


Regularization by dimensional reduction (RDR) or supersymmet-
ric dimensional regularization 7V inconsistent in the super-
field language/2/, has been formulated unambiguously in terms
of component fields/3/-Being consistent this formulation is
however noninvariant. The supersymmetry Ward identities (SWI)
can be violated in higher orders by additional symmetry-break-
ing terms. Although in ref.’/3/ the order has been estimated,
to which the SWI do not receive these additional contributions,
no explicit example of the violation has been found for prac-
tically important identities. Another way of studying the in-
variance of the regularization is to check whether the coup-
ling constants of different interactions in the theory have
identical renormalizations as prescribed by supersymmetry. The
identical renormalization of the Yukawa and gauge coupling in
the N=4 supersymmetric Yang-Mills theory (SYM) using the RDR
has been established up to two loops /4. In the present paper
the similar three-loop test of the RDR is carried out for the
N = 12,4 SYM. The renormalization group A -function of the
Yakawa coupling is calculated in the three-loop approximation
and compared with the result /5 for the gauge coupling. The
discovered difference indicates noninvariance of the RDR.

It is convenient tu perform calculations in the N=1,2,4 SYM
simultaneously /5/, making use of the fact that these theories
can be obtained uniformly by dimensional reduction /6/ from
T=46,10 to d=4 (using the RDR, to d=4-2¢ ) dimensions ap-
plied to the action

;-
S = faxl- L))" 41X, by a0y, (1)

The vector AI: and spinor A® fields are in the adjoint repre-
sentation of the gauge group. After the reduction the space-
time coordinates become d-dimensional and the £ -component
field A; splits (A;' V‘; +S“-9 ) into a d-dimensional

vector V¥ and -d (pseudo) scalars S~ . The gauge-breaking and
Faddeev-#opov ghost terms include V: alone,
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All thevfollowing calculations are performed in the Feynman
gauge a=1.

O: 27 REAHLR BRoTHTs _ 1
B Sela (L R

BUEMMOTEKA



In the tree approximation the gauge, Yukawa and scalar
quartic interactions, which appear in (1) after the splitting
of :A", are governed by a common coupling constant g, accord-
ing fo supersymmetry. In principle,renormalizations may break
this correlation. But all the Yukawa couplings remain equal
to each other because the RDR does not influence the invari-
ance of the action (1)+(2) under the following linear global
transformations/6/
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where Ami'"\u has ($-d) -dimensional indices.

To calculate the three~loop renormalization group functions
the method described in refs./7.8/ is employed. The B —func-
tion of the Yukawa coupling is given by the formula

BYM =n(2yFFSm)y - 2,Fn) -, Sy , (4)

where , FFSF apg y3 are the anomalous dimensions of the
fermion-fermion-scalar vertex, fermion and scalar propagators,
respectively, and h= g2/(47)2In the minimal subtraction
scheme /9/ these anomalous dimensions can be expressed through
the coefficients of the 1/ terms in the corresponding renor-
malization constants. The evaluation of the diagrams is per-
formed using the computer system "SCHOONSCHIP" / 10/

It is convenient to operate with the ¢ —~component field
A® (x) depending on the d-dimensional x“s rather than with
the vector and scalar fields explicitly. This allows one to
compute the Yukawa vertex simultaneously with the fermion-fer-
mion-vector one. It has been used to check the calculations:
The B -function of the gauge coupling, obtained from the fer-
mion-fermion-vector vertex

B m) = nl2yFFy-2yF )y -, Y1 ,

reproduces the result of ref./5/,

Bf,oops (h) = —; ($-10)Ch [ 1-(P-6) Ch+ -%(9—6)2C2h2] , (5)

where C is a group invariant defined by f2be¢ fdbe uCs2d, gou-
ever, formula (4) leads to a different B —-function,
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The three-loop coefficient of (6) does not coincide with that

of (5) at any $.The expression (6) includes (3= 1/n3 and
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For the SU(n) group F‘a-%n(see ref. /8/ ). This invariant can-

not appear in the three-loop B —function of the gauge coup-
ling /8/,

Consider possible explanations of the difference between
(6) and (5). The estimates of ref.’/3/ can be extended to all
the SWI which contain the Green functions essential for the re-
normalization structure of the Na 1,2,4 SYM. These identities
are derived through the change

8A =i (€T, A°- X°T, ¢),
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of the path integral variables in the generating functional
followed by differentiating it with respect to a constant spi-
nor £, once with respect to a source of A® and n = 1,2 or 3
times to that of ‘A" .At n.1 one gets the propagator-type SWI
studied in ref/11/ At ne2 amtl na 3 the identities for the
triple and quartic vertices are obtained. In the Table the
minimal number of loops in the diagrams is pointed out, at
which the symmetry-breaking terms, resulting from the varia-
tion of the action (1)

58 = [ dx gf®°(¢ r ,\’-,'\'“ruf) }\"’r; AC (8)

under the supersymmetry transformations (7), can display them-
selves in the corresponding SWI written for the N 1,2,4 SYM.
Also the level is indicated, from which divergent parts of
these terms could survive.



Table

Possibility of the contributions from (8) to the SWI
(minimal number of 1loops)

SYM 9 violations divergences
n=1 Nn=2 n=3 n=1 n=2 N=3
N=1 4 4 2 1 4 2% 2%
N=2 6 6 4 2 6 4 4
N= 4 }10 10 8 6 10 8 8

It should be mentioned that the estimates of the Table
take into account power counting only, and, e.g., a detailed
consideration of the two-loop symmetry—breaking diagrams shows
that their divergent parts cancel. This fact is indicated in
the Table by stars. But even these minimal estimates allow
one to conclude that the contribution of (8) can explain the
difference between (6) and (5) (it concerns just the diver-
gent parts of the diagrams) for P =4 ( Nx 1 SYM) only. For
the N=2 and N= 4 SYM the three-loop SWI are true. But in the
component-field formulation auxiliary fields of supersymmetry
are eliminated by fixing Wess~Zumino gauge (WzG) and using
equations of motion, therefore the supersymmetry transforma-
tions (7) are nonlinear and S¢ (2) is noninvariant under
(7). This implies the SWI include also Green functions of com-
posite-field operators and therefore appear insufficient to
prove the identical renormalization of the different couplings.
It is these terms that cause the anomaly in the N=2 and N=4
SYM.

There are two possible reasons for it: Either extended su-
persymmetry does not survive in the WZG at all or the RDR is
noninvariant, and the invariance requires additional conditi-
ons but the absence of the contributions to the SWI in the
WZG from the variation (8). To show the second is true, let

us use the formulation of the N=1,2,4 SYM in terms of N=1lsuper-
fields /12,13,14/,

1 2
Sy = —— Tr fdx d*9 W W (9
N=l 64g2 a
SN=2’: Snap + Trfdx a9 8V § etV @, (10).



gV (44
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where V is a Hermitian gauge (vector) superfield, & and 9;
(i = 1,2,3) are chiral superfields in the adjoint representa-
tion of the gauge group, Wy = D2 (e~8Y Dye &Y, The gauge-break-
ing term can be chosen in the N =1 supersymmetric form:

ig 2
+(—§-'-fdxd Bt’i.

Sc.p. = - 'i!é' Tr [ dx d% 9 (D2 V) (D2 V). (12)
Now the N=1supersymmetry transformations are linear and
no composite-field operators are involved in the corresponding

SWI. Therefore, if an invariant regularization is used, only
one coupling constant appears in (9) and (10). Based on ref/15/

one can conclude that in the minimal subtraction scheme the
B-function does not depend on the way of gauge fixing at all.
Thus, in the WZG one necessarily obtains just one B -function
for the N=1 and N=2 SYM if the regularization preserves Na1
supersymmetry. In the case of the Now 4 SYM the &3 coupling in
(11) could generally differ from the gauge one. But in the
WZG the Yukawa couplings originating from these two interac-—
tions are equal as a consequence of the linear SU(4) symmetry
(3) of the quantum action. Hence, due to gauge independence
.of the /B-function, the theory has only one coupling cons-
tant/16/both in the N=1 supersymmetric (12) and WZG, although
the existence of a manifestly N= 4 invariant formulation is
not supposed.

Thus, the RDR is noninvariant. To ensure invariance it is
necessary that the SWI in the gauge (12) (without any Green
functions of composite-field operators® were true. To check
them, the RDR recipe used above should be completed by intro-
ducing auxiliary fields of N=1 sypersymmetry. Then the spi-
nors will appear asymmetrically: one of them in the vector
superfield, the others in the chiral superfields. Therefore,
considering N=1 supersymmetry breaking, one has to use the
estimates for $=4, or maybe, still lower ones (the explicit
form of 88 is rather difficult to write down, but the terms
which lead to the =4 estimates will surely be present).
These estimates explain the violation discovered at the three-
loop level.

Noninvariance of the RDR makes the significance of the
three-loop calculations /4.5.16,17/ doubtful. But the super-
field computations in the N=4 SYM /16.17/ demonstrate the

finiteness of the Green functions in the gauge (12) and there-
fore are reliable requiring no regularization. For the Na4



SYM the B -function (5) of the gauge coupling in the WZG cor-
responds to these calculations., It allows one to believe that
the results of (5) for the Na1and N2 SYM are also reliable.

Although, in principle, the problem of invariant regulari-
zation for Na= 1 supersymmetric gauge models has been solved/18/,
a convenient calculational recipe with a sufficiently wide
region of applicability is not available up to now.

I am grateful to D.V.Shirkov for interest in the work, to
A.A.Vladimirov, D.I.Kazakov and 0.V.Tarasov for useful dis-
cussions and to A.D.Riabtsev for the help in checking some
calculations.
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