in a Composite Model with QCD Interaction 

tz-I:SZ-)b 

Solutions of the equation for the wave function of a quark-antiquark system 
with the kernel in a form of the one-gluon exchange amplitude are used for 
calculating the asymptotic behaviour of the mesons structure functions. The 
obtained expressions contain terms giving a power violation of sealing as well 
as a logarithmic one. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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