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1. INTRODUCTION

The discovery that perturbation theory can be applied to
study exclusive high momentum transfer processes (see, e.g.,
refs./1=3/ and references therein) has been an important step
in the development of perturbative QCD. In particular, asymp-
totic freedom enables one to easily reproduce in the asympto-—
tic Q%> = region the well-known quark counting rules for elec-
tromagnetic form factors of hadrons/ 4/ However, for experimental-
1y accessible momentum transfers Q the agreement between exis-—
ting theory/1 3/and experimental data for pion form factor is
very poor (see, e.g., ref./%),

This observation, nevertheless, should not be treated as
an evidence against QCD itself because the perturbative QCD
approach/1-3/ is applicable only for asymptotically large Q2,
and the extrapolation of the asymptotic QCD formulas into the
region of moderately large Q%s not justified. For pion, e.g.,
the main 1/Q2 —contribution in the region Q2+ is due to the
hard rescattering (one-gluon exchange) subprocess (fig.la).
However, a stralghtforward use of the asymptotic formalism
in the Q2510 Gev? region leads to the conclusion that the me-
an virtuality of the gluon (fig.la) is much smaller than
1 GeV2/6/.In such a situation it is, of course, misleading to
rely on asymptotic freedom. According to the standard forma-
1ism/1- 3/the gluon line corresponding to virtuality smaller
than someA? ~1 GeV? should be absorbed by the soft pion wave
function. The resulting diagram looks like that shown in
fig.1b. In the asymptotic ana1y51s/ —34his diagram is simply
1gnored because the upper estimate for its large - Q2 behaviour
is only 1/Q4/Y However, a complete evaluation of its contri-
bution within the perturbative QCD approach is impossible, sin-
ce the region of small quark virtualities is dominated
by nonperturbative effects. Earlier one of the authors (A.R.)
attempted to take these effects into account within the fra-
mework of a QCD inspired model/7/.In the present letter we
outline a new approach* to exlusive processes in QCD that has

*In the course of our investigations we have learned that
a similar approach was independently proposed by B.L.Ioffe
and A.V.Smilga.
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Fig.1.
factor in QCD:
b) Lowest-order diagram of the QCD sum rule approach;

c) One of 2-loop diagrams of the QCD sum rule approach.

Diagrams relevant to calculation of the pion form
a) Asymptotic perturbative QCD diagram;

much wider applicability than the asymptotic analysisfl_&@he
basic idea of the approach is the duality between quarks and
hadrons: we show, in particular, that one can obtain the pion
form factor by calculating the quark diagrams (the lowest-
order ones are shown in figs. lb,c) with local quark "pion"
vertices and averaging the result over the appropriate duality
interval.

2. DERIVATION OF SUM RULES

Technically, our analysis is based on the 'QCD sum rule
approach/a/that has proved to be a very effective tool for
studying the "static" properties of hadrons, such as masses,
leptonic widths, etc. To analyse the pion form factor, we con-—
sider the three- polnt amplitude

'Iimﬁ(pl’pz) -2 —ipy x+ipgy <0|T{J+(x)J (O)Jéy)§|0>d xddy 4D

(for notation see fig.1b), where J;,is the electromagnetic
current and j, -d)% Vg U Is 'the axial current: The latter sa-
tisfies the necessary condition that it should have nonzero
projection onto the pion state [P>

<0 |"jo 0)| P> if, P, . (@)

where f; =133 MeV is the pion decay corstant. In principle,
one may use also a pseudoscalar'comblnatlon dystl In this
case, however, there appear serious complications due to di-
rect interactions of quarks with instantons /9" m/, such inte-
ractions being absent for the axial current. '

The amplltude ql (plp 2) is the sum of various struc-
tures, and the correspondlng invariant amplitudes T; depend on
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3 variables: p%,p;, q2=(p]—p2 )2, Owing to asymptotic free-
dom, one may calculate T, (plz,pzz,q2) in the deep Eucliden re-
gion p2, pg , g2 < =A% ~~1 GeV2.To extract the desired in-
formation about the form factors of physical states, we use
the double dispersion relation
e e o 2
T, 0202,q?) = L [as, [ as, Lil5150 1)

i (pl Py.q ) Py Of 1£ 2('51_5?7('52"1);)‘# e
The terms not written explicitly in eq. (2) are polynomials
in pl“Z and/or p22 -They disappear after one applies to eq. (3)
the Borel procedureB12

. CHIPIC £
Byp=lim  lim | (3"t 4y
npoe  my-doo (nl——l)! (n2-—1)! dp12 dp22

(3)

nl n2

pzsnlM%(?)
. L . . . py=ngM2
which is a straightforward generalization of that usdd in

ref./8/ Applying By, to eq. (3) gives

, 2 M2 @2y, 1 Tos;Tdsy S1_ 8o
¢; (MM, , Q%) - 775({'1\71%—5 -M*g- Py (5y 48,7 )exple I 22} (5)
where C,}Q.g..q2 and @; =By5T;

The pion contribution into the spectral density is propor-
tional to

<01 iglpy><py |7, [py><py | 1] 0>~

(6)
~ [2F, (@) 1% pR ok +p )
and the first idea is to extract from Tyap the structure
p‘lz pﬂ?(p“l + p’; ). However, there exist afso other structures
(®Bpe ,pB pa, pBpa) that coincide with p2pB for = 0.This
co’mpl?icatilon ldisa;%pears if all the basic stfuctures are ex-—
panded in P =P1+Py and q=py~p;.Then the relevant structure
is P, P Pli and the simplest way to extract the corresponding
invariant amplitude (hereafter referred to as T) is to mul-
tiply T,p, by n*nBnk , where n is a light-like vector ortho-
gonal to = q (n2=0, (ng =0, (nP)+/0).

The calculation of ®= BT is most simply performed by the
Feynman parametrization or its exponential version ("a —repre~-
sentation", see e.g., ref.”!V ). Then it is straightforward
to obtain the contribution of the diagram lb:

{1b) 1 2
@ M MEEY .l i exp | o 28 —— laxx (7)
202 (M2 4M2) (1-) MZM2)
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The x-variable may be interpreted as the fraction of the to-
tal pion momentum carried by the passive quark in the infini-
te momentum frame. Note, that for massless quarks ¢f(lbly /g4
as Q%+« ,in agreement with the general analysis described
in refs/ 1%, 1 what follows, we neglect m,my~ 10 MeV <<A,
Notice further that eq. (5) is the (double) Laplace trans—
formation in1/M{ .Applying the inverse transformation to eq.
(7) gives the free-quark spectral function :
22 2 2
o (105,07 = 28307, 80 L3 ! '.
2 dq 3 dQ Vs +5,+@%) Ty s,
In the real world p('sl,'s2,q2) differs, of course, from Po ('sl,
S9, q% ). The difference is most pronounced for small S1.8,.
In particular, p('Sl,‘Sz, q?2) contains the pion term
P (5158 5,0%) = r? £ F (@ 8(s L -m2) 8 (sy-m?). (9)
Furthermore, p (54,54, q?) vanishes below the 87 -threshold
(i.e., in the region m2_§('s1,'sz).< 9m 2 ), and only in the re-
gion, where both s, andﬂs2 are suffigiently large, p is close
to p, . This means that ¢ (M12,M22,Q 2) also differgs from the
free-quark value (7). As it was argued in ref.’% nonperturba-

tive corrections (1/M2)N are much more important than the
perturbative ones*. Taking into account the contributions pro-

(8)

- 2
portional to (as/n) ,<G:V Ga > and a, <qq> (cf. /8/ )} and

my
using eqs. (5), (9), we arrive at the following representation
for the pion form factor

s s
2 2 1 0 0 . ) 2 'Sl+'S2
£ F_(Q ) = {)dsl{) dsg po(sy/s9a ) ex (- Mz b
a a -2 2 (]O)
127 M2 81M4 11 M2

~A (s, M%8% 0 A M) 40 (ag(sp) /7)),

*To treat initial and final states on equal footing and
to simplify the calculation, we take henceforth Mi=M, =M.



2 2 2 . .
where A (5,M7,Q")= B M .QQ) ~By{sg.,M 2 , Q2 ) is the dif-
ference between the "true" background contribution B (MZ2,Q 2)

o0 oo S48
B (Mz,QZ) =._1.§= [ dsyf ds, p('sl,'SZ,qz) exp{— -—Ltz-—z } (an
mzu({sl,sz}>9m2 M
w
and its free—quark analogue B0 ('sO.MZ,Q 2)
92 92 1 Rad ' 2 Sy 4+'S
By (s4,M7,Q7) = — Jdsq fdsy py(sy/84.q ) expi- --1~M-§--‘-2} . (12)

maxfsl,szl > sg

3. QUARK-HADRON DUALITY

To get rid of power corrections in eq. (10), one should
take M“=w Furthermore, for any fixed Q2= Q02 the A -term can be
also eliminated by an appropriate choice of the 'so-parameter.

As a result, one obtains the following representation for F_(Qp):

9 50 50
ann(on) = ‘“}T"z' (.)f dslé a5y po(s1,59, 4 = - 5)
that 1is nothing else but a (generalized) finite-energy sum
rule (FESR, cf. /13-15/ ) or a duality relatién between the
resonance (pion) and free-quark contributions. The functions
Pum (51285, a%) and pg (s155,9%) are quite different but
if one averages them over the relevant duality interval, the
result is the same in both cases. The parameter.s, can be in-
terpreted then as the boundary between the pion duality
interval and the next one related to the Arresonance. In
. . T ; p)

such an interpretation 'Sy is the same number (for all @ values)
at the midpoint of the interval between mfl_:O and m2A ~1.2 GeV 2,
This gives the estimate sy =0.6 Gev2/15/, 1

Within the QCD sum rule approach 8/'80 is not a free para-
meter. Rather, it is determined by the magnitude of the quark
and gluon condensates < qqg> and <GG>*. To extract 'Sp ‘from the
sum rule (10), we analysed the MZ—dependence of its r.h.s.
for a chosen @y value and various sy —values (taking A(‘SO,MZ,
Q%)= 0 ,as argued above). It is easy to establish (see fig.2)
that for sufficiently large M? our theoretical "prediction"
for F, (Q2) has a very weak dependence on the auxiliary

(13)

3 - a a
*In numerical estimates we use the values (ag/n) <GILVG

>=
=0.012 GeV* and a,<qq>2 =1.83-10"* GeV® taken from ref./9/.
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Fig.2. Typical dependence of

& b) FT,(QO2 =2 GeV?) on the auxilia-
%02. ry parameter M% a) 80 =0.7 GeV 2
& )

Q a b) 50 =0.8 GeV2; c)sy=0.6, GeV2,
1 C

< 01l ’

- ("unphysical", cf./16/ ) parame-
u_‘: ter M2,but the onset of the

asymptotic regime strongly de-
pendg on 8y . The "true" value
2 2 of M“is evidently that for

M*(GeV?) which the regionh of weak sen-
sitivity téo variations of M2 is the largest one. For Q02=1,2
and 3 GeV” this criterion gives the same value 's; =0.7 GeVZ,
Furthermore, to check the self-consistency of the whole ap-
proach, we estimated the 'sy —parameter also from the analysis
of the two-point amplitude/4/related to <T (ij:l')> and ob-
tained the same result'sg=0.7 GeVZ The accuracy of the method,
however, should not be overestimated: it is not better than
10-207%.

4. DISCUSSION OF RESULTS

Using the explicit form of eaq. (8), one can reduce eq.

(13) to
So 1 1+6$0/Q2 ’
arire (1+4s9 /Q2)372
Another formula can be obtained, if one substitutes the in-
tegration over the square (0.< $1 5803 0< sy <55) in_eq. (13)
by integration over the triangle (0 <8148, < § ==\/’2'so Jof
equivalent area. This gives
(TR)
Fa @? - 2¢2 SO2 2
8r fa(1+Q%/25))
However arbitrary this substitution may seem, for Q? 20.2 GeV?
eq. (15) reproduces eq. (14) with better than 10% accuracy.
So, eq. (15) is very convenient for a quick estimation of
eq. (14) predictions.
Before comparing eq. (14) with experimental data, we want
to stress that our analysis is reliable only in the @2>1 GeV?2

F, (@) = ' (14)

(15)

*This amplitude was analysed first by SVZ in ref. 8/ using
a slightly different method. In their fits SVZ used s, =
=0.75 GeVZ



10 Fig.3. Comparison between ex-
perimental data (taken from

0.8 ref./17/ ) and our theoretical
predictions based on eq. (10):
M?a0 (s0lid line);M2=1.8 GeV?2
06 (broken line).
«
a region where the asymptotic
‘;; freedom guarantees the absence
L. of large corrections (of, say,
02 1/Q2 type). One should also
remember that there exists so-
me freedom in choosing 'sg: 'sy=
0 \ . . = 0.7+0.1 GeV?2. Qur curve cor-
responding to eq. (l14) for
0 0 %‘0 320 40 '$0=0.7 GeV?2 is shown in fig.3
’ . Q (GeV ) (solid line). In the region
Q“>1 GeV” it is in excellent agreement with the existing da-

ta/ 17/,

It is also interesting to analyse the predictions for
F”(szesulting from the basic sum rule (10) for finite M2.
As argued in ref/8/, one should choose M2so0 as to reduce to
30% both the power corrections (that blow up as M250) and
the background contribution B(M?,Q2)) (that grows as M24w),
For two-point functions considered by svz/8/ such a compromise
is really possible for M2='sg.Alas, this strategy fails for
eq. (10): to reduce the power corrections to 30% at the refe-
rence momentum Q§==2 GeV? one should choose M2 in the region
M2>1.8 GeV2, where BM2,Q2) yields more than 70% compared to
the total sum. Moreover, since the first term in the r.h.s.
of eq. (10) rapidly diminishes with growing Q2the power cor-
rections (that are almost constant for(lzg6 GeVQ) exceed the
30% boundary just above the reference point. If one takes
M2%=1.8 GeV2,the power corrections reach 100% for Q2=6 GeV2
This means that for sufficiently large G@2one looses the con-
trol over the 1/M2Z-expansion. There exists a simple expla-
nation(?g this phenomenon. Note, that the main contribution
into ® (eq. (7)) for large Q2gives the region x~M2 /Q2,
where the passive quark has the virtuality k*~M*/Q2.Thus, the
region ng M4*/m2is in fact beyond the scope of the asympto-
tic freedom. Of é%urse, takingM?2 sufficiently large, one can
control the power corrections for arbitrarily high Q2 values.
The most radical way out is to take MZ2w=e.Then the power cor-
rections are absent altogether. However, this is achieved
at the price of the (infinite) growth of the B(M2,Q2)—term.
Still, it is the difference A =B-Bpthat matters. As argued

8

o sy 2

above, the choice M=« reduces the wholeM2~busyness to fin-
ding the appropriate "effective threshold'sg.It is worth no-
ting also that the finite- M2results for F”(Q2) in the Q2
region where power corrections are under control, do agree
with theMzsu»result, eq. (14) (see fig.3).

5. CONCLUDING REMARKS

Thus, the one-gluon-exchange contribution for available
Q2is of litte importance. However, the situation changes
drastically in the asymptotic Q2»u:region, because fig. lc
gives in this region 1/Q2-contribution (corresponding to
quark counting rules 4 and asymptotic QCD analysis/1=3/) whe~
reas eq. (14) behaves :asymptotically as 1/Q4Thus, extrapola-
ting the asymptotic QCD formulas’/ 1% into the region of mo-
derately large Q2one should not expect for a good description
of experimental data, and vice versa: good fits of existing
data extrapolated into the large-QZ2region may be irrelevant
to the "true" asymptotic behaviour of F,(Q2)In particular, as
highly encouraging we consider the result obtained by Dubnicka,
Dubnickova and MeshcheryakOV'/IBZAnalysing all data on Fn(Qz)
(both in spacelike and timelike regions) and taking properly -
into account the analytic properties of F"(Qz)xhey obtained
as a best fit the curve that behaves just like 1/Q%* in the
asymptcotic region.
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Hecrepenko B.A., Pamomkux A.B. paruiia cyMM E2-82-204
1 bopMbakTop NHMOHA B KBAHTOBOI XPOMOJIHHAMHKE

HanmaraeTcs nopgxold K HMCCIeJOBAHHK 3JIEKTDOMATHHUTHOTO GOpM—
daxTOpa NMUOHA B KBAHTOBON XPOMOIWHEMHKe, OCHOBAHHBII Ha HCIIONb—
30Baduu npasun cymm B KXII. JlonmyueHHas TeoperudyecKasi KpuBas OJIs
Fn(Qz)HaxonHTCH B XOpolleM COIJIaCHH C HMEWNHMHCS 3KCIEeDUMEeHTAalb~
HBIMH [1aHHBIMH,

PaGora BemomnHeHa B JlaGopaTopun TeoperHuecKoi dusuxu OUAH.
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Nesterenko V.A., Radyushkin A.V. Sum Rules E2-82-204
and Pion Form Factor in QCD

We propose an approach to the investigation of the pion
electromagnetic form factor in QCD based on the systematic use
of the QCD sum rule technique. The theoretical curve obtained
for Fﬂ(QZ)is in good agreement with existing experimental data.

The investigation has been performed at the Laboratory of
the Theoretical Physics, JINR,
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