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I. INTRODUCTION 

At present it is becoming clear that the number N of gravi­
tinos does not specify the kind of extended supergravity com­
pletely. Even in the simplest case N =I we are aware of, at 
least, three kinds of supergravities. Two N=2 versions are 
already known. For higher N one may expect even greater di­
versity. The versions differ by the content of auxiliary 
fields. Correspondingly, differences occur in the interac­
tions with matter fields, in the mechanism of spontaneous 
symmtery breaking (when auxiliary fields get nonzero vacuum 
expectations); also, in some versions important additional 
local symmetries appear, etc. In view of all that it seems 
instructive to study the simplest case N=l in detail. This 
explains the appearance of a number of papers devoted to the 
new minimal version of N =I supergravity with local U(l) sym­
metry 11 -81 

In the present paper we reveal some new and unique featu­
res of this model using the complex superspace approach to 
supergravity. In particular, we show the existence of a new 
geometric invariant which is not present in the framework 
of real superspace. We also give an example of successful 
implementation of a geometric constraint in the action by 
means of a Lagrange multiplier. At the end we consider ano­
ther version of the model with 16+16 fields. Our hope is that 
some of the above features will reappear in the more interes­
ting case of N .. z supergravity. 

The paper is planned as follows. First, a framework * for 
the description of the various N =I models is introduced. 
A complex superspace C 4,4 ** is considered with coordinate 
transformations leaving invariant the chiral c4 · 2 subspace. 
The physical real superspace R 4 •4 is embedded in C 4,4 as 

a hypersurface specified by an axial (H m ) and a spinor (H 11 , 

It has already been used for both minimal 17•81 and non­
minimal19·101 N=l supergravities. 

"'"' C n,k means a complex supers pace with n vector and k spinor 
coordinates. 
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H ~ ) superfields. Einstein supergravity is described by a 
one-parameter (n) family of supergroups preserving a certain 
relation between the Berezinians (superdeterminants) of the 
c4,4 and C4,2 coordinate transformations. This relation 
becomes particularly simple for two values of n. For n =-1/3 
the C4 •2 supervolume is preserved \n.f this is the case of 
minimal supergravity. For n =0 the C ' supervolume is preser­
ved. This case exhibits a number of new features. First, in 
the Wess-Zumino gauge there is a local U(l) invariance. Se­
cond, a peculiar geometric invariant emerges. It is the 
Berezinian of the change of variables from left-:to right-han­
ded parametrization of R4•4 which in this and only this 
case transforms as a (dimensionless) scalar superfield. It 
corresponds to an invariant subset of 8+8 fields. The latter 
can, and moreover, have to be constrained in order to write 
down an action. Third, unlike all other cases of N =I SUP.er­
gravity here the action is not the invariant volume of R4

•
4 

(the latter just vanishes (cf. refs. 14
• 

111 
) when the whole 

8+8 subset is eliminated). The action is now given by a new 
type of invariant 141 involving the U(l) part of the vielbeins. 
The constraint reducing the number of fields from 20+20 to 
12+12 can be solved explicitly in terms of fields in the WZ 
gauge. The resulting theory is exactly the one of ref. 

121
• 

A solution of this constaint in terms of superfields is pre-
sented in 181 • 

Unfortunately, it is not always so easy to solve explicitly 
the superfield constraints in a theory. In certain cases it 
might be even impossible, in particular in extended super­
gravity. Therefore an alternative approach seems to be of 
great importance. It consists in introducing the constraints 
into the action by means of Lagrange multipliers and then 
obtaining them as equations of motion. We do not know why 
this has not been attempted even in such simple cases, as 
N =I minin~l supergravity or super-Yang-Mills theory, etc. 
Probably, the greatest difficulty is to get ~id of the Lag­
range multipliers at the end, i.e., to eliminate them from 
the equations of motion and obtain equations involving only 
the initial dynamic variables. Here we show an example where 
this program can be successfully carried out. Hopefully, 
a similar approach would work in more complex cases,, such 
as N=2 supergravity. 

An analysis of U(l) supergravity has already been made 
in ref. 141 in the framework of real R4 •4 geometry supplemen­
ted. by appropriate algebraic constraints. When translated 
into this language our results are consistent with those 
of the above authors. 

l 
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In an Appendix we discuss a relaxed version of our cons· 
traint which leads to a model with 16+16 fields. 12+12 of 
them describe the U(l) minimal supergravity multiplet COUJ 
led to a 4+4 "notoph" multiplet (superspin 1/2 off-shell, 
0 on-shell). 

Parts of the results of this paper have been reported at 
the Second International Seminar on Quantum Gravity, Mosco~ 
October 1981 1121 

II. COMPLEX SUPERSPACE 

Let us,first recall the geometric framework for nonminin 
supergravity developed in paper 1101 in the spirit o1 
refs. /7,9,18/. Consider a complex superspace 

4 ' 4 I I I m ~ - ~ I C = Z L = XL ' 8L ' cf> L . 
~ - ll where x~ are 4 complex vector coordinates and OL, cf> 

complex spinor ones. The conjugated coordinates wifi 
an index R: . 

(I 

are lj 

carry 

m m + -~ ~ + ~ - ~ + 
lzai=IXa=(xL) , OR =(8L) , c/>R =(c/>L) I. (2 

To distinguish these two parametrizations of C 4•4 we call 
them left- and right-handed. 

Now we introduce a gauge group in C 4 ·~ We choose it to b 
the group of analytic transformations of the coordinates 
which leave the chiral subspace* 

c 4 •
2 

= 1, L 1 ... , x ~ • e r 1 ( 

invariant. In other words, the group has a "triangular" str 
ture 

., m m 
oX L = ,\ (XL , flL ) , 

58 t = ,\ i (x L ' 8 L ) ' 

-~ -~ -
5cf>L•p (xL,8L,c/>L)' 

wh~re ,\m and ,\p, are chiral superfunctions-parameters and 
p ~ is a general one. 

The next step is to introduce the real superspace 

R 4 •4= lz I = lx m, 8~ , 0 ~ I (5 

*We thank Prof. Yu. I.Manin for pointing out that the ter1 
"quotient superspace" would be more correct for C 4 •2, i.e., 
c4,2 = C 4,4 /C 0 •2 This is suggested by the form of the 
transformations (4). 
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In an Appendix we discuss a relaxed version of our cons­
traint which leads to a model with 16+16 fields. 12+12 of 
them describe the U(l) minimal supergravi ty multiplet coup­
led to a 4+4 "notoph" multiplet (superspin 1/2 off-shell, 
0 on-shell). 

Parts of the results of this paper have been reported at 
the Second International Seminar on Quantum Gravity. Moscow, 
October 1981 1121 

II. COMPLEX SUPERSPACE 

Let us first recall the geometric framework for nonminimal 
supergravity developed in paper 1101 in the spirit of 
refs. /7,9, 18

1
• Consider a complex superspace 

4
'
4 I I I m J.L - ~ I C = Z L = XL ' 8L ' c/> L ' 

(I) 
where xT, are 4 
complex spinor 
an index R: 

J.L - J.L complex vector coordinates and OL, ¢ are 4 
ones. The conjugated coordinates wift carry 

lzRJ.,(x:= (x~ )+, -J.L J.L + J.L - J.L + 8
R = w L ) • ¢ R = <¢ L ) 1 • 

To distinguish these two parametrizations of C4 •4 we call 
them left- and right-handed. 

(2) 

Now we introduce a gauge group in C 4 ·~ We choose it to be 
the group of analytic transformations of the coordinates 
which leave the chiral subspace • 

c 4 •
2 

= I' L I "'I X~ ' e r I (3) 
invariant. In other words, 
ture the group has a "triangular" struc-

., m m 
ox L ., A (x L , BL ) , ,., 

~8 t .. At (x L, 8 L ) , 

-J.L -J.L -
~c/>L•p (xL,OL,¢L), 

wh~re Am and AJ.L are chiral superfunctions-parameters and 
p J.L is a general one. 

The next step is to introduce the real superspace 

(4) 

R 
4

•
4
= lz I = lx m , eJ.L , 0 ~ I 

(5) 

*We thank Prof. Yu.I.Manin for pointing out that the term 
"quotient superspace" would be more correct for C 4 •2, i.e. • 
c4,2 = C 4,4 /C 0,2 This is suggested by the form of the 
transformations (4). 
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f 
. c 4,4 as a hypersur ace 1n ,e.g., 

m m P. P. -P. - P. 
x = Rex L, (J = 8L , 8 = 8 R , 

m - m H (x, 8,8) .. ImxL, 
. . . 

p. - p. p. -,.,. - -,. -,.,. 
H (x, 8, 8) = r/>R -8L, H (x,8,8) •r/>L -8a 

(6) 

. c"'"'l R 4,4 • Here the coord1nates of 
44 

are made arb1trary func~ 
tions of the coordinates of R ' • The superfunctions Hm, H~', ii11 

define the hypersurface and simultaneously determine the 
(curved) geometry of R 4 •4• The group (4) induces the following 
transformations 

x'm ... xm+j[.\m(xL,fJL)+Am(xR,OR)]' 

(J'I' = fJ p. + ,\P. (XL' fJL ) ' (7 .a) 

- jJ. -;,. -p. -
fJ' "' 8 + A (x R , fJR ) , 

m m - m - 1 m -m -
BH "' H' (x', 8', 8') - H (x, 8, 8) .. 21[). (xL, (JL )-.\ ( ~· (JR )}, 

BH"' • H'"'(x', 8', ii' )- H"'(x, 8 ,i) = p "'<xR, ~ ,q,R) -.\"'(xL, 8L)F. b) 
. . . . . 

-p. -,p. , , -, -p. - -p. . - -p. -
BH = H (x ,8 ,8 )-H (x,8,8)=p (xL,8L,¢L )-.\ (xR,Bg ). 

Here z L: 

x m = x m + iH m (x, 8, ii), 
L . . . 
-p - p. - p. -</>L • 8 + H (x, 8, 8 ) 

8 p. .. fJ p.' 
L (7 .c) 

and their conjugates zR are now functions of x, 8, 8 rather 
than independent coordinates. In what follows we shall re­
fer to zL(zR) of e~uation (7 .c) as left- (right)-handed pa­
rametrization of R •4• 

The transformations (7) correspond to conformal supe~gra-

~
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vity. Restricting them appropriately one can obtain the 
transformation group of Einstein supergravity. Owing to the 
triangular structure of the group (4) the Berezinians of 
both the c 4 •4 and c4•2 transformations have multiplicative ' 
property. So we can single out subgroups by imposing a natu-
ral restriction 

• 
• 4 

1:'{-\ 
~ 

[B ( azt>Jsn+t [ <a(L>12n er -.- = Ber -.- and h.c. (: 
azL a( L 

or, infinitesimally, 

a -~ (3n + 1) ...,.--,.- p 
a.\ m a>. p. 

= (n+1) (-- -). 
axm a(JP. a¢t L L 

( 

Each value of n corresponds to a nonminimal formulation o 
supergravity with 20+20 fields 191.There are only two exce 
tions. 

At n=-1/3 equation (8) takes the form 

a(' 
Ber (__h._)= 1 , 

a'L 
i.e., the transformations preser.ve the supervolume of C 

4 

In this case the parameters pP..,pP. are not re_§~ricted and 
with their help the spinor superfields HP.,H P. can be gaug 
away (just as in conformal supergravity). Thus one recove 
the minimal formulation with 12+12 fields. It has been de 

rcribed in detail earlier17•81 and we are not going to dis 
it here. 

The second exceptional value, n =0, corresponds to the 
servation of the total supervolume of C 4 •

4
• At n =0 equatia 

(8) reduces to 

az' 
Ber(-h..) = 1 • 

az 
L . 4 2 2-

Respectively, the supetvolume element d xLd 8 Ld 4> L 
invariant. This value of n is connected with the new mini 
version of supergravity as will be explained below. 

III. FIELD CONTENT AND TRANSFORMATIONS 

The field content of each of the above described formu 
tions and the meaning of the field transformations are re 
vealed in the Wess-Zumino gauge. We shall do it here witt 
the intention to show how the local U(1) group emerges i 
the case n=O *. . 

The parameters >..m, >../l ,p ll have the following decompos 
on consistent with equation (9): 

•As we learn from ref. 787 a similar analysis has bee~ 
carried out in paper /14/. 
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8Hm = H'm(x', ()', B')- H m(x, 8, 0) • ;l L\m (xL, 8L )-Am ( ~· iR )], 
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8H = H' (x',(J',fJ')-H (x,8,8)=p (xL,8L,ifJL )-A (xa•lla ). 

Here z L: 

x~ = x m + 1H m{x, 6,0), 
. . 

-p. -p. -p. -
f/JL "' (J + H {x, 8, 8 ) 

()P. .. (Jf.l 
L 

(7.c) 

and their conjugates zR are now functions of x, 8, 8 rather 
than independent coordinates. In what follows we shall re­
fer to zL(zR) of e~uation (7 .c) as left- (right)-handed pa­
rametrization of R •4• 

The transformations (7) correspond to conformal supe~gra­
vity. Restricting them appropriately one can obtain the 
transformation group of Einstein supergravity. Owing to the 
triangular structure of the group (4) the Berezinians of 
both the c 4•4 and c 4•2 transformations have multiplicative 
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azL ~L 

or, infinitesimaliy, 
a -· aAm 

(3n + 1) ~ p~-' = (n + 1) (-- -
a¢':, ax~ 

aA"' 
a8,.,. > • 

L 

and h.c. (8) 

(9) 

Each value of n corresponds to a nonminimal formulation of 
supergravity with 20+20 fields 191,There are only two excep­
tions. 

At n =-I/3 equation (8) takes the form 

~· 
Ber (__...h_) = 1 , (10) 

a(L 
i.e., the transformations preser,ve the supervolume of C 4 '

2 
• 

In this case the parameters pP..,pP. are not re,J~ricted and 
with their help the spinor superfields HP.,H f.l can be gauged 
away (just as in conformal supergravity). Thus one recovers 
the minimal formulation with I2+I2 fields. It has been des-

•cribed in detail earlier17•81 and we are not going to discuss 
it here. 

The second exceptional value, n =0, corresponds to the pre­
servation of the total supervolume of C 4 •4 • At n =0 equation 
(8) reduces to 

az' 
Ber(-.!;_) = 1. (II) 

az 
L 4 2 2 -

Respectively, the supervolume element .,d xLd 8 Ld ¢ L is 
invariant. This value of n is connected with the new minimal 
version of supergravity as will be explained below. 

III. FIELD CONTENT AND TRANSFORMATIONS 

The field content of each of the above described formula­
tions and the meaning of the field transformations are re­
vealed in the Wess-Zumino gauge. We shall do it here with 
the intention to show how the local U(1) group emerges in 
the case n=O "'. . 

The parameters Am, AP. ,p P. have the following decomposi~i­
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*As ve learn from ref. /8/ a similar analysis has been 
carried out in paper /14/ 

5 



m' m m I'ID m m 
A (x L , 8L ) =- a + ib + 8L X I' + 8L 8 L ( c + id ) , 

I' I' II I' I') I' 
A (xL,8L) = f + 6L [8

11 
(a+ib) +w(v ] + 6L6L71 

-~ - - ~ - ~ n+ 1 1 · m i m 
p (x L, 6 L , f/J L ) = E + f/J -- (-a- ib + -2 a a + ._a b ) + 

L 3n + 1 m "' m 

- II - ~) II ~ - ~ II - p n + 1 1 · m 
+f/J L o(v + 6L ell + 6L6LD + 6Lf/JL 3n+ 1 (-71v+ Tam Xv )+ 

+ 611 ¢" a .~> 
L L v(v 

+ 8 L 6L if,v P~) 
L <" 

+6L6L¢1' am (c m + id m) + 

(12) 

All parameters in 
of XL. 

the r.h.s. of equation (12) are functions 

(7), (12) one finds that Hm can be gauged From equations 
into 

H m ( x, 6, 6) ,. 6 I' 6 ~ e ~ + 6 2 8 P..p: + 6 2 6 ~ ~ m,i + 6 2 6-2 Am ( 13) 

by means of fixinJ the parameters b m, x ~ , c m, d m in equation 
(12). Note that a remains unrestricted and it serves as the 
parameter of general coordinate transformations. Further, 
H" transforms as follows 

£>HI' E I' I' 8 I' [ 4n+2 , 2n ib n + 1 .=~ m] u = -f + ---a-- + uma + 
3n +1 3n+ 1 2(3n+1) 

II I') I') - VI' I' -- I' 
+ 6 [0( - w( ] + 6 • c - 6 6 71 + 6 6 D + 

II II II (14) 

_p.- n+1 -11 · - 11 
+ fl 6 • (-71 - i a m (a m f ) ] + 

11 3n + 1 
11 - - I') - 2 - (vi') 

+ 6 6. 0 "( + 6 6 p + .... ' 
II II II II 

where the dots denote field-dependent terms. Now one sees that 
for n 1- 0, -1/2, -1/3 one can gauge Hll into 191 

.. - 2 -2 2- • 2-2 ( 15) 
H " (x, 6, 6 ) = 6 e " + 6 6 "B + 6 6 p. (v + iw) "" + 6 6 fJ" 

6 
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by means of fixi~g )all parameters except f" (x) (local sut 
symmetry) and w 111' (x) (local Lorentz). The componen1 
in equations (13), (15) correspond to the non-minimal set 
of fields. 

IV. PECULIARITIES OF THE n=O CASE: 
U(1) LOCAL GROUP AND EXISTENCE OF INVARIANT 

It is remarkable that for n =0 the parameter ib(x) (of 
local y 6 , or U(1) transformations) drops out of equation ( 
so it cannot be fixed and H" becomes 

H"= 6"tA + 62 e" + 92 6" B + 6 2 i. <v+ tw>"" + 6 2
6-

2
{3" .< 

' " In comparison with equation (IS) an additional real pseu! 
scalar field A(x) appears. At the same time, however, vi'P 
undergoes gradient transformations with parameter b(x), so 1 

total number of components is again 20+20*. 
So, in the family of nonminimal sets of fields there 

one and only one allowing for local U(1) transformations. 
This is not yet the set for the new minimal version of N• 
supergravity as we still have 20+20 fields instead of 12+ 
However, it turns out that 8+8 fields of this set form a 
subset closed under supersymmetry transformations. This c; 
be shown by the following clear geometrical reasoning. As 
was stressed above, for n =0 the c4•4 supervolume is pre­
served. Consequently, both d8zL and d8 zR = (d 8zL} + a: 
invariant. On the real hyper surface {6) d8 z L and d 8 z R a: 
connected by the change of variables (see equation (7.c)) 
zL ... z ... zR: 

az az az 
dSzL = Ber(__!::)d8z "'Ber(-!'!. Ber(--) · d8z R. ( 

dZ " az dZ R 

Therefore the quantity 

dZ L dZL 
Ber (-) .. Ber(--) ( -1 dZR 

• Ber (--) -U{x, 6, 6) ... 
aza az 

is invariant under the transformations 
for n=O. The explicit form of U(x,8,0) 
calculated. 

az 
(4), (8) for and o 

can be easily 

*Note that for n =-Irr-t-he-parameter ~x) drops out but 
a am(~ remains and the gauge can still be fixed as in e· 
tTon (15) althou,h thus restricting the general coordinatt 
transformations 91

• 



m m m p.m m m 
A (xL,OL)=-a +ib +OLXp. +OLOL(c +id ), 

ll ll v ll p.) ll 
A (xL,OL)=r +OL[Sv(a+ib)+cu(v l+OLOL71 

-P, - -P, -P.n+1 1· m i m 
p (xL, OL, rPL) = E + if,L -(-a- ib+ -

2 
a a +._a b ) + 

3n + 1 m ;r; m 

- v - /J,) v P, - P, v - P. n + 1 1 · m 
+if,LO(v +0Lcv +OLOLD +0Lrj,L ii':T(-71v+Tam1t'v)+ 

v - v P.> 
+ 0 L rP L 0 v<v 

+ OL OL j,v p,l) 
L <-v 

+0LOLill a { m m c + id m) + 

{12) 

11 parameters in the r.h.s. of equation (12) are functions 
f XL , 

From equations (7), {12) one finds that Hmcan be gauged 'nto 

H m(x, 0, 8)"' 0 P.e/J.e m. + 02 0 p.t/1 m + 0 2 8. ~mp.' + 0 2 0-2 Am {13) 
p.p. ll ll 

y means of fixi~ the parameters b m, x ~ , c m, d m in equation 
12). Note that a remains unrestricted and it serves as the 
arameter of general coordinate transformations. Further, 
ll transforms as follows 

.. ll ll p. p. [ 4n+2 2n n + 1 · m] oH = E - r + 0 - -a - - ib + am a + 
3n +1 3n+ 1 2(311+ 1) 

v p.) p.) - .;_p. p. -- ll 
+ 0 [0( - cu( ] + 0 • c - 0 fJ 71 + 0 0 D + v v v 

_p.- n+1 -v - v 
+ tf (J • (-71 - i a (u m f ) ) + 

v 3n+ 1 m 

v - - p.) - 2 - (vp.) + 0 0. 0 '( + 0 0 p + .... , v v v v 

ere the dots denote field-dependent terms. Now 
r n Ia O, -I /2, -I /3 one can gauge H~' into 191 

H ll (x,fJ,O)= 0
2
tll + 02 fJilB+ o 2 i. (v+ iw)P.P. 

ll 

.. 

( 14) 

one sees that 

+ 9 292 pP.(I5) 

1'.<1. 

"'"· 

')ii'!J . .f 
iJ~" 
: ; !~ ' 
'· 
~ ' 

.Q, 

j 
l\ 

.~ J 
j 
~ 
·~~ ' . 
{ • I ol~ 

('\ 

by means of fixi~g all parameters except ,ll (x) (local super-
symmetry) and cu vp.) (x) (local Lorentz). The components 
in equations (13), (15) correspond to the non-minimal set 
of fields. 

IV. PECULIARITIES OF THE D=O CASE: 
U(1) LOCAL GROUP AND EXISTENCE OF INVARIANT 

It is remarkable that for n =0 the parameter ib(x) (of 
local y 6 , or U(1) transformations) drops out of equation {14), 
so it cannot be fixed and Hll becomes 

H ll = 9 p.iA + 8
2 ~ ll + 02 oil 8 + 8 2 8-. (v + iw) llP. + 0 29-2 13ll. (16) . ll 

In comparison with equation (15) an additional real pseu~o­
scalar field A(x) appears. At the same time, however, vP.P. 
undergoes gradient transformations with parameter b(x), so the 
total number of components is again 20+20*. 

So, in the family of nonminimal sets of fields there is 
one and only one allowing for local U(l) transformations. 
This is not yet the set for the new minimal version of N •I 
supergravity as we still have 20+20 fields instead of 12+12. 
However, it turns out that 8+8 fields of this set form a 
subset closed under supersymmetry transformations. This can 
be shown by the following clear geometrical reasoning. As 
was stressed above, for n =0 the c4 •4 supervolume is pre­
served. Consequently, both d8zL and d8zR = (d8zL) + are 
invariant. On the real hyper surface (6) d8 z L and d 8 z R are 
connected by the change of variables (see equation (7.c)) 
ZL-oZ-oZR; 

az az az 
d

8
zL = Ber{--..!!)d 8z = Ber(-~. Ber(-;:-r-). d8z R. (17) az az az R 

Therefore the quantity 

U(x, 8, 8) .. azL azL -l azR 
Ber (-) = Ber(-). Ber (-) (18) aza az az 

is invariant under the transformations (4), {8) for and only 
for n=O. The explicit form of U{x,O, 0) can be easily 
calculated. 

*Note that for n =-1/2 the parameter ~x) drops out but 
a am(x) remains and the gauge can still be fixed as in equa­
tTon (15) althou~h thus restricting the general coordinate 
transfo~ations 1 • 

I 
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azL. 
Ber Ber(--) = 

az 

det (8 : + W 0 H m) 

det (8 • It + A it ii . > v v 

8nm +tanH m 

( ta Hm v 

ia. H m 
v 

0 
a "" 

n 

8~' 
v av iiI' 

0 8, 
v 

where 181 

- - - . ' 1 
ll. · =-a · - ta • H m • (1 - ia H) - n a 

I' I' I' m m 
so m · m I' A I' ) det(80 +1o

0
H ).det(S

11 
+u

11
H 

U(x,8, 8) • • • . 
det(8·" +K~'ii 11·)·det(8 m_ ion Hm) 

{19) 

(20) 

+ v n 
Clearly, U U = 1, therefore U = exp (iu) • . The real super field 
u(x,8,~) is the carrier of the invariant 8+8 subset. It 
is a new quantity not yet encountered either in minimal or 
nonminimal supergravity. Its origin is essentially in the 
complex structure of C4•4 and it cannot be explained in the 
framework of real superspace geometry. It is neither a tor­
sion nor a curvature component, nor anything else known 
in real supergeometry. 

V. CONSTRAINTS ON THE PREPOTENTIALS 

Since U is an invariant object it can be used to write 
down constraints. In fact, one mus~ do that if one wishes 
to construct an action. Indeed, as was mentioned above, the 

field v =.!.(a ) . v p.Ji in equation (16) (as well as 
a 2 allll 

in equation (13)) transforms as a gauge field for U(l). Howe­
ver, its dimension is cm-2 *, so it cannot have a normal ki­
netic term of the type F b F ab • The only way it can enter 
a Lagrangian is to be coupled to a divergenceless (i.e., 
constrained) axial vector field. This is, indeed, the case 
realized in the new minimal version by Sohnius and West /2/ 

,.[H~'1=[8~'] = cm 112 

include a factor 1<, [K]= em, 
limit. 

8 

• 

but all components ofH"have to 
since they vanish in the flat 

{1 

v.·J ... ··• 
'I 

t, ~ 
. I 

L 

~~ 
~\,; 
~ 
•.:~ 

I 

,, 

'/ 
j' 

and Akulov et al. 111
• The corresponding constraint is 

U=l. ( 

The solution to it is easily found in terms of components 
in the WZ gauge (13), (16): 

A = 0, e I' = O. B = 0, w = _.!_a e m ' {3~' = ia if! m~t , ( 2 2 
a 2 m a m 

a. m m a 
m (A - e a v ) = 0 , 

(22 
Equation (22.b) means that 

m m a mnkf a· + (23 A - eav = l nakf' ake=-aek =akf 

so the "notoph" lUi/ akf of Sohnius and West 121 and Aku: 
et. al. 

111 
(together with its additional invariance 8a kf 

= akb£-atbk) appears as a solution to the constraint. 
A weaker constraint will be discussed in the Appendix. 

VI. INVARIANT INTEGRALS AND ACTION PRINCIPLE 

The constraint (21) enables us to write down an action. 
To this end we first need an invariant integral for R 4 •4• I 
R4

•
4 be parametrized by z~ (or their cojugates z~ ) define( 

equation (7.c) instead ofzM.Then, according to the geomet 
meaning of our gauge group (4), (II) the following integr~ 

. 8 8 oZL 
IL = {d ZL~L(zJ = (d Z Ber(-)ll>(z) 

az 

8 8 aza 
IR = J d zR~R (zR) = L d z Ber (~)~{z) 

az 
(24 

are invariant, Here ~(z) is a real scalar superfield, and 
~ L (z L) .. ~~ ( zR) + = ~(z). Further, as a consequence of 
the constra1nt (21) 

az 
Ber(-L) 

az 
az 

= Ber{--1!...) az 

det(8nm+ io 0 Hm). det(8nm_ tanHm) 112 
=[ . • 1 :E,. 

det(8. I' + K~' ii .) • det(8 I' +ll. H~') 
v v v v 

(2 



azL. 
Ber Ber(-) = 

az 

det (8 : + ta 0 H rn ) 

det (8 • (1. + ~ it ii · ) v v 

8nm + tan H rn 

{ ta Hrn v 

ta. H rn 
v 

0 a ii ll n 

81l v av ii ll . 
0 8. ~~- + a-. " ll 

v v 

where /8/ 
- - . . 1 . 

11 • =-a · - ta · H rn • {1 - ta H) - n a 
ll ll ll m rn 

so rn · m ·rollA ll) 
det(c50 + lo 

0 
H ). det(a11 + u v H 

U(x,O, 0) = • • . 

det (8 • ll + K ll ii · ) · det (8 m- tan H rn ) 

(19) 

{20) 

+ v v n 
Clearly, UU = 1, therefore U = exp{iu) •. The real superfield 
u{x,O,~) is the carrier of the invariant 8+8 subset. It 
is a new quantity not yet encountered either in minimal or 
nonminimal supergravity. Its origin is essentially in the 
complex structure of C4•4 and it cannot be explained in the 
framework of real superspace geometry. It is neither a tor­
sion nor a curvature component, nor anything else known 
in real supergeometry. 

V. CONSTRAINTS ON THE PREPOTENTIALS 

Since U is an invariant object it can be used to write 
down constraints. In fact, one must do that if one wishes 
to construct an action. Indeed, as was mentioned above, the 

field v =.!.(a ) • v wi in equation {16) {as well as 
a 2 allll 

in equation (13)) transforms as a gauge field for U{1). Howe­
ver, its dimension is cm-2 *, so it cannot have a normal ki­
netic term of the type F b Fab • The only way it can enter 
a Lagrangian is to be coupled to a divergenceless {i.e., 
constrained) axial vector field. This is, indeed, the case 
realized in the new minimal version by Sohnius and West 121 

* [H ll]= [Oil] = em 1/2 

include a factor K, [K]= em, 
limit. 

8 

• 

but all components of~have to 
since they vanish in the flat 

'n.f·· 
'I, 

'j:i,, 

~f,'t't ,,,f 
,i/ 
<,'1 

\' 
,l 

and Akulov et al.
111

• The ~orresponding constraint is 

U==l. (21) 

The solution to it is easily found in terms of components 
in the WZ gauge (13), (16): 

A = 0, e ll = 0, B = 0, 1 a· rn ~ ll ·a· ·'· Ifill ( ) w =-- e , ,.. = 1 'I' , 22.a a 2 rn a m 

a m m a 
m (A - e a v ) = 0 • 

(22.b) 

Equation (22.b) means that 
m rn a mnkf a + (23) A - eav = r nakl • ate=-afk =akf 

so the "notoph" lUi/ at£ of Sohnius and West 121 and Akulov 
et. al. 111 (together with its additional invariance 8a kf 
.. akbt -aebk) appears as a solution to the constraint. 

A weaker constraint will be discussed in the Appendix. 

VI. INVARIANT INTEGRALS AND ACTION PRINCIPLE 

The constraint (21) enables us to write down an action. 
To this end we first need an invariant integral for R 4•4• Let 
R4

•4 be parametrized by z ~ (or their cojugates z~ ) defined in 
equation (7. c) instead of z M. Then, according to the geometric 
meaning of our gauge group {4), (II) the following integrals 

. 8 8 azL 
IL = fd ZL~L(zJ = fd Z Ber(-)~(z) 

az 

8 8 aza 
IR = fd ZR~R (zR) = (d Z Ber (~)~(Z) 

az ,. 

(24) 

are invariant, Here ~{z) is a real scalar superfield, and 
~ L (z L) = ~~ ( zR) + = ~(z). Further, as a consequence of 
the constra1nt {21) 

az 
Ber(-L) 

az 
az 

Ber{--lL) 
az 

(25) 

det(8nm+ ia
0

Hm). det(8 0m- tanHm) 1;2 
=[ • · l =E,. 

det(8. Jl + ,KJl ii .) · det(8 ll +11 Hll) v v v v 
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therefore 
8 IL=la= Jd z.E.~(z). (26) 

Note that the density E is in fact the Berezinian of viel­
beins for the curved R4 •4 with local U(l) in the tangent spa­
ce (see Sect. VIII). If we choose ~Z~I in equation (24) 
the integrals will vanish and so will the integral in equati­
on (26), i.e., the invariant volu~e 1ofR

4 •4 (the sam;
1
f?,eno­

menon was observed by Howe et al. 4 (see also ref. )). 
So, the supervolume of R4 •4 is not an adequate action for 
n =0 unlike all cases with n I 0. If we had some nontrivial 
dimensionless scalar superfield ~ constructed out of the 
prepotentials we could put it in equation· (26) and try this 
as an action; however, the only such object is u (2<;)) and 
it is I in our case. 

Fortunately, the unique properties of the superspace in 
this case provide another way of constructing an action. Sup­
pose that ~ in equation (26) is not a scalar but transforms 
as follows: 

S~(x, 8, 0) = L + R , (27) 

where 
- + 

L ... L(x L, (JL ), R = R(x R , fJ R) = L 

are some left- and right-handed c4•2 (chiral) parameters. Then 
8 4 2 2- ) S J d z m = ( d XL d (JL d rPL • L(x L , (JL + h.c. = 0 

because L(R) is independent of fL (~ ). Such type of inva­
riant was proposed in ref. 141 .In our approach the super­
field ~ can be constructed in terms of prepotentials 

~ = lnF, 

-1/4 1 m -1/8 m k m 
F = det (4 [A,u& 1\]H ).det (8 0 +o0 H okH )x (28) 

• . I 
x [det(S "' + I\ H ll ) • det (S ."' + K ll ii . )1 

8 8
• v v v v 

It transforms according to equation (27): 

S lnF = L + R, 

L(x L '() L) .. 
~ 

i»,.m OJ.P. + 
---.--, R·L ax m 08 p. 

L L 

(27 I) 

where L(R) is the variation of the c4•2 volume element. In 
fact, F is a part of the vielbeins EM, E ~ (see below). a a 
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Now we are prepared to write down the action for the n 
minimal version. Putting equations (25), (28) into the in 
variant integral one finds 

8 = _1_ J d 4 x d 2 fJ d 2 0 E lnF, (2 
K2 

which should be considered together with the constraint (: 
Inserting the component field solution (22), (23) to this 
constraint into the action ~29) one obtains exactly the 
action of Sohnius and West 1 1 . 

VII. IMPLEMENTING THE CONSTRAINT IN THE ACTION 
BY MEANS OF LAGRANGE MULTIPLIER 

An action with the dynamic variables restricted by a c• 
straint poses serious problems. For instance, obtaining e• 
tions of motion by variation is a nontrivial task. Furth• 
the quantization is rather difficult, etc. 

As pointed out in the Introduction, a possible way out 
(besides the explicit solution of the constraint which is 
always so easy) is to introduce Lagrange multipliers in tl 
action and obtain the constraints as equations of motion. 
the case of U(1) supergravity this can be done as follow1 

The first problem encountered when trying to implement 
the constraint (21) into the action (29) is that the latt« 
ceases to be invariant. Indeed, the transformation (27') 
of lnF in equation (29) leaves 8 invariant only if equatic 
(21) holds. Therefore, one has to compensate for this trai 
formation. To this end one introduces a real pseudoscalar 
superfield r/J (x, (), (!) transforming as follows 

irP. it/l ' 0{£ ,. -1 at:i 
e .. e .Ber(~). Ber <->, 

or infinitesimally 

B.p .. -i (L - R) , 

0( L O(R 

, 

(2 

where L(R) is given in equation (27'). This is obviously B 
group covariant law. Further, consider the integral 

1 8 
I .. - f d z L (lnF + ir/J) = 

1(2 

__!_ f d 8z EU 112(ln F + if/l) 
1(2 

( 



therefore 

I L = I R = f d 8z .E. ell (z). (26) 

Note that the density E is in fact the Berezinian of viel­
beins for the curved R4 •4 with local U(l) in the tangent spa­
ce (see Sect. VIII). If we choose <ll(z~J in equation (24) 
the integrals will vanish and so will the integral in equati­
on (26), i.e., the invariant volume of R4 •4 (the same pheno-

141 /lfl menon was observed by Howe et al. (see also ref. )). 
So, the supervolume of R 4 •

4 is not an adequate action for 
n =0 unlike all cases with n ~ 0. If we had some nontrivial 
dimensionless scalar superfield ell constructed out of the 
prepotentials we could put it in equation' (26) and try this 
as an action; however, the only such object is U (2<;>) and 
it is I in our case. 

Fortunately, the unique properties of the superspace in 
this case provide another way of constructing an action. Sup­
pose that ell in equation (26) is not a scalar but transforms 
as follows: 

Bell(x, 8, ji) = L + R , (27) 

where 

L = L (x L , 8 L ), - + R = R(x R , 8 R ) = L 

are some left- and right-handed c4
•
2 (chiral) parameters. Then 

8 4 2 2- ) 
8 f d z Ecll = f d XL d 8L d ifJL • L(x L , 8L + h.c. = 0 

ecause L(R) is independent of fL <cf>a ). Such type of inva­
iant was proposed in ref. /4/ .In our approach the super­

ifield ell can be constructed in terms of prepotentials 

ell = lnF, 

-114 1 m -118 m a k m 
F = det (4[.:\,u& a]H ).det (8D + DH akH )x (28) 

. . I 
X [det(8 p. +a H p.) • det (8. p. + K p. ii . )1 8 8• 

II V II II 

t transforms according to equation (27): 

BlnF = L + R, 
(27 I) 

a.\ m (J,\P. -.-. R • L + L(x L, 8 L) = 
ax m iJ(J p. 

here L(R) is the 
act, F is a part 

L L 
~ariation of the c4 •2 volwne element. In 
of the vielbeins E M, E ~ (see below). 
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Now we are prepared to write down the action for the new 
minimal version. Putting equations (25), (28) into the in­
variant integral one finds 

s· .. ..!... f d 4 x d 2 8 d 2 e E lnF, (29) 
K2 

which should be considered together with the constraint (21). 
Inserting the component field solution (22), (23) to this 
constraint into the action ~29) one obtains exactly the 
action of Sohnius and West 1 1 . 

VII. IMPLEMENTING THE CONSTRAINT IN THE ACTION 
BY MEANS OF LAGRANGE MULTIPLIER 

An action with the dynamic variables restricted by a con­
straint poses serious problems. For instance, obtaining equa­
tions of motion by variation is a nontrivial task. Further, 
the quantization is rather difficult, etc. 

As pointed out in the Introduction, a possible way out 
(besides the explicit solution of the constraint which is not 
always so easy) is to introduce Lagrange multipliers in the 
action and obtain the constraints as equations of motion. In 
the case of U(1) supergravity this can be done as follows. 

The first problem encountered when trying to implement 
the constraint (21) into the action (29) is that the latter 
ceases to be invariant. Indeed, the transformation (27') 
of lnF in equation {29) leaves S invariant only if equation 
(21) holds. Therefore, one has to compensate for this trans­
formation. To this end one introduces a real pseudoscalar 
superfield q, (x, 8, fl) transforming as follows 

, a{' a(' , 
e iifJ .. e iifJ • Ber ( .._.!;:_). Ber -l (........!.) , • · 

iJ( L a(R 
or infinitesimally 

8q, • - i (L - R) , (30) 

where L(R) is given in equation (27'). This is obviously a 
group covariant law. Further, consider the integral 

1 8 
I .. - ( d z L (lnF + iifJ) = 

K2 

- _1_ f d s, EU tl2(1n F + iifJ ) 
K2 

(3p 

ll 



(see equations (19), (20), (25)). Evidently, 
., 1fs . ., 1 s ul = 2 . d z L (u lnF + ilicp) = 2 f d z L 2L (x L , 8L) = 0 , 

K K 

so I. in equation (31) is invariant. Its real part 

S = ...!.(1 +I+ ) = 
2 

= - 1- f d 8z E [U112 (lnF + icp) + u-l/~ln F - icp)] 
2K2 . 

(32) 

is a generalization of the action (29)* (when cp=O and the 
constraint (21) holds,,equation (32) reduces to equation 
(29)). It is invariant without the help of the constraint. 
Furthermore, the variation of cp in equation (32) produces 
just the constraint (21) as an equation of motion. So, the 
superfield cp plays a dual role: it is a compensating super­
field for the main term in the action and a Lagrange multi­
plier for the constraint. It remains to see how one can eli­
minate the Lagrange multiplier from the rest of the equati-
ons. . 

The variation of If', H a 
lowing equation (up to terms 
obtained equation (21)): 

l:i • :(InF + icp) == 0 
a 

in equation (32) gives the fQl­
vanishing owing to the already 

and h.c. (33) 

It is indeed a covariant equation since 

8(lnF + icp) = 2L(xL' 8 L) and 1:i. L = 0. 
a 

Equation (33) 

i 

has the following general solution 

cf> =- -U 
2 

- .r), 

1 lnF .. 2 (f +r), 

where 

t = t(x L, 8L ) 
+ 

and r = r (l R , 8 R ) "" ( t ) 

(34. a) 

(34.b) 

*We are grateful to Dr. ~.M.Zupnik for an important impro­
vement of the form of the action (32). 

.. , 12. 

'i 

are arbitrary chiral superfields. So, equation (34.a) fi 
the Lagrange multiplier (up to gauge freedom, see equati 
(30)}. Equation (34.b) means that lnFvanishes up to an a 
trary chiral part. Since the gauge freedom (27 1

} in lnF 
just of the type (34.b) one can conclude that the gauge i 
variant part of lnF is zero. In Section VIII we shall se 
that lnF is the prepotential for the local U(1) invarian 
in the tangent (super) space, and the corresponding gauge 
invariants are the U(1) curvatures FAD' So, our second e 
tion of motion (33) is equivalent to 

FAs= 0 on-shell. 

We shall come back to this below. 
Finally, the variation of H ~~!It is not hard to see (usi 

the already derived equation (21)) that in the correspon­
ding equation of motion only the derivatives of cp appear. 
They can be replaced by derivatives oflnF according toe 
tion (33). Thus, the Lagrange multiplier can be eliminate 
~oFpletely. The resulting equation involves only Hm,H~ ~ 
H~-' and has the form 

a a= 0, 

where Oa is a certain torsion component (see Section VIIJ 
This is not surpising since Oa is the only covariant vee 
of the right dimension in the theory. It is indeed the ec 
tion of motion found in ref. 141 , 

The last question is whether our second equation (33) 
the form (35) is compatible with equation (36). In the di 
ferential geometry formalism (Section VIII) one can show 
that all the non-vani~ing components of FA~ are covariar 
derivatives of ~ , so equation (35) is itself a corollar~ 
of equation (36). 

Ending this section we would like to point out two sir 
larities between the case discussed here and the N=2 sup1 
gravity theory 110,111 , First, in both cases the invarian1 
volume of the real superspace vanishes as a consequence 
of the constraints. Second,. both actions are not invaria1 
unless the constraints are imposed. On these grounds one 
hope that the method of Lagrange multipliers can be appl: 
to the N •2 case successfully. 

VIII. DIFFERENTIAL GEOMETRY IN R4
'
4 

The geometry of the real superspace R4•4 is determine1 
the fact that it is embedded as a hypersurface in a comp 



(see equations (19), (20), (25)). Evidently, 
1 8 . ., ,., 1 8 

81 = 2 ( d z L (a lnF + wcf>) = 2 ( d z L 2L (x L , (JL ) = 0 , 
K K 

soL in equation (31) is invariant. Its real part 

- 1 . + S = -0 + I ) = 
2 

= -
1
- ( d 8z E [U112 (InF + i¢) + u-11ll:In F - i¢ )] 

2K2 . 

(32) 

is a generalization of the action (29)* (when ¢=0 and the 
constraint (21) holds,,equation (32) reduces to equation 
(29)). It is invariant without the help of the constraint. 
Furthermore, the variation of ¢ in equation (32) produces 
just the constraint (21) as an equation of motion. So, the 
superfield ¢ plays a dual role: it is a compensating super­
field for the main term in the action and a Lagrange multi­
plier for the constraint. It remains to see how one can eli­
minate the Lagrange multiplier from the rest of the equati-
ons. . 

The variation of Jtl, H a 
lowing equation (up to terms 
obtained equation (21)): 

in equation (32) gives the fol­
vanishing owing to the already 

1\ • '(lnF + i¢) "' 0 and h.c. (33) 
a 

It is indeed a covariant equation since 
-

8 (lnF + i¢) = 2L (x L, 0 L) and 1\ a L = 0 . 

Equation (33) has the following general solution 
i 

¢ = - 2 u - _r), (34. a) 

1 lnF = 2 (t + r), (34. b) 

where 

t = f (x L , (J L ) - + and r = r (l R , 8 R ) = ( t ) 

*We are grateful to Dr. ~.M.Zupnik for an important impro­
vement of the form of the action (32). 
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are arbitrary chiral superfields. So, equation (34.a) fixes 
the Lagrange multiplier (up to gauge freedom, see equation 
(30)'), Equation (34.b) means that lnFvanishes up to an arbi­
trary chiral part. Since the gauge freedom (27 1 ) in lnF is 
just of the type (34.b) one can conclude that the gauge in­
variant part of lnF is zero. In Section VIII we shall see 
that lnF is the prepotential for the local U(1) invariance 
in the tangent (super) space, and the corresponding gauge 
invariants are the U(1) curvatures F AB' So, our second equa­
tion of motion (33) is equivalent to 

FAB = 0 on-shell. (35) 
We shall come back to this below. 

Finally, the variation of H ~~!It is not hard to see (using 
the already derived equation (21)) that in the correspon­
ding equation of motion only the derivatives of cf> appear. 
They can be replaced by derivatives oflnF according to equa­
tion (33). Thus, the Lagrange multiplier can be eliminated 
~o~pletely. The resulting equation involves only Hm,H~ and 
H~ and has the form 

a a .. 0, (36) 

where Oa is a certain torsion component (see Section VIII). 
This is not surpising since Oa is the only covariant vector 
of the right dimension in the theory. It is indeed the equa­
tion of motion found in ref. 141 , 

The last question is whether our second equation (33) in 
the form (35) is compatible with equation (36). In the dif­
ferential geometry formalism (Section VIII) one can show 
that all the non-vanishing components of FAB are covariant 
derivatives of ~ , so equation (35) is itself a corollary 
of equation (36). . ' 

Ending this section we would like to point out two Hml­
larities between the case discussed here and theN=2 super­
gravity theory 110,111 , First, in both cases the invariant 
volume of the real superspace vanishes as a consequence 
of the constraints. Second,. both actions are not invariant 
unless the constraints are imposed. On these grounds one may 
hope that the method of Lagrange multipliers can be applied 
to the N •2 case successfully. 

VIII. DIFFERENTIAL GEOMETRY IN R4' 4 

The geometry of the real superspace R4•4 is determined by 
the fact that it is embedded as a hypersurface in a complex 
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supersface. This means that such invariant characteristics 
of R4• as torsion and curvature can be simply calculated in­
stead of being postulated. 

The development of the differential geometry formalism 
for R4•4 is a straightforward procedure (see ref. 181

). Notice 
that it can be done before imposing the constraint (21) 
(the latter is needed only for the action). Here we shall re­
call just the main steps. 

The derivative 

V -1 f3 a 
a <I> = (l + .:\H) a .:\ {3 <I> = &p a <I> (xR ' ¢ R ' (J R 

R 
of a scalar superfield transforms homogeneously under the 

(37) 

group (4), (8) (infinitesimally): 

8 ( V a <I>) = - ( V a p {3) V {3 <I>= ~ ( V {3 P {3) V a <I>- ( V(a P {3) ) V {3 <I> • (38) 

The second term in equation (38) is an induced Lorentz trans­
formation in the tangent space, while the first one is an 
induced Weyl one. In fact, the component field analysis of 
Section III shows that in x-space there is only a U(1) tan­
gent group. So,one should expect to have only it induced in 
the tangent superspace. Therefore one should compensate for 
the dilatation part in equation (38) by introducing a factor 
F into the definition of the spinor covariant derivative of 
a scalar weightless superfield 

Da <I> = FVa <I>= EaM aM <I>. (39) 

This factor must transform as follows (see equations (9}, 
(27')) 

1 -- 1 
BF =- -(V p + V p)F = -(L+ R)F. (40) 

4 4 

A full covariant derivative requires a connection 
M C 

Da oaEa aM + "'aB • (41) 

The latter has both Lorentz and U(l) parts. Further, the 
vector covariant derivative can be defined as 

M 1 -aa -Da sEa aM =-0' ID ,o. I 
4 a a 

thus automatically choosing the torsion.components 

(42) 

c c) Y Y 0 ) T a = -2i(u h , T a = 0, T h = • (43 
~ ap a~ ap a~ 

The last of the equations (43) allows us to express the con­
nection in terms of Hm, H~', ii'il and F, f. In particular, for 
its U(l) part one finds 

'1 14 

• 
~ ~. 

"'
8

-FVlnF. a& a 

Having obtained the vielbeins E ~we can define left-or 1 

handed vielbeins t: (r: ) by changing variables from z 1 

to z /! or z:: 

EM_!.__ .. tM~ = rM _2_, 
A oz M A az M A oz M 

According to equatfon (11) t~e Berezinians off~ and r~ 
transform as scalars, so they can be put equal to some 
tion of the scalar U (20) thus obtaining equations for t 
factors F,~(39). The particular choice 

Ber(t ~) = U - 112 

leads to the form of F= f given in equation (28). FurthE 
Ber(E ~ ) calculated with the above value of F is indE 

equal to E-1(25). 
The last step is to calculate the invariant tensors ( 

sion components) using the covariant derivatives alread) 
fined. Our results agree with those ofref. 141 but we ou~ 
to point out the following. The quantity U (20)is an ir 
variant of the group although there is no room for it an 
the torsion components. However, its covariant derivati~ 
do appear as torsion CO]IIponents, e.g., Tabb is express 
in terms of Da U; Tab>', in terms of DDU, etc. So, the 
constraint (21) yields the vanishing of all those torsic 
components. In the framework of real superspace geometry 
is not present. There, however, there is the constraint 

b b 
Tab = T ci b = O • 

which is equivalent to 
• 

Da U = fi. U = 0 a 

in our language. Equation (47) implies U=cons& which is 1 

tially the same as equation (21). This explains the agre 
between the two approaches. 
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supersface. This means that such invariant characteristics 
of R4• as torsion and curvature can be simply calculated in­
stead of being postulated. 

The development of the differential geometry formalism 
for R4•4 is a straightforward procedure (see ref. 181).Notice 
that it can be done before imposing the constraint (21) 
(the latter is needed only for the action). Here we shall re­
call just the main steps. 

The derivative 

V -1~ a 
a ct> = (l + ~H) a ~ ~ ct> = &p a ct> (~ ' ¢ R ' 8 R 

R 

(37) 

of a scalar superfield transforms homogeneously under the 
group (4), (8) (infinitesimally): 

8(Va<I>)=-(Va p~)V~<I>= ~ ( V~p~)Va<I>-(V(a p~)) V~ct>. (38) 

The second term in equation (38) is an induced Lorentz trans­
formation in the tangent space, while the first one is an 
induced Weyl one. In fact, the component field analysis of 
Section III shows that in x-space there is only a U(1) tan­
gent group. So,one should expect to have only it induced in 
the tangent superspace. Therefore one should compensate for 
the dilatation part in equation (38) by introducing a factor 
F into the definition of the spinor covariant derivative of 
a scalar weightless superfield 

Da ct> = F V act> = Ea M aM <I> • (39) 

This factor must transform as follows (see equations (9}, 
(27')) 

1 -- 1 
8F .,_ -(V p + V p)F = -(L+ R)F. (40) 

4 4 

A full covariant derivative requires a connection 
M C 

Da '"Ea aM + cuaB • (41) 

The latter has both Lorentz and U(l) parts. Further, the 
vector covariant derivative can be defined as 

M t -aa -Da sEa aM =-U ID ,D. I 
4 a a 

thus automatically choosing the torsion.components 

(42) 

Taf/ =-2i(u c )a/3 , T a{Jy ""0, T a/3 y = 0. (43) 

The last ot the equations (432.allows us_to express the con­
nection in terms of Hm, H!l, Hll and F, F. In particular, for 
its U(1) part one finds 
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cu B - F V In F • ( 44) a& a 

H~ving obtained the vielbeins E ~we can define left-or right­
handed vielbeins t f (r f ) by changing variables from z M 
to z /! or z:: 

EM_!__ .. tM2_ .. 
A azM A az M 
d

• )... 
Accor 1ng to equat1on 
transform as scalars, 
tion of the scalar U 
factors F, ,.- (39). The 

Ber(f ~) = U - 112 

r~ _2_. (45) az M 

(II) tf:e Berezinians of f ~ and r ~ 
so they can be put equal to some func­
(20)thus obtaining equations for the 
particular choice 

(46) 

leads to the form of F= F given in equation (28). Further, 
Ber(E~ ) calculated with the above value of F is indeed 

equal to E-1 (25). 
The last step is to calculate the invariant tensors (tor­

sion components) using the covariant derivatives already de­
fined. Our results agree with those ofref. 141 but we ought 
to point out the following. The quantity U (20)is an in­
variant of the group although there is no room for it among 
the torsion components. However, its covariant derivatives 
do appear as torsion COplponents, e. g., Tab b is expressed 
in terms of Da U; Taby, in terms of DDU, etc. So, the 
constraint (21) yields the vanishing of all those torsion 
components. In the framework of real superspace geometry U 
is not present. There, however, there is the constraint 

b b 
Tab = T ci b = O • 

which is equivalent to 

Da U • fi. U .. 0 a 
.;. 

(47) 

in our language. Equation (47) implies U=cons& which is essen­
tially the same as equation (21). This explains the agreement 
between the two approaches. 
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\ 

(superspin 0 on-shell and 1/2 off-shell) which interacts with 
U(l) supergravity. 

Consider the integral 
1 1 azL 

1
1 

== -- ( d 8zLlnF =- Jd8 z Ber(-) lnF 
K2 K2 ~ 

(A. I) 

taken over R 4,4 in the left-handed parametrization. According 
to equation (27') 

1 8 1 8 
81

1 
= -;2 fd ZL(L + R) = -;2 Jd zLR 

(A. 2) 

because L does not depend on ¢L.Further, going to the right­
handed parametrization we find 

'2 
1 8 1 4 2- a 

81
1

= -
2 

fd Za·U·R= - 2 fd xRd OR(-2 U)R, (A.3) 
K K a¢R 

because now R does not depend on ¢a· So, I 1 wi 11 be invariant 
if 

iJ2 
a¢2 u = o. (A.4) 

R 
This is a covariant (the l.h.s. of equation (A.4) transforms 
as a scalar with a chiral weight) constraint weaker than 
equation (21). Notice that the quantity 11 is not real since 
U is not I now. Furthermore, we can write down another non-
trivial complex invariant 

1 8 
1

2 
=- fd zLf(U), 

K2 
(A.5) 

where f(U) is any function of the scalar U. 
The constraint (A.4) can be solved in terms of component 

fields. The pseudoscalar field A. and the spinor e~ in equa­
tion (16) remain unrestricted; B =0 and {3~ is expressed in 
terms of e ~ and "'m~ from equation ( 13) ; finally, the vec­
tor vj.lli. and axial vector w ~(1. are constrained as follows 

.; 

m 

-2_A_ 
(1+iA)2 + 

m 
e aa 

1 + iA 

m mnpq a a "' a 
= € n pq 

. . 
. aa naa 

[~v+tw) +..!..a ( e )] 
(1 + iA) 2 . 2 n 1 + iA 

a am .. o. 
m 

(A.6) 

Here one has a complex, i.e., £WP real antisymmetric tensors 
a"pq /. apq • The fields A, e ~. e ~. i(apq- apq ) form a super­
spin 1/2 multiplet (off-shell). 

The invariant integral 1
1 

(A. I) gives rise to the following 
action (we consider the bosonic sector only): 
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1 4 -1 - m [ 1 1 :\ 8 1 = - J d x det ea -- R(eJ -
K2 2 (1-iA) 2 

3 -:----- -m - naa · · 
(1-iA)4(1+iA)2 6aa e amAanA·(A

2
+1-2iA) + 

+Sa*· A.aa aa 
3 

-2 

3 2-+ "~~"'(1-iA) a•. ;:; aa 

where 

(1+ 1A)4 - -aa 
(1-iA) aaa a + 

a"' aa + 3(1+ iA)2 a . a • aa ] 
aa ' 

- m 1 - cui -1/2 m e = "'lr (u ) (dete) e . , 
aa -aa m 

a = e a 
a ;:; a aa m 

-aa -aa A .. e m A
m i - n a' - ma/3 - f3a - -e . e .e + 

8 {3{3 n m 

i - n · + -e . a 
8 {3{3 n 

-m~ -af3 
e ·em 

Here R(~ is the usual gravitational Lagrangian, the ter 
am A a

9
A is the kinetic term for the pseudoscalar A a 

a•A 1s the U(1) covariant coupling of the notoph to tll 
U(l) gauge field. 

The second integral I~(A.5) for the particular choic 
f(U)=UP produces the act1on 

• 2p-2 
1 4 -1 - 1 (1 + iA) 

- ( d x det e . -p(p + 1) - x 
K2 . 2 (1-iA)2p+2 82 

em. enaO. a Aa A + (1 + iA) 2 (a-a•) • (a-a*)aci 
aa m n aa x[___! 

(1-iA)2 
This is an action for the notoph multiplet alone. Comb: 
the real parts of equations (A.7) and (A.8) one can fi1 
actions with correct relative sign.of the gravitationa: 
pseudoscalar kinetic terms. 

The fermionic part is just a combination of the Rar 
Schwinger action for 1/J m~ and the Dirac action fore~. I 

to the dual nature of the notoph am (spin I off-shell, 
on-shell)the notoph multiplet describes superspin 0 on· 
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(superspin 0 on-shell and I /2 off-shell) which interacts with 
U(l) supergravity. 

Consider the integral 

1 8 1 8 az L 
1

1 
=- ( d zLlnF =- Jd z Ber(-) lnF 

K2 K2 ~ 
(A. I) 

taken over R 4,4 in the left-handed parametrization. According 
to equation (27 1

) 

1 8 1 8 81
1 
=- (d zL(L + R) = - 2 (d zLR (A.2) 

K 2 K 

because L does not depend on iL.Further, going to the right­
handed parametrization we find 

.2 
1 8 1 4 2- a 

81 1 = -
2 

( d z R • U • R = - 2 ( d xRd OR ( --2 U) R , 
K K ~R 

(A.3) 

because now R does not depend on ¢R. So, I 1 will be invariant 
if 

a2 
a¢2 u = o. 

R 

(A.4) 

This is a covariant (the l.h.s. of equation (A.4) transforms 
as a scalar with a chiral weight) constraint weaker than 
equation (21). Notice that the quantity 11 is not real since 
U is not I now. Furthermore, we can write down another non­
trivial complex invariant 

12 = -
1

- fd
8zLf(U}, 

K2 

where f(U) is any function of the scalar U. 

(A.5) 

The constraint (A.4) can be solved in terms of component 
fields. The pseudoscalar field A and the spinor ~~ in equa­
tion (16) remain unrestricted; B =0 and {3~ is expressed in 
terms of 'IL and .pm~ from equation (13); finally, the vec­
tor vP.P. and axial vector w P.P. are constrained as follows 

m m 
e aa -2 A 

(l+iA)2 + 1 + iA 

m mnpq a a .. a ' 
= l n pq 

. 
. aa naa 

[ (v+Iw) +.!.a ( e )] 
(1 + iA) 2 . 2 n 1 + iA 

a am .. o. 
m 

(A.6) 

Here one has a complex, i.e., twp real antisymmetric tensors 
apq j, azq. The fields A, ,IL, '[l',i(apq-apq) form a super­
spin 1/2 multiplet (off-shell). 

The invariant integral 1
1 

(A.I) gives rise to the following 
action (we consider the bosonic sector only): 
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•· 

1 4 -1 - m [ 1 1 ::\ 8 1 = -fd xdet ea -- R(eJ-
IC2 2 (1-iA) 2 

3 - -m -naa · · 
(1-iA)4(1+iA)2 6aa e amAanA·(A

2
+1-2iA) + 

(A. 7) 

+ 8&*· ;.aa aa 
3 

2 
(1+ 1A)4 - . -aa 

a • a + 
(1-iA) aa 

3 (1 . )2 -+~ -1A a*. .:. aa 
a * aa + 3(1+ iA)2 a . a* aa ] 

aa ' 

where 

- m 1 - aa -1/2 m aa -aa m 
e = -

2 
(u ) ( det e) e . a = e a 

a a aa 

. 
-aa -aa 
A = e m 

m i - n · - ma/3 - (3a A - -e . a e .e + 
8 fJfJ n m 

i - n . 
+ -e . a 

8 fJfJ n 

-m~ -a/3 
e • e m 

m 

Here.R(~ is the usual gravitational Lagrangian, the term with 
am A a

9
A is the kinetic term for the pseudoscalar A and 

a*A 1s the U(1) covariant coupling of the notoph to the 
U(l) gauge field. 

The second integral I~(A.5) for the particular choice 
t(U) .. uP produces the act1on 

2p-2 
- 1- ( d 4 x det-1 e • ..!.p(p + 1) (l + iA) X 

K 2 . 2 (1-iA) 2p+2 
82 

x[-4 
(1-iA)2 

em,;naiza Aa A+ (1+iA) 2 (a-a*). (a-a*)ad] . 
aa m n aa 

(A.8) 

This is an action for the notoph multiplet alone. Combining 
the real parts of equations (A.7) and (A.8) one can find 
actions with correct relative sign.of the gravitational and 
pseudoscalar kinetic terms. 

The fermionic part is just a combination of the Rarita­
Schwinger action for 1{1 mp. and the Dirac action for~ I'. Owing 
to the dual nature of the notoph am (spin I off-shell, 0 
av.-shell)the notoph multiplet describes superspin 0 on-shell. 
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