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I. INTRODUCTION 

In recent papers 11 •21 a new approach to non-abelian gauge 
theories has been developed, which incorporates the descrip­
tion of the vacuum in terms of a complex self-dual (SD) Yang­
Mills field in the Minkowski space. Within this approach the 
problem of solution of the Dirac equation for fermions inte­
racting with an external SD gauge field arises naturally. The 
main aim of the present paper is to extend and improve the 
discussion in refs. /1,2/ concerning this point. To this end, 
we have employed the spinorial (Newman-Penrose) method 13 •41 

in analogy with the analysis of Jackiw and Rebbi 161 performed 
1n the four-dimensional Euclidean space. 

The paper is organized as follows: In Sec. I the self-duali­
ty equations (SDE) for SU(2) gauge field are investigated. 
It is shown that a Minkowski-space version of the Yang const­
ruction of Euclidean SD fields 161 emerges naturally in the 
spinorial formalism. The main results of the paper are pre­
sented in Sec.3 where we deal with the solutions of the Dirac 
equation for fermions with an arbitrary isospin, interacting 
with an external SD field. We restrict ourselves to the 
(complex) SD fields which are the Minkowskian analog of the 
Corriga~-Fairlie- 't Hooft-Wilczek (CFTW) solution (see, e.g., 
refs. 1 '

81 
) in the Euclidean space (cf. also refs. / 1•2•8 / ) • 

For the fermion isospin T =I /2 and I the solutions of the 
Dirac equation are expressed in terms of the solutions of 
the d'Alembert equation. 

2. SELF-DUALITY EQUATIONS IN THE MINKOWSKI SPACE 

In this section we shall deal with the equations 

F(±) = ± i *F (±) (I) 
J.LV J.LV 

(the superscript (+) and (-) refers to the self-dual and 
anti-self-dual (ADS) solution, resp.), where 

1 af3 
*F IJ.V = 2£ J.LVU{J F • 

F J.LV a J.L A v - av A J.L + (A J.L , A v] , 

~~:.~ •. -- 'L.C"·-•--<-

: f! f' ''' 

- ~ . ------··---~- - .. ._......._.- ·-~ 
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with aa, a =1,2,3 being the Pauli matrices. From (I) it is 
obvious that A3

11 
cannot be all real. The solutions of eqs. 

(I) have been studied in many par,~rs by means of various 
Ansatze (see, e.g., the review 8·). In the present paper 
we employ for the solution of eqs. (I) the Newman-Penrose 
spinorial method 13 •4 /. The basic idea of this method consists 
1n passing to the spinor basis according to 

All ABX ~ BXA11 • . a Jl. . . 
F

JLV F BXCY _ BX CY F 11~' 
-+ ::::all ov 

(2) 

(and analogously for any higher-;rank Lorentz tensor), where 
the transition coefficients a BX (11 =0, I ,2,3 and B,X =I ,2, 
• '> • 11 

(3) I,-: ;:• g:1:en (( ~ :) • (: ~) • (: -~) • ( ~ _:)] 
Note that (2).includes the definition of the "spinor gradient" 

a BX = a BX a Jl. ; 
Jl. 

Pxnlicitlv. according to (3) . 

ati~_t_ 1ao+as).at2=_t_ 1 al-ia2>.a2i~_1 1at+ia2>.a22= 1 1ao-a3>. 
..;2 ..;2 . \/2 v2 (4) 

The transition coefficients rr :x are treated as. SL(2, C) spi­
nors and Lorentz four-vectors w.r.t. indices B,X and 11· res­
pectively. This means that spinor indices are raised and lowe­
red by means of the two-dimensional Levi-Civita symbol 

0 
fAB =£xY"" (_1 

1 AB 
0) ~ ( £ XY 

and the Lorentz index IL by means of the metric tensor 
g :diag (+I,-I,-I,-I). Using the rules of the spinor algeb­
?/f following from the above definitions (see ref. ' 4 ' ), eqs. 
(I) may be reduced to 

2 

F (7) 8 . = 0 , (Sa) 
BW X 

F <-:> i = o , 
AX B 

(Sb) 

(summation over repeating indices is tacitly assumed). Let 
us consider the individual components of eq. (Sa): 

F <;>. - 0 
1121 (6) 

(+) 
F . . = 0, (7) 

12 22 

F <:> • t AB = 0 • 
A281 (8) 

Eqs. (~) and (7) l!lean that the potential A<;~ in the directi-
ons (81) and (82) is pure gauge and may be therefore written 
as 

A~l =5)-1aBi 5), 

A <-t) = ~ a . ~- 1 
82 82 

where the "generating matrices" 
with determinant unity. Eq. (8) 

fA8 a A2 ((~) -1 a8i (5)~)] = 0 • 

(6a) 

(7a) 

!!) and ~ are 2x2 matrices 
then takes the form 

(Sa) 

:or eq. (Sb) (i.e., for the ASD solutions) one may proceed 
1~ the same way. We have thus obtained a Minkowski-space ver­
Slon of the Yang construction/8/ formulated first in the 
Euclidean space. Explicit solutions of SDE mav be now construr­
ted in full analogy with the Euclidean case. In particular, 
an analog of the "Ansatz (f 1 " (which is equivalent to the 
well-known CFTW Euclidean solution - see, e.g., ref. /7! ) 

yields the gauge potentials (cf. also /1,2,8/) 
(±) ~ (±) v 

A JL .. JLV a lnp op = o • (9) 

where 

~ (±) 1 [ (±) ( +) (±) ( +) 
"" = - a a - a a ( 10) 

p.v 4 IL v v IL 

with (cf. (3)) 

a(±) = (I , ±a ) • 
p. (±) k 

Note that I v are the two-dimensional Lorentz generators in 
the represegtations (0, 1/2) and (I/2, 0), resp. It is stra­
ightforward to show that, (cf. /8/) 

I.(±) 
p.v 

I(±)a 
Jl.V 21 

(II) 
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where 
(±)a ~ p.v ~ l Oap.v + ig ap. g vO ± ig av g p.O • ( 12) 

For the purpose of the next section it is convenient to 
rewrite the solutions (9) in the following form: 

(+) 1 1 A. =-€ a. lnp+-E a .lnp; op =0, (13a) 
BX;UV 2 BU VX 2 BV UX 

where (cf.
161

) 

A(+~ = A(+). w 
BX;UV BX; V f WU 

A(+). u 
BX; V 

A (+).a(~) 
BX 2i UV 

and 
(-) 1 1 

A =2£xu a lnp +-£ .. 
2 XV BX;UV 

where 

(-) 
A • 

BX; UV 

BV 

(-) 
=A • 

BX; 

(-)a 
A • 
•• BX 

w 
f 

v wu 

/ __ aa,_, .• 
'2i 'vu 

( 14a) 

a lnp; ( 13b) 
BU 

(14b) 

The introduction of dotted and undotted isospinor indices in 
(13a) and (13b) is necessary in order to maintain proper la­
belling of the Levi-Civita symbols and spinor gradients and 
can be traced back to the mixing of Lorentz and isospin indi­
ces in (12). Notice that (14a) and (14b) are related via comp­
lex conjugation. Indeed, for Pauli matrices transposition(~s 
equivalent to complex conjugation and according to (12) ~ ;va ~ 
=(~(+)a)*. 

p.v 

3. DIRAC EQUATIONS 
In this section we shall deal with Dirac equations for mas­

sless fermions with an arbitrary isospin, interacting with 
external (A)SD fields (13a), (13b). We proceed in close 
analogy with the spinorial methods worked out in ref. 

151 
for 

the solution of Euclidean equations, although in Minkowski 
space a qualitatively different picture emerges 

121 

'· 

In the spinorial formalism the wave function of a fermion 
with isospin T and definite chirality is represented by multi­
indexed objects (spinors w. r. t. SL(2, C) x SU(2)) 

c/J(+)B; U1 ... u 2 T (positive chirality) 

c/J( )·x· u u (negative chirality) 
- ; 1 "' 2T 

entire~y synnnetric in the isospin indices u 1 ••• u 2 T <which 
accord1ng to (13a) through (14b) may be dotted)· B x are 
SL(2 C) (L ) · · · . ' ' • . orentz 1nd1ces. The D1rac equat1on with exter-
n~l ~~~ld (13a) or (13b) may be then written in analogy 
w1th . as (the symbol IPI in the following means the per­
mutatwns o~ U 1 ... U 2T) 

1 a .r. X (+) X W 
- '~"' +A c/1 + IPI = 0 
2T AX (-);u

1 
... u

2
T Ax;u

1
w (-); 02 ••• u2T (!Sa) 

(ISb) 

(ISc) 

( ISd) 

It is sufficient to deal, e.g., only with eqs. (!Sa), (ISb) 
since the only point.that matters in the solution of eqs. 
(!Sa). through (ISd) 1s whether c/1 carries both types of indi­
ces (1.e., both dotted and undotted) or not. 

We shall start with eq. (!Sa). Let us remark first that it 
may be written in the equivalent form (f~r brevity we omit 
everywhe~e the subscript (-)) 

a · c/J X + A(+) c/J X = 0 · 
• AX ;U

1 
... u

2
T AX;~ 1 w ;~2 ... _!! 2T ' (16) 

1n eq. (16) we have employed the notation analogous to ref 
161

· 
~et the multi-index object eAt ... An be already synnnetric• . 
1n A2 ... A0 , we define eA. A e 1: +1: ( l• .. _n= AtA2 ... An +!. A2A1 ... A0 + ... 

!.AnA2 ••• A.l n terms). The equivalence of the forms (!Sa) 
and (16) w1ll be used frequently in the subsequent discussion 

Substituting (13a) into (!Sa) yields · 

1 i 1 -a . c/1 + -( <a lnp)c/J x s 
2T AX :u

1 
... u 2T 2 AU 1 BX ; u 2 ... u 2 T 

(17) 
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For the solution of the last equation all substitutions 
of ref. 151 may be adopted. We shall describe them only brief­
ly displaying the changes associated with Minkowski space. 

The redefinition 

1{1 =pTf (18) 

simplifies eq. (17): . . 
a ·fx. +f <a ·lnp)fx 

8 o (19) 
AX ,u 1 ... u 2T A!! 1 BX ; !:!2 ···.!!2T ' 

Multiplying eq. (19) by tAUt and performing the summation 
over ind~ces one gets . 

a .fx B -+(2T+1)(a .lnp)fX B =0. (20) 
BX u2 ... u2T BX u2 ... u2T 

Inserting (20) back into eq. (19) gives the following kinema­
tical condition 

a·rX --1
--f a·fXB ~oO, 

AX :u t···u2T 2T+1 A~t sx : E2 .. ·~2T 

This conditi9n can be automatically satisfied if we set 

r· =a . ., +V· 
x:ul ••• u2T Etx .!!2"'~2T x:u1 ... u2T 

with . 
aAYv. ~o. 

Y;U1U2 ..• U2T 
Substitution of (21) into (20) yields the equation for 71: 

io., f (a 8 xlnp)(a . ., 
2 u2 ... u 2T . sx u 2 ... u 2 T 

+V· )%0. 
X; BU 2 ... u 2T 

Eq. (23) can be simplified by the substitution 

1/ = p- 2T )(. 

(21) 

(22) 

(23) 

(24) 
.'5/ 

Using the manipulations analogous to ref. we obtain the 
following equation for x: 

1 . CY BX 
-oxu u -<au v·lnp)a x =p 2

T[-(a lnp)V 
2 2"' 2T _2 C_!!s·"'E2T Y;B~···lJ:! 

which can be rewritten in the form (2S) 

a • <-1- acv 1 1 BY U y X CU U )+ p =-p[(a lnp)Vy· ·BU U ].(26) 
2 p 2T-1 3 ••• 2T ' 2 "' 2T 

6 
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The solution of eq. (17) may be therefore written as (see 
(18), (21), (24)) 

1/J· =pT[a •(p-2T)( )+V· ]. (27) 
X;Ul"'U2T UtX U2"'U2T X;U1U2'"U2T 

where)( and V are solutions of eqs. (22) and (26), resp. In 
particular, for T =I /2 eq. (2S) reads 

1 . Bi 
2 ox --<a p)V.i'B (28) 

and the solution (27) with x given by (28) coincides with the 
one found in ref. 121 by direct methods. As is shown in ref. 12~ 
the b(~ndary conditions imposed on 1{1 at the singularity points 
of A; may be satisfied only for the solution with v,o. In 
what follows we shall set for simplicity V ,o. For T=l there 
are two types of solutions of eq. (26). They may be written 
in terms of solutions of the d'Alembert equations as follows . . 

<1> xu 2 = au2x <t><P x ; o<l)<P x .. o . (29a) 

(2))(U2 =aUeX [o-1 (paAX(2)cPA )]; o(2)cPA .. 0. (29b) 

Here and in what follows the symbol o-1 denotes the integral 
operator defined by means of a definite Green function of o. 

We thus see that the problem of solution of eq. (17) is 
converted to the solution of the d'Alembert equation in analo­
gy with Euclidean solutions presented in ref. 161

.The differen-

last stage, in the solution of the d'Alembert equation. 
Let us now turn to the solution of eq. (ISh). Note that 

an analogous problem in the Euclidean space has not been 
discussed in ref. 1 ~1 since it has no relevance for the prob­
lem of zero modes of the Euclidean Dirac equation - as is shown 
. f /li/ h 1' bl d . h . . 1n re • t ere are no norma 1za e zero mo es w1t pos1t1ve 
(negative) chirality for an SO (ASD) external field AIL • 

Substituting (13b) into (ISh) gives 

1 y 1 w -a . 1{1 • • +-<a . lnp)I/J. . • + 
2T AY ;U 1 ... u 2T 2 AW u 1; U2 ... U 2T 

(30) 

1 w 
+-2 <aAu· lnp)I/J u· u· + IPI = o. 

1 W; 2 "' 2T 

Using the well-known rule of spinor algebra 

(31) 
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and making the substitution 
.;, = P-T r 

one may rewrite eq. (30) in the following form 
y . w 

(32) 

aAYr ;Ut···u2T+ (aAgtlnp)fw; g2···E2T ... o. 
We shall now decompose r in the following way 
tion) 

(33) 

(symmetriza-

f·. '=71' • • +f'' 
Y;Ut ... U2T Y;Ul'"~T YJ.1t PX !k ... g2T' (34) 

where 

(35) 

and 

(36) 

The. ~dent~ty (34) together with (35), (36) may be easily 
vertfted wtth the help of (31). Substituting now (34) and 
(36), ~nto eq. (33) we obtain, after some manipulations 

y . 
a A 71 • • • = -p a · x • • +2T(a • > (37) Y;Ul'"U2T AUl U2"'U2T AuPXu ... u • 

A • . - - - A -1 :.2 -2T 
Cttng 0\} both Sldes Of eq. (37) by a .we get (using 

A Y 1 Y X a XaA =-28! a) 

1 .A · 
-2 a 71 • ,, • =a • [ pa • x . -2T(a p))( ] ( 38 ) 

X;ul' .. U2T X A~l ~2"'!:!2T A~l ~ ... U2T. 

Let us denote the r.h.s. of eq. (35) by Rx·ti u The 
synunetrization of the R yields ' 1 ••• 2T 

8 

(39) 

(40) 

(41) 

(42) 

Since both the l.h.~. of eq. (38) and the S in (39) are en­
tirely symmetric, the expressions (42) must vanish 

1 -(aA. p)(a. X y ) .0. (43) 
-p 0 X • • AY u' u' 2 u 2 ... u 2T .!!2 ~"'-2T 

Eq; (43) coincides with eq. (25) for V:O, whi~h we have al~ 
ready solved forT =1/2, 1. We have thus obtatned a.co~patt­
bility condition for eq. (37); if (43) were not satLSfled, 
eq. (37) would not have solution. Let x u2 ••• u 2T be a solu­
tion of eq. (43). Denote the r.h.s. of eq. ~37) by ~A;U 1 ... u2 t· 
Obviously, a solution of eq. (37) may be wr1tten as 

. . . =- 2a A (a - 1 ~ • • .); ( 44) 71 x;u 1 ••• u 2T x A;u 1 ... u2T 

to verify this, one has only to employ the relation aAxa 
8
x.= 

- !.a AB a. However, (cf. (38), (39)) 
2 a A ~ • R. . • x A;ir 1 ... u 2 T=- x;u 1 ... u 2 r 

and hence, in view of (43) 
TJ • • • =2o-1 s. . . (45) 

X;Ul"'U2T X;U1"'U2T 
The general solution of eq. (37) is the sum of (45) and an 
arbitrary solution TJ(O) of the homogeneous equation corres-
ponding to (37), i.e., 

a x , <O > • • • = 0 • c 4 & ) 
A X;U 1 ••• U 2 T 

Concluding this section we may write the explicit solutions. 
-~ ,...-9 I'll"\\ t ........ ....... ..,ro .. ~::-8it~.:!!'~' s~!'.!t£~:!. C'~ (l!h ~) Fn!' 'r =1 /) 

;~d~l: F~;'T':);2~w;·have, according to (32), CJ!•), (40), (41), 

(43) and (45) 
.r. =p-~ l2o-1 [(aA. p)(a . x>l H rxl (47) 
'~'x;ti 1 ~ AII 1 xu 1 

with ax =0. · d · 
The expression (47) is equivalent to the result obtatne 1n 
ref. /2/ by direct methods. For T=l we may write two types 
of solutions 

=p-l [2a-1 s · · · (p (i>xl+t · · p <0 x · I, 
X; U l U 2 ' X !,! 1 !!2 

where i =1,2 the S(p, xl is given by (40), (41) and 

(1) X • = a . (1) .p A 
u 2 AU 2 

o (l).p A = 0 

(2) X . = (J • o-1(piJAX 
U2 AU2 

= 0. (2) <P • ) ; 
X 

ACKNOWLEDGEMENTS 
One of the authors (V.N.P.) is indebted to Ya.A.Smorodin­

skii and A.V.Efremov for useful discussions. The second author 



10 

(~·:h)· ~h~nks Prof. V.A.Meshcheryakov for hospitality offered 
a e a oratory of Theoretical Physics of JINR, ·Dubna. 

REFERENCES 

I. Pervushin V.N. Theor.Math.Phys., 1981 45 , , p. I 145. 
llepBymHH B.H. TM~, 1980, c.343. 

2. llepBymHH B.H. H~, 1982, 35, B,6. 
3. N~wma~ E., Penrose R •. J.Math.Phys., 1962, 3, p. 566. 
4. P1ran1 :.A.E. Pr?ceed1ngs of Brandeis Summer Institute 

Theoret1cal Phys1cs 1964 vol I L t 
R 1 . . • • · . , ec ures on General e at1v1ty, p. 305. 
cr>ponoB B.n. TpyAf>J ~HAH 1977 96 72 

. ' ' ' c. . 
S. Jack1w R., Rebbi C. Phys.Rev 1977 Dl6 IOS2. 
6 Ya C N Ph • ' ' ' p. • ng · · ys.Rev.Lett., 1977, 38, p. 1977. 
7. Prasad H.K. Physica 1980, Dl, p. 167. 
8. Actor A. Rev.Mod.Phys., 1979, 51, p. 461. 

Received by Publishing Department 
on May 3 1982. 

in 

WILL YOU FILL BLANK SPACES IN Y()llR LIBRARH 
You ~an re~eive by post the books listed below. Prires - in lJS I, 

indudin~ the paekin~ and registered postap;e 

013-11807 Proceedings of the III International Meeting 
on Proportional and Drift Chambers. Dubna, 1978. 14.00 

Proceedings of the VI All-Union Conference on 
Charged Particle Accelerators. Dubna, 1978. 
2 volumes. 

01,2-12450 Proceedings of the XII International School on 
High Energy Physics for Young Scientists. 
Bulgaria, Primorsko, 1978. 

D-12965 The Proceedings of the International School on 
the Problems of Charged Particle Accelerators 
for Young Scientists. Minsk, 1979. 

011-80-13 The P.roceedings of the International Conference 
on Systems and Techniques of Analytical Comput­
ing and Their Applications in Theoretical 
Physics. Dubna, 1979. 

04-80-271 

04-80-385 

The Proceedings of the International Symposium 
on Few Particle Problems in Nuclear Physics. 
Dubna, 1979. 

The Proceedings of the International School on 
Nuclear Structure. Alushta, 1980. 

Proceedings of the VII All-Union Conference on 
Charged Particle Accelerators. Dubna, 1980. 
2 volumes. 

U.t-OV-5i2 ::.::.:~v~~~;-,!.!~~· .. · ::.t ::.! .. "'!'!":= E~~~-:;i~e ~"~ 
Half-Lives for the a- and #-Decays of 
Transfermium Elements" 

02-81-543 Proceedings of the VI International Conference 
on the Problems of Quantum Field Theory. 
Alushta, 1981 

10,11-81-ti22 Proceedings of the International Meeting on 
Problems of Mathematical Simulation in Nuclear 
Physics Researches. Dubna, 1980 

01,2-81-728 Proceedings of the VI International Seminar 
on High Energy Physics Problems. Dubna, 1981. 

017-81-758 Proceedings of the II International Symposium 
on Selected Problems in Statistical Mechanics. 
Dubna, 1 981. 

01,2-82-27 Proceedings of the International Symposium 
on Polarization Phenomena in High Energy 
Physics. Dubna, 1981. 

Orders for the above-mentioned books can be sent at the address: 
Publishing Department, JINR 

Head Post Office, P.O.Box 79 101000 Mosc01•·, USSR 

25.00 

18.00 

8.00 

8.00 

8.50 

10.00 

25.00 

10.00 

9.50 

9.00 

9.50 

15.50 

9.00 



SUBJECT CATEGORIES 

OF THE JINR PUBLICATIONS 

Index Subject 

1. High energy experimental physics 

2. High energy theoretical physics 
3. Low energy experimental physics 
4. Low energy theoretical physics 
5. Mathematics 
6. Nuclear spectroscopy and radiochemistry 

7. Heavy ion Ph.vsics 
8. Cryogenics 
9. Accelerators 

10. Automatization of data processing 

11. Computing mathematics and technique 

12. Chemistry 
13. Experimental techniques and methods 
14. Solid state physics. Liquids 
15. Experimental physics of nuclear reactions 

at low energies 
16. Health physics. Shieldings 
17. Theory of condenced matter 
18. Applied researches 
19. Biophysics 

t 
I 
I 

I. .. 
TiepsymHH B.H., rop~eHmH H. CnHHOpHbrn aHanH3 
TeOpHH RHra-MRnnca B npOCTpaHCTBe MHHKOBCKOrO 

E2-82-316 

CnHHOpHbie MeTO,D;bi npHMemnoTC.II K pemeHHIO ypasHeHHH caMo,o;yanb­
HOCTH ,o;n.11 noneH RHra-MHnnca H ypasHeHHH UHpaKa c BHemHHM caMo­
,o;yanbHWM noneM s npocTpaHcTse MHHKOBCKoro. PaccMaTpHsaeTCH cny­
l.laH KanH6posol.IHOH rpynnbl SU(2). TioKa3aHo, 'ITO B paMKax cnHHOpHo­
ro ~opManH3Ma ecTeCTBeHHO nonyl.laeTC.II aHanor KOHCTPYK~HH RHra 
,Jl,Jl.ll caMo,o;yanbHbiX noneH. Tionyl.leHbi pemeHH.II ypasHeHH.II UHpaKa ,o;nH 
6e3MaCCOBOrO ~epMHOHa C npOH3BOnbHbiM H30CDHHOM, B3aHMO,o;eHCTBYJO­
~ero c sHemHHM caMo,o;yanbHbiM HnH aHTHCaMo,o;yanbHbiM noneM. B Ka­
l.leCTBe sHemHero nonH 6epeTC.II aHanor esKnH,o;osoH no,o;cTaHOBKH 
Xo~Ta. TioKa3aHo, 'ITO ,o;nH H30CDHHa 1/2 H I pemeHHH ypasHeHHH 
.QHpaKa Bblp~aiOTC.II l.lepe3 pemeHH.II ypasHeHHH UanaM6epa. flonyl.leH­
Hble pemeHH.II MO~HO HCOOnb30BaTb B paMKaX He,o;aBHO npe,o;no~eHHOrO 
D0,!1;XO,l1;a K KanH6pOBO'IHb~ TeOpH.IIM, OCHOBaHHOrO Ha aHanOrHH C 
TeopHeH csepxTeKy'leCTH; s TaKOM no,o;xo,o;e caMo,o;yanbHbie pemeHHH 
ypasHeHHH RHra-MHnnca HrpaiOT ponb saKyyMHbiX noneH. 

Pa6oTa BbiDOnHeHa B na6opaTOpHH TeopeTHl.leCKOH 4JH3HKH OHRH. 
npenpHHT 06~eAHHeHHOrO HHCTHTyTa AAePHWX HCCfteAOBaHHH, ~y6Ha 1982 

"""' n,., 'l11'. 
C.L- UL. JJ\J 

Pervushin V.N., Hote]~i J. ~pinor Analysis 
of Yang-Mills Theory in the Minkowski Space 

Spinorial methods are applied to the solution of self-duali­
ty equations for Yang-Mills field and the Dirac equation with 
an external self-dual field in the Minkowski space. Gauge 
group SU(2) is considered. It is shown that in the spinorial 
formalism an analog of the Yang construction of self~dual 
fields emerges naturally.Solutions of the Dirac equation for 
massless fermion with an arbitrary isospin, ~nteracting with 
an external self-dual or anti-self-dual field are obtained. 
The external field is chosen to be the Minkowskian analog of 
the Euclidean 't Hooft Ansatz. It is shown that for the iso­
spin 1/2 and I the solutions of the Dirac equation may be 
expressed in terms of the solutions of d'Alembert equation. The 
solutions obtained in this paper may be employed in the ap­
proach to gauge theories proposed recently, which is based on 
an analogy with the superfluidity theory; in such an approach 
the self-dual solutions of the Yang-Mills equations represent 
the vacuum. · 
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