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1. INTRODUCTION

In recent papers’!?/ a new approach to non—-abelian gauge

theories has been developed, which incorporates the descrip-
tion of the vacuum in terms of a complex self-dual (SD) Yang-
Mills field in the Minkowski space. Within this approach the
problem of solution of the Dirac =quation for fermions inte-
racting with an external SD gauge field arises naturally. The
main aim of the present paper is to extend and improve the
discussion in refs. /1:2/  concerning this point. To this end,
we have employed the spinorial (Newman-Penrose) method’/3:4/

in analogy with the analysis of Jackiw and Rebbi’% performed
in the four-dimensional Euclidean space.

The paper is organized as follows: In Sec.! the self-duali-~
ty equations (SDE) for SU(2) sgauge field are investigated.
It is shown that a Minkowski-space version of the Yang const-
ruction of Euclidean SD fields '®/ emerges naturally in the
spinorial formalism. The main results of the paper are pre-
sented in Sec.3 where we deal with the solutions of the Dirac
equation for fermions with an arbitrary isospin, interacting
with an external SD field. We restrict ourselves to the
(complex) SD fields which are the Minkowskian analog of the
Corrig39;5airlie - 't Hooft-Wilczek (CFIW) solution (see, e.8.,
refs. ' ) in the Euclidean space (cf. also refs. 2.8 ).
For the fermion isospin T=1/2 and 1 the solutions of the
Dirac equation are expressed in terms of the solutions of
the d'Alembert equation.

2. SELF-DUALITY EQUATIONS IN THE MINKOWSKI SPACE
In this section we shall deal with the equations
16.9] ®
Fo = t1*F, (1)

(the superscript (+) and (-) refers to the self-dual and
anti-self-dual (ADS) solution, resp.), where
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with o4, a =1,2,3 being the Pauli matrices. From (1) it is
obvious that A?® cannot be all real. The solutions of eqs.
(1) have been studied in many papers by means of various
Ansdtze (see, e.g., the review 8’y. In the present paper

we employ for the solution of egs. (1) the Newman-Penrose
spinorial method /3.4 The basic idea of this method consists
in passing to the spinor basis according to

X
At ABX = 0: A¥ R

B CcY g
pW | pBXCY _ o) X, CY pu

(and analogously for any highersrank Lorentz tensor), where
the transition coefficients UuBX (x =0,1,2,3 and B,X =1,2,
1,2) are given by

S 10 01 0 -i 1 0
"fx"";j’gi (0 1>,(1 0)'(i 0/ \o -1 . (3)

Note that (2) includes the definition of the "spinor gradient"

aB% - o BX gt
explicitlv. according to (3) .

i Y 21 22 1 ,0 .8
gt 1.3% 93 8'%- é(a‘_;az),a“‘z-.l_.__(a‘naz),a -L@’%a.

V2 Ve . V2 v2 (4)
The transition coefficients o BX are treated as SL(2 C) spi-
nors and Lorentz four-vectors w.r.t. indices B,X and u. res-
pectively. This means that spinor indices are raised and lowe-
red by means of the two-dimensional Levi-Civita symbol

€

m
~
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aB =%y = L

and the Lorentz index p by means of the metric tensor

g  =diag (+1,,-1,-1,-1). Using the rules of the sp/ir}or algeb-
r‘a‘xyfollowing from the above definitions (see ref. ‘47), eqgs.
(1) may be reduced to

p® B _o, (5a)
BW X

F(".) X =0, (5b)
AX B

(summation over repeating indices is tacitly assumed). Let
us consider the individual components of eq. (5a):

) -
1iel ' (6)
+)

Floeg =0 )
(+) AB

Fogni ¢ -0 (8)

Eqs. (6) and (7) mean that the potential A, in the directi-

ons (B1) and (B2) is pure gauge and may 8% therefore written
as

(+) -1 .
Ap; =97 oy 9, (6a)
4) ’ -1
Aps = fRth .
(7a)

where the ''generating matrices”" £ and % are 2x2 matrices
with determinant unity. Eq. (8) then takes the form

¢AB aAé (DR) ! am- @R =o. (8a)
For eq. (5b) (i.e., for the ASD solutions) one may proceed
in the same way. We have thus obtained a Minkowski-space ver-
sion of the Yang construction’®’ formulated first in the
Euclidean space. Explicit solutions of SDE mav be now constriur-
ted in full analogy with the Euclidean case. In particular,
an analog of the "Ansatz (I," (which is equivalent to the
well-known CFTW Euclidean solution -~ see, e.g., ref. 1/ )
yields the gauge potentials (cf. also /1,2,87 )
(1) () v
A#=2#V8 Inp ; ap =0, )

where

5@ ;l.[a(i) P W5

(24 4 " v v u (10)
with (cf. (3))

a(‘t) = ({1, o ).
ok .
Note that X ; are the two-dimensional Lorentz generators in
the represe#tations (0, 1/2) and (1/2, 0), resp. It is stra-
ightforward to show that, (cf.’8/)

(%) _ (H)la % .
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where
2(i)a . s
w = €oaw T BapBro0 T 18, Bpo ¢ ‘ (12)
For the purpose of the next section it is convenient to
rewrite the solutions (9) in the following form:

(+) 1 1 '
. = - Jd .1 - a M ’ =0 '
BX:;UV_ 2 BU VX " ‘v ux e o (132)
where (cf./5/)
(+? ~ A(+1 w .
BX:;uv ~ OBx; v ‘wu '
+) +) e
+ U +a  0Oa
Apx, v= Aax (ET)UV
and
-) 1 1
.. =—=¢..0 .lnps—e.. d .Inp; O =0,
BX;UV R XU BV Pre kv “mU f ’ (3
where
) LB W
BX;0v Pk v TwU
. _ (14b)
B nHa %y
BX., V “BX ‘9 VU

The introduction of dotted and undotted isospinor indices in
(13a) and (13b) is necessary in order to maintain proper la-
belling of the Levi-Civita symbols and spinor gradients and
can be traced back to the mixing of Lorentz and isospin indi-
ces in (12). Notice that (14a) and (14b) are related via comp-
lex conjugation. Indeed, for Pauli matrices transposition(%s
equivalent to complex conjugation and according to (12) E.J;a:

(+)
=(2Wa)*.

3. DIRAC EQUATIONS

In this section we shall deal with Dirac equations for mas-—
sless fermions with an arbitrary isospin, interacting with
external (A)SD fields (13a), (13b). We proceed in close
analogy with the spinorial methods worked out in ref. /% for
the solution of Euclidean equations, although in Minkowski
space a qualitatively different picture emerges .

4

) In-the §pinoria1 formalism the wave function of a fermion
vlth isospin T and definite chirality is represented by multi-
indexed objects (spinors w.r.t. SL(2,C) x SU(R))

Y (4)B; Uy «. Ugp (positive chirality)

V() x; Uy ewUgp (negative chirality)

entirely symmetric in the isospin indices U ..U (which
according to (13a) through (14b) may be dottéd); 23 X are
SL&2,?) (Lorentz) indices. The Dirac equation wiéh exter-
nal field (13a) or (13b) may be then written in analogy

. / .
with ?/ as (the symbol {P! in the following means the per-
mutations of Uy ..Ugq)

1 ' X +A(+) X W
2T AX (iU .Uy  AX;U W () U2...U2;{Pl=0 ’ (15a)

1 X A b X W

—_— .
2T Ak Y0 U, v Upp T PARiG W +1P}=0, (15b)

(=) Uy .Ugp

1 A +) A W

—9, .

oT AX ¢(+):U1 wlUgp © AAx;ulw‘/’(+); Uy e Ugp +P=0, (15¢)
LI :,1;“‘ () AW

T Oak Y00, Uy T kbW Y01 Up anligg T O (15Q)

IF is sufficient Fo deal, e.g., only with eqs. (15a), (15b)
since the only point that matters in the solution of eqs.
(lSa)'through (15d) is whether ¥ carries both types of indi-
ces (i.e., both dotted and undotted) or not.

We sha}l start with eq. (15a). Let us remark first that it
may be written in the equivalent form (for brevity we omit
everywhere the subscript (-))

J . X (+_) X . )

. az? (U Uy AAX;HIW v iUy eUgp 0: (16)
Itnteqt.1 (l6i we have employed the notation analogous to ref/sa
et the multi-index object ¢ b ymm i
in Ag...A we define iAo © already symetric
2 o Ear-an=¢ AjAg.can +€ AgAL..Ap F o
ApAg ..A} (n terms). The equivalence of the éorms (15a)
and (16)'w11} be used frequently in the subsequent discussion.

Substituting (13a) into (15a) yields

1 ‘ '
3 . y¥ cle G mpyX ® - an

OT AX' U _ ..U AU
(Upr 2 AUy BX ; Up e Ugg



1 . X
- -2—(301xlnp)l/l AU, ___U2T+lp} -0.

For the solution of the last equation all substitutions
of ref. may be adopted. We shall describe them only brief-
ly displaying the changes associated with Minkowski space.
The redefinition

g =pTf (18)
simplifies eq. (17):
o X . X B
Ikl iUy Ut “au, 9B et ™y, Up 0. (19)

Multiplying eq. (19) by A1
over indices one gets .
s .t % P L 2T+ DO, ) X B -0. (20)

BX : Ug..Upq P UgenUpg

Inserting (20) back into eq. (19) gives the following kinema-
tical condition
Lo X 1 _.X B
anf iU geniUgp ™ 2T+1-_‘AP1aBX f i Ug..Upgp

and performing the summation

=~ 0.

This condition can be automatically satisfied if we set

fX10) e Upgp = UK T Uguuligy  * VEiU o Ugg 21
with
AY
a" "V = 0. ©2)

YiU, U, ... U,
Substitution of (21) into (20) yields the equation for %:

1 BX
$07y + (@7 " Inp)a

LN +d
2 "'U2T . BX U‘Z"'UET

4

(23)

[=]

;1
UgX "BUg -..Uyq

+V ) =0

X; BU 2 s eUpqp

Eq. (23) can be simplified by the substitution

n=p"2%T x. (24)

. . . 8/
Using the manipulations analogous to ref.
following equation for x:

we obtain the

1 . C;’ 2T B).(
2.0 (3, &1 d = -(d Inp) V.
s IXU,..Upp R ne)9 " X cyg.nlpy™ P (- VY. py.. 0
which can be rewritten in the form 25)
‘ 1 cY BY
. o (——m 39" x Y+{Pl==pl(@  Wmp)V, . 1.(26)
Up¥ 2Tt CUy - Ugy YiBUg ..Uy p

3

A
{

The solution of eq. (17) may be therefore written as (see
(18), (21), (24))
. -2T )

T

Y30, .Upg? By, 2™ Xy, vy +Vi;uluz...uﬂl’ (27)
where x¥ and V are solutions of egs. (22) and (26), resp. In
particular, for :P=l/2 eq. (25) reads

-12—::x --0®pyv. (28)
and the solution (27) with x given by (28) coincides with the
one found in ref. by direct methods. As is shown in ref.”™,
the bouyndary conditions imposed on y at the singularity points
of Aﬁt may be satisfied only for the solution with V=0. In
what follows we shall set for simplicity V=0. For T=I there
are two types of solutions of eq. (26). They may be written
in terms of solutions of the d'Alembert equations as follows

3%}.{(1)4, X.ggX -0, (29a)

1)
XU2

®xy, =0 [o-1 (aAX®g )); 0®g, =<0

UpX (29b)
Here and in what follows the symbol o=l denotes the integral
operator defined by means of a definite Green function of O.

We thus see that the problem of solution of eq. (17) is
converted to the solution of the d'Alembert equation in analo-
gy with Euclidean solutions presented in ref. 78/ The differen-
e bLetween Fuclidean and Minkowski spacc enters juct in the
last stage, in the solution of the d'Alembert equation.

Let us now turn to the solution of eq. (15b). Note that
an analogous problem in the Euclidean space has not been
discussed in ref.’% since it has no relevance for the prob-
lem of zero modes of the Euclidean Dirac equation - as is shown
in ref/% there are no normalizable zero modes with positive
(negative) chirality for an 8D (ASD) external field A, .

Substituting (13b) into (15b) gives

1 Y 1 W
RIS AT T TR LN Tl FPR PO
(30)
1 w
+3(3Aﬁ11np)'/fw; Bgenler +{P} =0,
Using the well-known rule of spinor algebra
- = G . 31
€an €pa EABEC : Gn



and making the substitution

¥ =p Tt (32)
one may Fewrite eq. (30) in the following form

0aet o s+ Gps o ™

AY' 0g.Upr® a0 0PN go..Gep =0 (33)

We shall now d i :
ttom) ecompose f in the following way (symmetriza-

fo s =+ =pe s . .
YUy UpT T¥;0y oyt “¥0; PX Gg.niligy ? (34)
where )
1
Te. o o o= f. - .
ViU lpp = BT41 ¥ily enlgy (35)
and
o . o1 W
UgeUgr  2T41 Wi Upulgp ° (36)

The identity (34) together with (35)

i i s (36) may be easil
zgglfl?d with the help of (31). Substituting now (34) ang

), ;nto eq. (33) we obtain, after some manipulations

0, e s & =mpd s ys . '

A TG by TP Agllez...I_JgT+2T(aAﬁ1p)xl_iz...ﬁ -(37)
Acting on both sides of eq. (37) by gA.we géE (using-zT

. N X

A Y 1
6 xaA =—~-2—8i D)
LTI =% lpd . x. . =2TG .p) ]
LSRN PP D SN Fak i FOU AUy xdg...ﬁﬂ +(38)
Let us denote the r.h.s. of e
d t .h.s. q. (35) by Rg.q: :
symmetrization of the R yields ¢ XiUy U The
R- o =s
X0, .0 0.0, 0% Dot
10Uz ;0,0 6% “Ug..0 ' (39)
where 1 2T -1 ~2"" 2T
8, . . =Q, . .
] X'Ul"'U2T }_{;_I._Il "'EBT (40}
with
Q. . . =0%.,0
X;U,..U b 44 i, X g i )
and 1Ugp AU;" Ug welUgp “D

D.- . 1 LA : 4
e Uo= 5PO X s =(d% AV S
UgeUpp 2P X0U,.. Uy @ U, PXd ¢ x Uy -'"l’z'r)' (42)

S%nce both the.l.h.s. of eq. (38) and the 8 in (39) are en-
tirely symmetric, the expressions (42) must wvanish

oox, | et e xY., . ) =o. (43)
2 UgeUgr Up Ug.Uer
Eq: (43) coincides with eq. (25) for V=0, which we have al-
ready solved for T =1/2, 1. We have thus obtained a compati-
bility condition for eq. (37); if (43) were not satisfied,
eq. (37) would not have solution. Let x {p..Ugr D€ 2 solu-
tion of eq. (43). Denote the r.h.s. of eq. (37) by mAJﬁl-uﬁzf
Obviously, a solution of eq. (37) may be written as
N . =-—26A (l:l-1 . . Di (44)
X;Ul"'UZT b ¢ A;Ul"'UZT ' >
to verify this, one has only to employ the relation anzaﬁi=

= - é?SAP o. However, (cf. (38), (39))

AY

aA kﬁA:ﬁl..o iJ2T=—R*;ﬁ1 ...lng
and hence, in view of (43)
/T . =2D—1 . e .
x;Ul.llU2T X;UllluuzT
The general solution of eq. (37) is the sum of (45) and an
arbitrary solution n(®)  of the homogeneous equation corres-—
ponding to a37), i.e.,

X, O, . . =
In T RO, Uy 0. (46)

Concluding this section we may write the explicit solutions
cnlukion nf (AAYY Far T =1/7

~F ~An (AN livn +n Arn avhitrary
cf cg. (20) {(up tc an 2¥DLITLIY SUome-ve M- {

and 1. For T=1/2 we have, according to (32), (34), 40), (41),
(43) and (45)

_ =% -1 A
With Oy =0.

The expression (47) is equivalent to the result obtained in
ref.’?/ by direct methods. For T=1 we may write two types
of solutions
Wy,
X;U1U2
where i =1,2 the S8(, x) is given by (40), (41) and

Mga algA =0

(45)

)N +e oo pxt 47)
1

g XU,

—p—1 ~1 e e . i) . () .
p-l (20 Sx‘uxuz p, x)nglp X g, 1,

My . =9 .
X, 9at,

@y . =9 . 0-1pa2¥ @By a®g . 0.
X Ug AU2 P 2 X @ X
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MepBymun B.H., Copxeimn U. ChnuHOpHBI aHanMs E2-82-316
Teopun SuHra-Mmica B MpPOCTPaHCTBE MHHKOBCKOI'O

CnuHOpHEIE MeToApl MPHMEHAKWTCH K pemeHHic ypaBHeHHH caMOmyanb—
HOCTH AJiA monew dura-Muyuica 1 ypaBHeHHA Jupaka ¢ BHemMHHM CaMo—
OyanbHEM [OJIeM B npocTpaHcTBe MHHKOBCKOFO. PaccMaTpuBaeTcs CIIy~
yaii kanu6pOBOYHON TrpyNNH SU(2). MoxasaHo, YTO B paMKax CIIUHOPHO™
ro dopManu3sMa ecTeCTBEHHO nosiyiaeTcs aHajor KOHCTPYKUHH Aura
ANA caMongyallbHbIX nojsieit. [losydeHsl pemeHHs ypaBHEHHA Jupaka nns
GesMaccoBoro ¢epMHoHa c MPOU3BOJIbHbIM H3OCIHHOM, B3aUMOI e CTBYIO~
mero C BHENHHM CaMOAYANBHBLIM HIIH anTHCaMogyanbHbiM TojeM. B ka-
YecTBe BHemHero mnojys GepeTcs aHajor eBKJINIOBOH MOOCTaHOBKH
Xoogpra. IlokasaHo, UTO ANA usocnuua 1/2 u 1 pemeHHA ypaBHEHHA
Jlupaka BbLIpDAXawTCA Uepe3s pemeHHs ypaBHeHHs Nanambepa. lonyuyen—
Hhle pemeHHs MOXHO HCIONb30BAaTb B paMKax He[aBHO MNpeJioXeHHOTO
noaxopa K KannGpoBOUHLIM TeopusM, OCHOBAHHOT'O Ha AHAJOrHH c
Teopuell cBepXTeKy4yeCTd; B TAKOM MOOXOOe CaMoayaJjibHble pemeHH:A
ypaBHeHHH Slura-Mumnjca MrpaoT poJib BAKYyMHBIX noneu.

PaGoTra BhIIONIHEHA B JlabopaTopHH TeopeTHuYeCKOH (QH3HKH OUusin.

NpenpuHT 06BbeanuHEHHOro MHCTUTYTA AAEPHLIX nccnegosanuit . flybra 1982

Pervushin V.N., Hotejdi J. spinor Analysis £2- 82 216
of Yang-Mills Theory in the Minkowski Space

Spinorial methods are applied to the solution of self-duali-
ty equations for Yang-Mills field and the Dirac equation with
an external self-dual field in the Minkowski space. Gauge
group SU(®) is considered. It is shown that in the spinorial
formalism an analog of the Yang construction of self-dual
fields emerges naturally.Solutions of the Dirac equation for
massless fermion with an arbitrary isospin, interacting with
an external self-dual or anti-self-dual field are obtained.
The external field is chosen to be the Minkowskian analog of
the Euclidean 't Hooft Ansatz. It is shown that for the iso—
spin 1/2 and 1 the solutions of the Dirac equation may be
expressed in terms of the solutions of d'Alembert equation. The|
solutions obtained in this paper may be employed in the ap-
proach to gauge theories proposed recently, which is based on
an analogy with the superfluidity theory; in such an approach
the self-dual solutions of the Yang-Mills equations represent

the vacuum. :
Preprint of the Joint institute for Nuclear Research. Dubna 1982




