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Regularization by dimensional reduction (RDR) or supersymmet­
ric dimensional regularization /1/, inconsistent in the super­
field language/2/, has been formulated unambiguously in terms 
of component fields/ 3/. Being consistent this formulation is 
however noninvariant. The supersymmetry Ward identities (SWI) 
can be violated in higher orders by additional symmetry-break­
ing terms. Although in ref./3/ the order has been estimated, 
to which the SWI do not receive these additional contributions, 
no explicit example of the violation has been found for prac­
tically important identities. Another way of studying the in­
variance of the regularization is to check whether the coup­
ling constants of different interactions in the theory have 
identical renormalizations as prescribed by supersymmetry. The 
identical renormalization of the YJkawa and gauge coupling in 
the N= 4 supersymmetric Yang-Mills theory (SYM) using the RDR 
has been established up to two loops /4/.In the present paper 
the similar three-loop test of the RDR is carried out for the 
N"' 1,2,4 SYM. The renormalization group ~-function of the 

Yakawa coupling is calculated in the three-loop approximation 
and compared with the result /5/ for the gauge coupling. The 
discovered difference indicates noninvariance of the RDR. 

It is convenient tu perform calculations in the N= 1,2,4 SYM 
simultaneously /V, making use of the fact that these theories 
can be obtained uniformly by dimensional reduction /6/ from 
T = 4,6, 10 to d= 4 (using the RDR, to d,. 4-2, ) dimensions ap­
plied to the action 

1 a 2 -a a 
S = f dx [ - - 4 ( F /-IV ) + i A rll D ll A 1 . (I) 

The vector A; and spinor A" fields are in the adjoint repre­
sentation of the gauge group. After the reduction the space­
time coordinates become d -dimensional and the ~-component 
field A; splits (A; .. V J + S/ ) into a d -dimensional 

a a 
vector v~ and~ -d (pseudo) scalars S- . The gauge-breaking and 
Faddeev-~opov ghost terms include V~ /-Ialone, 

ll 

,·;a SG,. Jdx[- -!..(a v:)2-(a ~a+gfabcV~ ~c) a 17a1. (2) 
2a ll ll ll 1-1 ll 

All the~following calculations are performed in the Feynman 
gauge a- 1. 
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In the tree approximation the gauge, Yukawa and scalar 
quartic interactions, which appear in (I) after the splitting 
of :A a , are governed by a connnon coupling constant g, accord­
ing ~o supersynnnetry. In principle,renormalizations may break 
this correlation. But all the Yukawa couplings remain equal 
to each other because the RDR does not influence the invari­
ance of the action (1)+(2) under the following linear global 
transformations/6/ · 

B v;. o, 8S~. A s~ 
1L IW II (3) 

8 A a,. ..! A/LIIr/L rll Aa ' -a 1 -a -
4 B A .. - -4 A riL r 11 A /LII. 

-
where Agrl"- A111L has (~-d) -dimensional indices. 

To calculate the three-loop renormalization group functions 
the method described in refs. /7,8/ is employed. The f3 -func­
tion of the Yukawa coupling is given by the formula 

f3y(h) .. h[2yFFS(h)-2yF(h) -y 5 (h)], (4) 

where y FFS, y F and y S are the anomalous dimensions of the 
fermion-fermion-scalar vertex, fermion and scalar propagators, 
respectively, and h .. g 2/(477)2.In the minimal subtraction 
scheme191 these anomalous dimensions can be expressed through 
the coefficients of the 1/£ terms in the corresponding renor­
malization constants. The evaluation of the diagrams is per­
formed using the computer system '"SCHOONSCHIP" /10/, 

It is convenient to operate with the ~ -component field 
A 

11 
(x) depending on the d -dimensional x ~ s rather than with 

th~ vector and scalar fields explicitly. This allows one to 
compute the Yukawa vertex simultaneously with the fermion-fer­
mion-vector one. It has been used to check the calculations: 
The {3-function of the gauge coupling, obtained from the fer­
mion-fermion-vector vertex 

f3G (h) • h [ 2yFF~h)- 2yF (h)- y V(h)] 

reproduces the result of ref./5/, 

f33Gioops (h)= ~ (~-10)Ch 2 [ 1-(~-S)Ch+ ~(~-6) 2 C 2 h 2 ], (5) 

where C is a group invariant defined by f abc fdbc • C 8 11 d. How­
ever, formula (4) leads to a different f3 -function, 
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y 111'1 21 11'1 23 
f3 3 loop J:h) • 2 Cv-10) Ch - -2 (~-10) Cu-6) C h + 

+ I ( J2: - .ll ~ 2 + 66 ~- ID7) C 3 + 
8 2 

+ 2(~-10) (~-4)[~-3-12 (~- ..!.2.) ((3)].F I h 4 • 
2 

(6) 

The three-loop coefficient of (6) does not coincide with that 

of (5) at any~. The expression (6) includes ( (3),. I 1/ n 3 and 

a group invariant F , f ajt f ijk f bmk f lmn fern firs n•l 
fist. F f abc. 

For the SU(n) group F .. -!in (see ref. 181 ) • This invariant can-
2 

not appear in 
ling /8/, 

the three-loop f3 -function of the gauge coup-

Consider possible explanations of the difference between 
(6) and (5). The estimates of ref./3/ can be extended to all 
the SWI which contain the Green functions essential for the re­
normalization structure of the N .. 1,2,4 SYM. These identities 
are derived through the change 

8 A II­
IL < f riL A II- A11 riL f ) . 

B x II • -} FIL: riL f 11 f . 8 A II - -

(7) 

1 -- ~ r ·r F 11 

2 ~ IL II /LII 

of the path integral variables in the generating functional 
followed by differentiating it with respect to a constant spi­
nor f, once with respect to a source of A 11 and n • I , 2 or 3 
times to that of ·A~ . At n. 1 one gets the propagator-type SWI 
studied in ref)lll. At n-2 anti n. 3 the identities for the 
triple and quartic vertices are obtained. In the Table the 
minimal number of loops in the diagrams is pointed out, at 
which the synnnetry-breaking terms, resulting from the varia­
tion of the action (I) 

8S - f dx gf 11
bc ( e r A II- Aa r 0 Ab r A c 

II. II. ll 
(8) 

under the supersynnnetry transformations (7), can display them­
selves in the corresponding SWI written for the N. 1,2,4 SYM. 
Also the level is indicated, from which divergent parts of 
these terms could survive. 
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Table 

Possibility of the contributions from (8) to the SWI 
(minimal number of loops) 

SYM g) violations divergences 

n .. 1 n-2 n. 3 n-1 n-2 n.3 

N-1 4 4 2 I 4 2 * ' 2 * 

N .. 2 6 6 4 2 6 4 4 

N. 4 10 10 8 6 10 8 8 
--

It should be mentioned that the estimates of the Table 
take into account power counting only, and, e.g., a detailed 
consideration of the two-loop symmetry-breaking diagrams shows 
that their divergent parts cancel. This fact is indicated in' 
the Table by stars. But even these minimal estimates allow 
one to conclude that the ~ontribution of (8) can explain the 
d-i.fference between (6) and (5) (it concerns just the diver­
gent parts of the diagrams) for i) • 4 ( N .. 1 SYM) only. For 
the N-2 and N .. 4 SYM the three-loop SWI are true. But in the 
component-field formulation auxiliary fields of supersymmetry 
are eliminated by fixing Wess-Zumino gauge (WZG) and using 
equations of motion, therefore the supersymmetry transforma­
tions (7) are nonlinear and Sc (2) is noninvariant under 
(7). This implies the SWI include also Green functions of com­
posite-field operators and therefore appear insufficient to 
prove the identical renormalization of the different couplings. 
It is these terms that cause the anomaly in the N ... 2 and N,. 4 
SYM. 

There are two possible reasons for it: Either extended su­
persymmetry does not survive in the WZG at all or the RDR is 
noninvariant, and the invariance requires additional conditi­
ons but the absence of the contributions to the SWI in the 
WZG from the variation (8). To show the second is true, let 
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us use the formulation of the N .. 1,2,4 SYM in terms of N"' 1 super­
fields /12,13,141' 

tl·, 
'I 

I i ;, 

~~~ • I 

1 (9) sN.1- Tr f dx d 2 (J wa W , 
64g2 a ' sN.2,: sN .. 1 + Tr f dx d 4o e-gV i egV <ll (10) 

4 

• 

4 -gV - gV 
SN,.4• SN•l +Tr [ fdx d (J e ~i e <lli + (I I) 

,+ c...!JL fdxd 2 0 l..)t <ll. [·<IJ. ,<IlL l+ h,c,)], 31 1) 1 ) ... 

where Vis a Hermitian gauge (vector) superfield, <ll and <lli 
(i"" 1,2,3) are chiral supertields_ in the adjoint representa­
tion of the gauge group, Wa • i)2 (e-gV Da e gV). The gauge-break­
ing term can be chosen in the N • 1 supersymmetric form: 

1 4 2 -2 
Sc.B.•-1'6 Trfdxd O(D V)(D V). (12) 

Now the N-1supersymmetry transformations are linear and 
no composite-field operators are involved in the corresponding 
SWI. Therefore, if an invariant regularization is used, only 
one coupling constant appears in (9) and (10). Based on ref/15/ 
one can conclude that in the minimal subtraction scheme the 
~-function does not depend on the way of gauge fixing at all. 

Thus, in the WZG one necessarily obtains just one ~-function 
for the N = 1 and N. 2 SYM if the regularization preserves N .. 1 
supersymmetry. In the case of theN .. 4 SYM the <IJ3 coupling in 
(II) could generally differ from the gauge one. But in the 

WZG the Yukawa couplings originating from these two interac­
tions are equal as a consequence of the linear SU(4) symmetry 
(3) of the quantum action. Hence, due to gauge independence 

.of the 8-function, the theory has only one coupling cons­
tant/16/both in the N-1 supersymmetric (12) and WZG, although 
the existence of a manifestly N .. 4 invariant formulation is 
not supposed. 

Thus, the RDR is noninvariant. To ensure invariance it is 
necessary that the SWI in the gauge (12) (without any Green 
functions of composite-field operators) were true. To check 
them, the RDR recipe used above should be completed by intro­
ducing auxiliary fields of N_.1 sypersymmetry. Then the spi­
nors will appear asymmetrically: one of them in the vector 
superfield, the others in the chiral superfields. Therefore, 
considering N .. 1 supersymmetry breaking, one has to use the 
estimates for~ .. 4, or maybe, still lower ones (the explicit 
form of 88 is rather difficult to write down, but the terms 
which lead to the i). 4 estimates will surely be present). 
These estimates explain the violation discovered at the three­
loop level. 

Noninvariance of the RDR makes the significance of the 
three-loop calculations I 4,5,16,17 I doubtful. But the super­
field computations in theN. 4 SYM I 16 • 17 I demonstrate the 
finiteness of the Green functions in the gauge (12) and there­
fore are reliable requiring no regularization. For the N • 4 
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Table 

Possibility of the contributions from (8) to the SWI 
(minimal number of loops) 

SYM I i) I violations divergences 

n .. 1 n.2 n. 3 I n.1 n-2 n .. 3 

N-1 4 4 2 I 4 2* 2 * 

Nz2 6 6 4 2 6 4 4 

N. 4 10 10 8 6 10 8 8 

It should be mentioned that the estimates of the Table 
take into account power counting only, and, e.g., a detailed 
consideration of the two-loop symmetry-breaking diagrams shows 
that their divergent parts cancel. This fact is indicated in 
the Table by stars. But even these minimal estimates allow 
one to conclude that the ~ontribution of (8) can explain the 
di.fference between (6) and (5) (it concerns just the diver­
gent parts of the diagrams) for ~ • 4 ( N,., 1 SYM) only. For 
the N .. 2 and N .. 4 SYM the three-loop SWI are true. But in the 
component-field formulation auxiliary fields of supersymmetry 
are eliminated by fixing Wess-Zumino gauge (WZG) and using 
equations of motion, therefore the supersymmetry transforma­
tions (7) are nonlinear and Sc (2) is noninvariant under 
(7). This implies the SWI include also Green functions of com-
osite-field operators and therefore appear insufficient to 

prove the identical renormalization of thedifferent couplings. 
t is these terms that cause the anomaly in the N .. 2 and N .. 4 
~m. ~ 

There are two possible reasons for it: Either extended su-
persymmetry does not survive in the WZG at all or the RDR is 
oninvariant, and the invariance requires additional conditi­
ns but the absence of the contributions to the SWI in the 
ZG from the variation (8). To show the second is true, let 
s use the formulation of the N .. 1,2.4 SYM in terms of N,. 1 super­
ields /12,13,141, 

1 
- Tr f dx d 2 0 wa W 
64 g2 a ' 

SN .. I .. (9) 

8N .. 2= sN .. I + T; f dx d 40 e-gV ~ egv ·ell , (10) 
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4 -gV - gV 
SN,.4 .. SN .. I +Tr [ fdx d 0 e ~i e 4>i + (I I) 

+ ( __j_s_ f dx d 2 0 c . "k ell . [ 'ell . , ell k ] + h.c.) ] , 
3! lj 1 J 

where V is a Hermitian gauge (vector) superfield, 4> and elli 
(i"' 1,2,3) are chiral superfields_ in the adjoint representa-

-· v v tion of the gauge group, Wa • o2 (e-g Da e g ). The gauge-break-
ing term can be chosen in the N ,. 1 supersymmetric form: 

1 4 2 -2 
Sc.B.-- 16 Trfdxd O(D V)(D V). (I 2) 

Now the Nx1supersymmetry transformations are linear and 
no composite-field operators are involved in the corresponding 
SWI. Therefore, if an invariant regularization is used, only 
one coupling constant appears in (9) and (10). Based on ref/151 
one can conclude that in the minimal subtraction scheme the 
~-function does not depend on the way of gauge fixing at all. 

Thus, in the WZG one necessarily obtains just one (3 -function 
for the N = 1 and N. 2 SYM if the regularization preserves N .. 1 
supersymmetry. In the case of theN .. 4 sm the ell 3 coupling in 
(II) could generally differ from the gauge one. But in the 

WZG the Yukawa couplings originating from these two interac­
tions are equal as a consequence of the linear SU(4) symmetry 
(3) of the quantum action. Hence, due to gauge independence 

.of the (3-function, the theory has only one coupling cons­
tantll6/both in the N .. 1 supersymmetric (12) and WZG, although 
the existence of a manifestly N= 4 invariant formulation is 
not supposed. 

Thus, the RDR is noninvariant. To ensure invariance it is 
necessary that the SWI in the gauge (12) (without any Green 
functions of composite-field operators~ were true. To check 
them, the RDR recipe used above should be completed by intro­
ducing auxiliary fields of N- 1 sypersymmetry. Then the spi­
nors will appear asymmetrically: one of them in the vector 
superfield, the others in the chiral superfields. Therefore, 
considering N .. 1 supersymmetry breaking, one has to use the 
estimates fori) .. 4, or maybe, still lower ones (the explicit 
form of 88 is rather difficult to write down, but the terms 
which lead to the ~- 4 estimates will surely be present). 
These estimates explain the violation discovered at the three­
loop level. 

Noninvariance of the RDR makes the significance of the 
three-loop calculations 14,5,16,171 doubtful. But the super-
field computations in theN .. 4 SYM I l6, 17 I demonstrate the 
finiteness of the Green functions in the gauge (12) and there­
fore are rebi.able requiring no regularization. For the N .. 4 
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SYM the ~-function (5) of the gauge coupling in the WZG cor­
responds to these calculati0ns. It allows one to believe that 
the results of (5) for the N- 1 and N. 2 SYM are also reliable. 

Although, in principle, the problem of invariant regulari­
zation for N. 1 supersynunetric gauge models has been solved/l8/, 
a convenient calculational recipe with a sufficiently wide 
region of applicability is not available up to now. . .. 

I am grateful to D.V.Shirkov for interest in the work, to 
A.A.Vladimirov, D.I.Kazakov and O.V.Tarasov for useful dis­
cussions and to A.D.Riabtsev for the help in checking some 
calculations. 
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