


1. INTRODUCTION

At present it is becoming clear that the number N of gravi-
tinos does not specify the kind of extended supergravity com-
pletely. Even in the simplest case N=1 we are aware of, at
least, three kinds of supergravities. Two N=2 versions are
already known. For higher N one may expect even greater di-
versity. The versions differ by the content of auxiliary
fields. Correspondingly, differences occur in the interac-
tions with matter fields, in the mechanism of spontaneous
symmtery breaking (when auxiliary fields get nonzero vacuum
expectations); also, in some versions important additional
local symmetries appear, etc. In view of all that it seems
instructive to study the simplest case N=1 in detail. This
explains the appearance of a number of papers devoted to the
new minimal version of N =] supergravity with local U(l) sym-
metry 718/,

In the present paper we reveal some new and unique featu-
res of this model using the complex superspace approach to
supergravity. In particular, we show the existence of a new
geometric invariant which is not present in the framework
of real superspace. We also give an example of successful
implementation of a geometric constraint in the action by
means of a Lagrange multiplier. At the end we consider ano-
ther version of the model with 16+16 fields. Our hope is that
some of the above features will reappear in the more interes-
ting case of N=2 supergravity.

The paper is planned as follows. First, a framework * for
the description of the various N =1 models is introduced.

A complex superspace € %4 ** is considered with coordinate
transformations leaving invariant the chiral c4e subspace.
The physical real superspace R4%* is embedded in C %4 as
a hypersurface specified by an axial (H™) and a spinor (HH#

*It has already been used for both minimal /78’ and non-
minimal /%10/  N=) supergravities.
**C0k means a complex superspace with n vector and k spinor
coordinates.
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H* ) superfields. Einstein supergravity is described by a
one-parameter (n) family of supergroups preserving a certain
relation between the Berezinians (superdeterminants) of the
c4% and C%2 coordinate transformations. This relation
becomes particularly simple for two values of n. For n =-1/3
the C%% supervolume is preserved gn this is the case of
minimal supergravity. For n=0 the C™" gupervolume is preser-
ved. This case exhibits a number of new features. First, in
the Wess-Zumino gauge there is a local U(1) invariance. Se-
cond, a peculiar geometric invariant emerges. It is the
Berezinian of the change of variables from left-:to right-han-
ded parametrization of R%* which in this and only this
case transforms as a (dimensionless) scalar superfield. It
corresponds to an invariant subset of 8+8 fields. The latter
can, and moreover, have to be constrained in order to write
down an action. Third, unlike all other cases of N =1 super-
gravity here the action is not the invariant volume of R™
(the latter just vanishes (cf. refs. 4 ) when the whole
8+8 subset is eliminated). The action is now given by a new
type of invariant /4 involving the U(1) part of the vielbeins.
The constraint reducing the number of fields from 20+20 to
12+12 can be solved explicitly in terms of fields in the WZ
gauge. The resulting theory is exactly the one of ref. e/,
A solution of this constaint in terms of superfields is pre-
sented in /%,

Unfortunately, it is not always so easy to solve explicitly
the superfield constraints in a theory. In certain cases it
might be even impossible, in particular in extended super-
gravity. Therefore an alternative approach seems to be of
great importance. It consists in introducing the constraints
into the action by means of Lagrange multipliers and then '
obtaining them as equations of motion. We do not know why
this has not been attempted even in such simple cases, as
N =1 minimal supergravity or super-Yang-Mills theory, etc.
Probably, the greatest difficulty is to get rid of the Lag-
range multipliers at the end, i.e., to eliminate them from
the equations of motion and obtain equations involving only
the initial dynamic variables. Here we show an example where
this program can be successfully carried out. Hopefully,

a similar approach would work in more complex cases,. such
as N=2 supergravity.

An analysis of U(l) supergravity has already been made
in ref.’% in the framework of real R**% geometry supplemen-
ted, by appropriate algebraic constraints. When translated
into this language our results are consistent with those
of the above authors.
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In an Appendix we discuss a relaxed version of our cons-
traint which leads to a model with 16+16 fields. 12+]2 of
them describe the U(1) minimal supergravity multiplet coup-
led to a 4+4 "notoph" multiplet (superspin 1/2 off-shell,

0 on-shell).

Parts of the results of this paper have been reported at
the Second International Seminar on Quantum Gravity, Moscow,
October 1981 /127, .

IT. COMPLEX SUPERSPACE

Let us first recall the geometric framework for nonminimal
supergravity developed in paper /10 i, the spirit of
refs, /19187 concider a complex superspace

4,4 m H T u
C = ’ZLI={XL.0L9¢L ‘v . (])
where x{ are 4 complex vector coordinates and 05,5 K are 4
complex spinor ones. The conjugated coordinates wifi carry

an index R: .
~u B+

B+
lZR’=ng=(XE)+' OR =(0L) , ¢R =(¢L) . (2)

To distinguish these two parametrizations of C%** ye call
them left- and right-handed.

Now we introduce a gauge group in € %4 we choose it to be
the group of analytic transformations of the coordinates
which leave the chiral subspace *

CH o ig h=tx™, gk (3)

invariant. In other words, the group has a "triangular" struc-
ture

8xp =A™ (xp. 6., g
80{:=A‘£ (xL'GL )9 (4)

8;1_‘ - ;“(th OL'¢L ))

where A™ and A  are chiral superfunctions-parameters and
p* is a general one.
The next step is to introduce the real superspace

R* (2] = x™ g# Gh | (5)

*We thank Prof. Yu.I.Manin for pointing out that the term
" . " 4,2 .
quotient superspace" would be more correct for € %= { e,,
c42.c4d/c02 | This is suggested by the form of the
transformations (4).



U S o -t

N

. 4
as a hypersurface in € " ,e.g.,

m m [ L ;
2™ = Rex|, 60 -0, .0 =0 g,

H@x, 6,0) = Inx [,

_ . . . 6
o 0, )= ¢ —0F, B (. 0,0) =4 -0 . ©

tions of the coordinates of R"‘. The superfunctions H®,u¥ H
define the hypersurface‘ and simultaneously determine the ;
(curved) geometry of R ™. The group (4) induces the following !
transformations

LINPL IO LY B R S PRl ]

0'"‘ =0”’+Au (‘L’ oL )1 (708)

. “e, o, 44 .
Here the coordinates of € '/ R ' are made arbitrary f“unc-.-

P LY (xn.an ),

SH® = HP’, 07, 8%) - H(x, 0, 8) = 50\ (xy, 8)-A" (xg, G,

BH“ - Hfﬂ(x;’ 0;,6; )= H“(x. 0’5) - P“(an §R’¢R) -Au(xL'oL)('7.b)

si* - AP 00,87) A @ 0,0 =" (., 0, 8, -2 g )

Here 2 L*

xMox™+H 2@, 6,0) 0/ =0
.. . (7.¢)

¢l=8" +H*(, 0,0)
and their conjugates £y are now functions of I, 6, g rather
than independent coordinates. In what follows we shall re-
fer to z (zg) of eiixation (7.c) as left- (right)-handed pa-
rametrization of R %4 ‘

The transformations (7) correspond to conformal supergra-
vity. Restricting them appropriately one can obtain the
transformation group of Einstein supergravity. Owing to the
triangular structure of the group (4) the Berezinians of
both the C4* and C€*® transformations have multiplicative ' ;
property. So we can single out subgroups by imposing a natu- ‘
ral restriction
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azt 3n+1 3{1: )]2n

{ Ber (—)] = [Ber (- and h.c. (8)
dzy, €y,
or, infini;esimaliy, .
- A\ ak
(3n+1)-.—§7p =(n+1)(am --—T). 9)
aFh axT gk

Each value of n corresponds to a nonminimal formulation of
supergravity with 20+20 fields /9, There are only two excep-
tions.

At n=-1/3 equation (8) takes the form

Ber(acl‘ )=1, (10)
% 4,2

i.e., the transformations preserve the supervolume of € '
In this case the parameters ph p# are not restricted and
with their help the spinor superfields H¥,HH can be gauged
away (just as in conformal supergravity). Thus one recovers
the minimal formulation with 12+12 fields. It has been des~
cribed in detail earlier’”8/ and we are not going to discuss
it here.

The second exceptional value, n=0, corresponds to the pre-
servation of the total supervolume of c%* Atn=0 equation
(8) reduces to

ZL
Ber(—=-) =1, (11)
dz
. L 4, .2 2 = ,
Respectively, the supervolume element ,d x;d”6;d" ¢ is

invariant. This value of n is connected with the new minimal
version of supergravity as will be explained below.

III, FIELD CONTENT AND TRANSFORMATIONS

The field content of each of the above described formula-—
tions and the meaning of the field transformations are re-
vealed in the Wess—Zumino gauge. We shall do it here with
the intention to show how . the local U(l) group emerges in
the case n=0*, .

The parameters A™ A ;" have the following decompositi-
on consistent with equation (9):

*As we learn from ref. ’® a similar analysis has been
carried out in paper /1%,



A" (X, 0. ) =8 41" 40l x, +6.0, (c"+1a"),

)
A )= 0018 @) vay, M T8 0 0",

-u - -p =—-pn+l 1 m i m
Pl (xy, oL,¢L)=E +¢L 3u+1(-a-ib+—2-amta, +-2-amb ) +

B on+l

. Y i
+¢LQ(§ +0L°v + 0 OLD +0L¢L3

(—ny+ -2-6 X,,)+

i) -4 0+l

v —v ; m m
+06%a P a0 ¢F 2 9 c™+id™)+
L7L Ty b0 280 + 1)

v 0,0, 3 1:“’ : (12)
v

All parameters in the r.h.s. of equation (12) are functions
of xL .

From equations (7), (12) one finds that H™ can be gauged
into

H"(x, 6, ('9')-9“6"e““;2 + 5”0"./,:' + 025;‘&"“" +0%6%A™ (13)
by means of fiXInF the parameters b™, x%,c™ d™ in equation
(12). Note that a remains unrestrlcted and 1t serves as the

parameter of general coordinate transformations. Further,
H* transforms as follows

SHY =E¥ - + 0¥ [- L L. EETA n+l a,,,a“’] +
3n +1 3n+1 2(3n+1)
+0%[a 2 -w w 1+ 8. c ¥ —001}“ + 66D" +

(v (v v (14)

+d'g. n+l (—;V-iém @®™a” 1+
vV 8n+1
ve = M

6. G.
v vy
where the dots denote field-dependent terms. Now one sees that
for n 40, -1/2, =1/3 one can gauge H* into 7%/

+ 0—20 l;(w‘)+
v

- - - . - (15)
HH”(x,0,0)= 6%¢# +o”o"n+o”o‘.‘ (v+ iw)# L g%gtpH



by means of fixirlg all parameters except €M (x) (local super-
symmetry) and o VW) (x) (local Lorentz). The components
in equations (13), (15) correspond to the non-minimal set

of fields.

IV. PECULIARITIES OF THE n=0 CASE:
U(1) LOCAL GROUP AND EXISTENCE OF INVARIANT

It is remarkable that for n=0 the parameter jb(x) (of
local ygsor UQ) transformations) drops out of equation (14),
so it cannot be fixed and H" becomes

H = 0"1a 4 %4, g2gu g, ev"'ev“2 v+ iw) " L 9% 2g R (16)

In comparison with equation (15) an additional real pseudo-
scalar field A(x) appears. At the same time, however, vH
undergoes gradient transformations with parameter b(x), so the
total number of components is again 20+20 *,

So, in the family of nonminimal sets of fields there is
one and only one allowing for local U() transformations.
This is not yet the set for the new minimal version of N=|
supergravity as we still have 20+20 fields instead of 12+]12,
However, it turns out that 8+8 fields of this set form a
subset closed under supersymmetry tfansformations. This can
be shown by the following clear geometrical reasoning., As
was stressed above, for n=0 the ctt supervolume is pre-
served. Consequently, both dazv.L and ds.'.n=(d8zl‘)+ are
invariant. On the real hypersurface (6) d®z; and dazn are
connected by the change of variables (see equation (7.c))

4 L*Z ~» ZRZ

a8 - Bar(oil)qs Be(azlo B (éz ). a8 7
Z; = Ba(——)d%z = Ber(—1. Ber - d%
L 9z 9z OZ‘R R a )
Therefore the quantity
- Jdz Jdz -1 0z
UGx, 6, 6) = Ber (—Y) = Ber(—L-) . er~}("*R_) (18)
dzp . 0z dz )
is invariant under the transformatior_l_s (4), (8) for and only
for n=0. The explicit form of U(x, 6, 0) can be easily

calculated.

*Note that for n =-1/2 the parameter a(x) drops out but
d a™(x) remains and the gauge can still be fixed as in equa-
tion (15) althou;ah thus restricting the general coordinate
transforq:ations /.
!



Ber( L)) - Ber 0, H" 8  ayHE .
id.H 0 &, Foo n*
v v v
(19)
det@ . + 9 H™)
dm@&ﬁ+K“ﬁw
where 78/

- = m gy -1 na
A“. ==, -id ; H (1-19H) m
> - det(8m+!a Hm)-det(8“+A H“) ~
U(x,6,0) = ’ 20

det(® “+A“H y)-det@ —13 H") (20)

Clearly, UU'=1, therefore U —exp(lu) The real superfield
u(x, 9, 8) is the carrier of the invariant 8+8 subset. It
is a new quantity not yet encountered either in minimal or
nonminimal supergravity. Its origin is essentially in the
complex structure of C€%*% and it cannot be explained in the
framework of real superspace geometry. It is neither a tor-
sion nor a curvature component, mor anything else known
in real supergeometry

V. CONSTRAINTS ON THE PREPOTENTIALS

Since U is an invariant object it can be used to write
down constraints. In fact, one must do that if one wishes
to construct an action. Indeed, as was mentioned above, the

i in equation (16) (as well as

a
in equatlon (13)) transforms as a gauge field for U(1). Howe-
ver, its dimension is em~2 *, so it cannot have a normal ki-
netic term of the type FabF“ . The only way it can enter
a Lagrangian is to be coupled to a d1vergence1ess (i.e.,
constrained) axial vector field. This is, indeed, the case
realized in the new minimal version by Sohnius and West 72/

field v _—-(a ) v
up

*HHA=[0F] = em V% by a1l components of H' have to
include a factor «,[«]=cm, since they vanish in the flat
limit.



and Akulov et al.’!’. The corresponding constraint is
U=1. (21

The solution to it is easily found in terms of components
in the WZ gauge (13), (16):

A=0' f"‘ =0. B=0, w =——am9;n ’ ﬁ“ =iam¢’m“, (22.3)

am(Am-erva ) =0,

(22.b)
Equation (22.b) means that
Am—eamva=¢mn?zanakg L By =—ag =al . (23)
so the "notoph" 718/ a,y  of Sohnius and West ’?/ and Akulov
et al. 'Y (together with its additional invariance oa K =

= 6kbg —azbk) appears as a solution to the constraint.
A weaker constraint will be discussed in the Appendix.

VI. INVARIANT INTEGRALS AND ACTION PRINCIPLE

The constraint (21) enables us to write down an action.
To this end we first need an invariant integral for R *'* Let
R*%be parametrized by zg (or their cojugates Z’fz ) defined in
equation (7.c) instead of zM. Then, according to the geometric

meaning of our gauge group (4), (11) the following integrals
1, -fa% o a% Ber(2L) 0
L=Id zL L(ZL)=_f z er—a';' (Z).

(24)

1 4% @ (z.) = [a®z Ber (azn)cb(z)
R [d72,0p () = [d72 S
»

are invariant, Here ®(z) is a real scalar superfield, and

Oy (z1) = pzg)t = ©(2). Further, as a consequence of
the constraint (21)

) =

¥ 9
Be;(_af.l') = Ber{( azR
Jz z (25)

det® ™+ 19 H™). det(® >~ 19, H™ e

A xhE M "
det(sl; +A Hv') ~det(8V +AVH )




therefore
I, =1g= [d%2.E.0(). (26)

Note that the densityE is in fact the Berezinian of viel-
beins for the curved R4¢ with local U(l) in the tangent spa-—
ce (see Sect. VIII). If we choose ®(z)x! in equation (24)
the mtegrals will vanish and so will the integral in equati-
on (26), i.e., the invariant volume of R 44 (the sam; 1p eno—
menon was observed by Howe et al. 4 (see also ref,
So, the supervolume of R** is not an adequate action for
n =0 unlike all cases with n £ 0. If we had some nontrivial
dimensionless scalar superfield ® constructed out of the
prepotentials we could put it in equation (26) and try this
as an action; however, the only such object is U (20) and
it is | in our case. ‘
Fortunately, the unique properties of the superspace in
this case provide another way of constructing an action. Sup-
pose that ® in equation (26) is not a scalar but transforms
as follows:

50(z,6,0) = L +R, : , 27

where
L=L(x.,,0,) R=R(xp,0z)=L

.;are‘some left- and right-handed ch® (chiral) parameters. Then
5[a%2E0 = [a*x a%6,4% ¢ . Lx, .6.)+ he =0

because L(R) is independent of ¢, (¢ ). Such type of inva-

riant was proposed in ref. /¥ _In our approach the super-
field ® can be constructed in terms of prepotentials

¢ ="-1nF' i

-1/8

F = d "“[A AR™)-det T PGT 10 H G HT )x  (5g)

x [det(&v“ +AVH“).det(8l;“ +A"H 17)] s/s.

It transforms according to equation (27):

dInF =L +R,
C® - 27"
L, .0, )= A__ A gLt
14 B g9k
L L
where I(R) is the variation of the ct® volume element. In
fact,F is a part of the vielbeins E;‘.E'.: (see below).
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Now we are prepared to write down the action for the new
minimal version. Putting equations (25), (28) into the in-
variant integral one finds

8~-L rd*xd%9d%6ENF, (29)
(3]
which should be considered together with the constraint (21).
Inserting the component field solution (22), (23) to this
constraint into the action $29) one obtains exactly the
action of Sohnius and West 7%/.

VII. IMPLEMENTING THE CONSTRAINT IN THE ACTION
BY MEANS OF LAGRANGE MULTIPLIER

An action with the dynamic variables restricted by a con-
straint poses serious problems. For instance, obtaining equa-
tions of motion by variation is a nontrivial task. Further,
the quantization is rather difficult, etc.

As pointed out in the Introduction, a possible way out
(besides the explicit solution of the constraint which is not
always so easy) is to introduce Lagrange multipliers in the
action and obtain the constraints as equations of motion. In
the case of U(l) supergravity this can be done as follows.

The first problem encountered when trying to implement
the constraint (21) into the action (29) is that the latter
ceases to be invariant. Indeed, the transformation (27')
of oF in equation (29) leaves 8 invariant only if equation
(21) holds. Therefore, one has to compensate for this trans-
formation. To this end one introduces a real pseudoscalar

superfield ¢ (x, 6, ) transforming as follows
, B a‘; _ ag'
o l® =e‘¢.Bm(v—£J.Bm 1 R), » -
' agL agn
or infinitesimally
8¢ = ~i(L -R), . (30)

where I(R) is given in equation (27'). This is obviously a
group covariant law. Further, consider the integral

1= -~ [a®z, (oF + i6) =
Kz
(31)

- : [ %2 BUY%(F + i)
K\,
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(see equations (19), (20), (25)). Evidently,
51 = .71(3 f a% (BInF + 15¢) = KLB. fa®z 2L(x,, 8.)=0,

so L. in equation (31) is invariant. Its real part

L

—-_1— 1+ ==
=3 I+17)

(32)

]

212 [ a%2E[UY2QaF + i$) + U™V F - ig)]
K

is a generalization of the action (29)* (when ¢=0 and the
constraint (21) holds, equation (32) reduces to equation
(29)). 1t is invariant without the help of the constraint.
Furthermore, the variation of ¢ in equation (32) produces
just the constraint (21) as an equatlon of motion. So, the
superfield ¢ plays a dual role: it is a compensating super-
field for the main term in the action and a Lagrange multi-
plier for the constraint. It remains to see how one can eli-
minate the Lagrange mu1t1p11er from the rest of the equati-
ons.,

The variation of H®, H in equation (32) gives the fol-
lowing equation (up to terms vanishing owing to the already
obtained equation (21)):

A. 'WF +ig)=0 and h.c. (33)
a
It is indeed a covariant equation since
8(InF + i¢) = 2L (X, 6 ¢) and A«i L =

Equation (33) has the following general solution

$ = -5(L-0), (34.a)

IoF = 2-(L +1), (34.b)
where

£ =0(xp,0.) and r=r(xl?_.5R)=:(l)Jr

*We are grateful to Dr. B.M.Zupnik for an important impro—-
vement of the form of the action (32).

- 12.



are arbitrary chiral superfields. So, equation (34.a) fixes
the Lagrange multiplier (up to gauge freedom, see equation
(30)). Equation (34.b) means that InF vanishes up to an arbi-
trary chiral part. Since the gauge freedom (27') in WnF is
just of the type (34.b) one can conclude that the gauge in-
variant part of InF is zero. In Section VIII we shall see
that InF  is the prepotential for the local U(1) invariance
in the tangent (super) space, and the corresponding gauge
invariants are the U(l) curvatures Faop- So, our second equa-
tion of motion (33) is equivalent to

Fop=0 on-shell. (35)

We shall come back to this below.

Finally, the variation of H®It is not hard to see (using
the already derived equation (21)) that in the correspon~
ding equation of motion only the derivatives of ¢ appear.
They can be replaced by derivatives of InF according to equa-
tion (33). Thus, the Lagrange multiplier can be eliminated
completely. The resulting equation involves only Hm, H# and
H# and has the form

G,=0, : (36)

where G, is a certain torsion component (see Section VIII).
This is not surpising since G, 1is the only covariant vector
of the right dimension in the theory. It is indeed the equa-
tion of motion found in ref.’d

The last question is whether our second equation (33) in
the form (35) is compatible with equation (36). In the dif-
ferential geometry formalism (Section VIII) one can show
that all the non-vanishing components of F,p are covariant
derivatives of G . so equation (%5) is itself a corollary
of equation (36).

Ending this section we would like to point out two simi-
larities between the case discussed here and the N=2 super-
gravity theory/1011/  Firgt, in both cases the invariant
volume of the real superspace vanishes as a = consequence
of the constraints. Second,. both actions are not invariant
unless the constraints are imposed. On these grounds one may
hope that the method of Lagrange multipliers can be applied
to the N=2 case successfully.

VIII. DIFFERENTIAL GEOMETRY IN R*"*

The geometry of the real superspace R** is determined by
the fact that it is embedded as a hypersurface in a complex

i
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superspace. This means that such invariant characteristics
of R**%as torsion and curvature can be simply calculated in-
stead of being postulated.

The development of the differential geometry formalism
for R¥* is a straightforward procedure (see ref. /%) .Notice
that it can be done before imposing the constraint (21)

(the latter is needed only for the action). Here we shall re-
call just the main steps.

The derivative

V o=asAnPAge = d0x,. b, ,0, ) (37)

a a B 36 R*'TR*’R
of a scalar superfield transforms homogeneously under the
group (4), (8) (infinitesimally):

5(V, 9 =-(V, pP7g0=p(vPp v, o-(y, p ) Vg0. (38)

The second term in equation (38) is an induced Lorentz trans-—
formation in the tangent space, while the first one is an
induced Weyl one. In fact, the component field analysis of
Section III shows that in x-space there is only a U(l) tan-
gent group. So, one should expect to have only it induced in
the tangent superspace. Therefore one should compensate for
the dilatation part in equation (38) by introducing a factor
F into the definition of the spinor covariant derivative of
a scalar weightless superfield

D, ® =FV,¢=EM3 o. (39)
This factor must transform as follows (see equations (9},
(27"))

1 S 1
S5F =-T(Vp+Vp)F‘=—4—(L+ R)F. (40)

|
A full covariant derivative requires a connection

M C
D,=EXa, + wgp® - (1)
The latter has both Lorentz and U(l) parts. Further, the
vector covariant derivative can be defined as
M. { ~aa =
Dl. E-Ea a“ =—4—U ‘Da vD& ! (42)
thus automatically choosing the torsion components
¢ T ¢ . y = y = 0 .
‘Ta"3 2i(o )m‘8 , TaB 0, TaB (43)

The last of the equations (43) allows us_to express the con-
nection in terms of H™, H*, H# and F, F . In particular, for
its U(l) part one finds

14
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B
w,g ~ FV InF. (44)

Having obtained the vielbeins Eiwe can define left-or right-
handed vielbeins lr (rr ) by changing variables from zM

M M.
to 2 L or zR H

M d M 0 M d
" dz M =fa dJz M " fa dzM “3)
According to equation (11) the Berezinians of £ ¥ and rx
transform as scalars, so they can be put equal to some func-
tion of the scalar U (20) thus obtaining equations for the
factors F,F (39). The particular choice

Ber(£Y) -u~1/® (46)

leads to the form of F=F given in equation (28). Further,
Be(EX ) calculated with the above value of F is indeed
equal to E~1(25).

The last step is to calculate the invariant tensors (tor-
sion components) using the covariant derivatives already de-
fined. Our results agree with those of ref.’% but we ought
to point out the following. The quantity U (20)is an in-
variant of the group although there is no room for it among
the torsion components. However, its covariant derivatives
do appear as torsion components, e.g., Tap? is expressed
in terms of D, U; TapY » in terms of DDU, etc. So, the
constraint (21) yields the vanishing of all those torsion
components. In the framework of real superspace geometry U
is not present. There, however, there is the constraint

b b
Ty =Tgp =0,
which is equivalent to
DGU-B&U-:O » (47)

tn our language. Equation (47) implies U=const which is essen-
tially the same as equation (21). This explains the agreement
between the two approaches.
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APPENDIX: A WEAKER CONSTRAINT

Here we would like to discuss briefly a weaker constraint
on the superfield U.In this case we get 4+4 additional degrees
of freedom. They are a superanalogue of the "notoph" 716/
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(superspin O on-shell and 1/2 off-shell)which interacts with
U (1) supergravity.
Consider the integral

_ 1 8 1 (482 ,a.ii‘lF
11__KTrdzL1nF Kg-fd”e'(az)“ (A.1)

taken over R%#4 in the left-handed parametrization. According
to equation (27')
1 8 1 8
811=K2 fd ZL(L +R)=-—;2—fd ZLR (A.Z)
because L does not depend on q'S-L.Further, going to the right-
handed parametrization we find

22
_ 1 8 1 4 2, , 0
811—-—:5'-[(1 ZR-U-R=:-—2—fd de OR(-—;¢—%U)R. (A.3)
because now R does not depend on ¢, .50, I, will be invariant
if

" '
9y =o. (A.4)

This is a covariant (the 1l.h.s. of equation (A.4) transforms
as a scalar with a chiral weight) constraint weaker than
equation (21). Notice that the quantity I, is not real since
U 1is not 1 now. Furthermore, we can write down another non-
trivial complex invariant

1
I, =
2~ 2

fabz 1, (A.5)

where f(U) is any function of the scalar U.

The constraint (A.4) can be solved in terms of component
fields. The pseudoscalar field A. and the spinor £ in equa-
tion (16) remain unrestricted;B =0 and BH is expressed in
terms of EHF and ¢y ™ from eq}xation (13); finally, the vec-
tor v and axial vector wHt are constrained as follows

o A € ai T N ™ .
1+iA)2  1+iA 1+1a)% - 2 0 1+iA
| . (A.6)
™G . o™ g aTa0.
n ©pq m

Here one has a complex, i.e., two real antisymmetric tensors
apq # 8%, . The fields A, &K, EH,i(ayq-8%q ) form a super-
spin l/f multiplet (off-shell).

The invariant integral I (A.1) gives rise to the following
action (we consider the bosonic sector only):
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8, = —-1-5 [d¥xdet™! ;lm[_i ——-—1———R(§’) -

K 2 (1-iA)®

3 -~

~na¢i ) J 2
-— e B d Ad A.(A%+1-214) +
(1-1A)4(1+ 1A) 2 @2 moon
(A.7)
4 ..
_g'liA_)-g . gaa

+
(1-1a) %@

~  ~aa 3
+8&;& A - -E-

T ST L LI PR TV S L B
where

~ m 1 - a
ea. =?(al) aa ' m

~ aa ~aa m { ~n "'maB.-'ﬁa

A = e A -E-eﬁsane o, o+
1-“‘ —mﬁa- -aﬁ
—_— .d_ e )
+seB n

Here R(€) is the usual gravitational Lagrangian, the term with
dgAdyA is the kinetic term for the pseudoscalar A and
a*A 1s the U(l) covariant coupling of the notoph to the
U(1) gauge field.

The second integral [, (A.5) for the particular choice
f(U) =UP produces the action

2p-—-2
1 4 -1~ 1 ¢ (1+14)
8, = —E-fd xdet e . ?p(p+1) T

K

(1-1A) (A.8)

WA 5™ 5095 a3 A 4 1+1A) @-a%) . (a-2%)" ].
(1-1A)% @ o
This is an action for the notoph multiplet alone. Combining
the real parts of equations (A.7) and (A.8) one can find
actions with correct relative sign of the gravitational and
pseudoscalar kinetic terms.

The fermionic part is just a combination of the Rarita-
Schwinger action for ¢y ™ and the Dirac action for a0 Owing
to the dual nature of the notoph a™ (spin 1 off-shell, O
ap-shell)the notoph multiplet describes superspin O on-shell.
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