

сообщения объединенного
 института
 ядерных исследований
 дубна

$2672 / 82$

$7 / 6-82$

E2-82-195

V.M.Dubovik, S.V.Zenkin*

AN INSIGHT INTO THE PARITY
 VIOLATION

AT π NN VERTEX

[^0]In this paper we consider the parity violating (PV) $\pi N N v e r-$ tex parametrized in the usual way

$$
\begin{equation*}
\left\langle\pi^{-} \mathrm{p}\right| \mathcal{H}^{\mathrm{PV}}|\mathrm{n}\rangle=\mathrm{iGm}_{\pi}^{2} \mathrm{~A}_{\pi} \phi_{\pi} \overline{\mathrm{u}}_{\mathrm{p}} \mathrm{u}_{\mathrm{n}}, \tag{1}
\end{equation*}
$$

where $\mathcal{H}^{P V}$ is the effective Hamiltonian of the PV hadron-hadron interactions. Interest in the constant A_{π} stems from the fact that it determines the long-range ($\mathrm{r} \sim 1.4 \mathrm{fm}$) part of the PVNN potential with $\Delta I=1$. These properties enable A_{π} to be separated, for instance, from the experiments on observation of $P V$ in the electromagnetic nuclear transitions. Taking into account the theoretical uncertainties while extracting from experiments, the value of $A_{\pi}^{\exp }$ is in the interval (1.5, 2.5) $1 /$.

The theoretical evaluation of A_{π} is difficult because the Hamiltonian $\mathcal{H}^{P V}$ is formulated in terms of the quark operators. For the local hamiltonian $\mathcal{H P V}^{\mathrm{PV}}$ the structure of the vertex (1) is shown in the figure. Two different methods are usually used to calculate A_{π}. The first one is based on the PCAC and $\operatorname{SU}(3)^{/ 2 /}$ and expresses a part of the amplitude (1), defined by the equal time commutator (ETC) in the standard technique of soft pions, $A_{\pi}^{E T C}$, through the ETC-parts of s-wave amplitudes of the decays $\Lambda^{\circ} \rightarrow \pi^{-} p$ and $\exists \exists^{-} \Lambda^{\circ}$ with $\Delta S=1$. However, this method can be applied just to the part $H_{\Delta \mathrm{PV}=0}^{\mathrm{PV}}$, which has the $\operatorname{SU}(3)$ partner in $H_{\Delta S=1}^{\mathrm{PV}}$. According to the estimates of ref. ${ }^{\prime 3 /} \mathrm{A}_{\pi}^{\mathrm{ETC}} \approx 1$.

The second method ${ }^{/ 4,3 /}$ allows one to calculate the part of the amplitude (1) which corresponds to the factorizing (F) diagrams (d) of the figure, A_{π}^{F}. The method assumes factorization $\cap f$

Quark structure of the $P V \pi N N$ vertex (1). The circle denotes the effective hamiltonian $\mathcal{H}^{P V}$; (a)-(c) are nonfactoriting (NF) and (d) factorizing (F) diagrams.

the amplitude (1) and applicability of free equations of motion to the quark fields. As a result, in A_{π}^{F} there appears a factor $\mathrm{f}_{\pi} /\left(\mathrm{m}_{\mathrm{u}}+\mathrm{m}_{\mathrm{d}}\right)$ which amounts to ~ 10, if one uses the parameters of the chiral symmetry breaking $\mathrm{m}_{\mathrm{u}}+\mathrm{m}_{\mathrm{d}} \sim 10 \mathrm{MeV}^{15 /}$ as quark masses. The obtained value of $\mathbb{A}_{\pi}^{\mathrm{F}}$ is in the interval (1.5, $3.5)^{\prime 3 /}$ and may pretend to the explanation of $A_{\pi}^{\exp }$.

However, these methods of calculation of A_{π}^{π} have the following unclear points:
i) interpretation of $A_{\pi}^{\text {ETC }}$ in terms of the diagrams of the figure; calculation of $A^{E T C}$ for the total hamiltonian $\mathcal{H}^{P V}$ in the standard electroweak model $\operatorname{SU}(2)_{\mathrm{L}} \otimes \mathrm{U}(1)$ (SEWM);
iii) dependence of the observable A_{π} on the nonobservable points. parameters m_{v} and m_{d}. We now proceed to consider these
I. Using PCAC, within the field-theoretical approach ${ }^{/ 6 /}$ one can show that the ETC--part of the amplitude (1) describes the nonfactorizing (NF) diagrams (a), (b) of the figure with $\mathrm{k}_{\pi} \rightarrow 0$, whereas the NF diagram (c) vanishes in this limit. Thus, $A_{\pi}^{\pi} * A_{\pi}^{N F}+A_{\pi}^{F}$, where $A^{N F} A^{E T C}$, The same can be referred to any amplitude $\left.<\pi \mathrm{B}^{\prime}\left|\mathcal{H}^{\mathrm{PV}}\right| \mathrm{B}\right\rangle$; in particular to $\mathrm{A}\left(\Lambda_{-}^{\circ}\right)$ and $\mathrm{A}\left(\Xi_{-}^{-}\right)$. This conclusion justifies the arguments of papers. 17,8 , and is proved in the Appendix.

$$
\text { II. From point } I \text { and ref:/2/ it follows that if the effec- }
$$ tive hamiltonian $\mathcal{H} \mathrm{PV}$ can be represented as

$$
\begin{equation*}
\mathcal{H}^{\mathrm{PV}}=c_{\Delta S=1} \mathcal{O}_{\Delta \mathrm{S}=1, \Delta \mathrm{I}=1 / 2^{+}}^{8} \quad{ }^{c} \Delta \mathrm{~S}=0=0 \mathcal{O}_{\Delta S=0, \Delta \mathrm{I}=1}^{8} \quad, \mathcal{O}_{\mathrm{k}}^{8} \in 8, \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
A_{\pi}^{N F}=-\sqrt{\frac{2}{3}} c^{c}{ }^{c}{ }_{\Delta S=0}\left[2 A^{N F}\left(\Lambda^{\circ}\right)-A^{N F}\left(E_{-}\right)\right], \tag{3}
\end{equation*}
$$

where

$$
A^{N F}(H)=A^{e x p}(H)-A^{F}(H)
$$

Let us now show that owing to the penguin contributions/4/ to the effective hamiltonian $\mathcal{H}^{\mathrm{PV}}$ in the SEWM\&QCD, the matrix elements $\left.<\pi \mathrm{B}^{\prime}\left|\mathcal{H}^{\mathrm{PV}}\right| \mathrm{B}\right\rangle^{\mathrm{NF}}$ in the valence quark approximation satisfy condition (2). In the SEWM\&QCD in part of $\mathcal{H}^{P V}$ under consideration has the form $/ 4,3 /$

$$
\begin{equation*}
\mathcal{H}^{\mathrm{PV}}=\sqrt{2} \mathrm{G} \sum_{\mathrm{k}}\left(\mathrm{c}^{27} \mathcal{O}^{27}+\mathrm{c}^{\mathrm{S}} \mathcal{O}^{\mathrm{S}}+\mathrm{c}^{\mathrm{A}} \mathcal{O}^{\mathrm{A}}+\mathrm{c}^{6} \mathcal{O}^{6}+\ldots \mathrm{c}^{5} \mathcal{O}^{5}\right)_{k} . \tag{4}
\end{equation*}
$$

Here k takes two values $k=(\Delta S=1)$ and $k=(\Delta S=0, \Delta I=1) ; c^{r}$ are the numerical coefficients, depending on the structure of weak and quark-gluon interactions; \mathcal{O}^{r} are the local operators:
$\{\underline{27}\}: \quad \mathcal{O}_{\Delta s=1}^{27}=\bar{d} d \bar{d} s+\bar{s} s \bar{d} s+\bar{d} s \bar{d} d+\bar{d} s \bar{s} s-2(\bar{d} u \bar{u} s+\bar{d} s \bar{u} u+$ $+\bar{u} s \bar{d} u+\bar{u} u \bar{d} s)+h . c ., \quad ;$

$$
\begin{aligned}
& \Theta_{\Delta s=0,}^{27} \Delta_{I=1}= \frac{1}{2}(\bar{u} u \bar{u} u-\bar{d} d \bar{d} d-\bar{u} u \bar{s} s-\bar{s} s \bar{u} u+\bar{d} d \bar{s} s+\bar{s} s \bar{d} d)- \\
&-\bar{u} s \bar{s} u \\
&+\bar{d} s \bar{s} d+h . c .
\end{aligned}
$$

$\{8\}$

$$
\left[\begin{array}{l}
\mathcal{O}^{S} \\
\mathcal{O}^{A} \\
\mathcal{O}^{6} \\
\mathcal{O}^{5}
\end{array}\right]_{k}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 1 & -1 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
\mathcal{O}\left(\Lambda_{k}, 1\right) \\
\mathcal{O}^{c}\left(\Lambda_{k}, 1\right) \\
\mathcal{O}\left(1, \Lambda_{k}\right) \\
\mathcal{O}^{c}\left(1, \Lambda_{k}\right)
\end{array}\right]
$$

where

$$
\begin{aligned}
& \bar{q}_{1} q_{2} \bar{q}_{3} q_{4}=: \bar{q}_{1 i} \gamma_{\mu} \gamma_{5} q_{2 i} \bar{q}_{3 j} \gamma^{\mu} q_{4 j}:, \quad \mathcal{O}(\mathrm{A}, \mathrm{~B})= \\
& =: \bar{q}_{i} \gamma_{\mu} \gamma_{5} A q_{i} \bar{q}_{j} \gamma^{\mu} B q_{j}: \quad \quad \mathcal{O}^{c}(\mathrm{~A}, \mathrm{~B})=: \bar{q}_{i} \gamma_{\mu} \gamma_{5} A q_{j} \bar{q}_{j} \gamma^{\mu} B q_{i}:,
\end{aligned}
$$

the summation is assumed over the colour indices i and $; \Lambda_{k}=\lambda_{6}$ at $\mathrm{k}=(\Delta \mathrm{S}=1)$ and $\Lambda_{\mathrm{k}}=1 / 2 \lambda_{\mathrm{s}}$ at $\mathrm{k}=(\Delta \mathrm{S}=0, \Delta \mathrm{I}=1)$. The $\mathrm{SU}(3)$ properties of the operators are denoted in the braces. The typical values of the coefficients c^{r} are given in the table. We should like to recall that without the penguin contributions $\mathrm{c} \delta_{s=1}=$ $=\mathrm{c}_{\Delta \mathrm{S}=\overline{\mathrm{F}}}^{\delta} 0$. Therefore, thanks to penguins each operator $\mathcal{O}_{\Delta \mathrm{S}=0, \Delta \mathrm{I}=1}$ in (4) acquires the $\operatorname{SU}(3)$ partner $\mathcal{O}_{\Delta \mathrm{s}=1}^{r}$!

Table

Numerical values of the coefficient functions c^{r} a $\sin \theta_{\mathrm{C}}=0.23, \sin ^{2} \theta_{\mathrm{W}}=0.23, \alpha_{\mathrm{s}}\left(\mathrm{m}_{\mathrm{c}}\right) / a_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{W}}\right)=2.45$, $a_{\mathrm{s}}\left(\mathrm{R}_{\mathrm{c}}^{-1}\right) / a_{\mathrm{s}}\left(\mathrm{m}_{\mathrm{c}}\right)=3.71^{19 \%}$.

$\Delta \mathrm{S}$	c^{27}	c^{S}	c^{A}	c^{6}	c^{5}
1	-0.014	0.0049	0.15	0.0020	-0.012
0	0.029	-0.027	0.46	-0.029	-0.081

In the valence quark approximation for the matrix elements $\left.<\pi \mathrm{B}^{\circ}\left|\mathcal{O}^{\mathrm{r}}\right| \mathrm{B}\right\rangle^{\mathrm{NF}}$ the following relations hold:

$$
\left\langle\pi \mathrm{B}^{\prime}\right| \mathcal{O}^{27 .}|\mathrm{B}\rangle^{N F}=\left\langle\pi \mathrm{B}^{\prime}\right| \mathcal{O}^{S}|\mathrm{~B}\rangle^{N F}=0, \text { and }\left\langle\pi \mathrm{B}^{\prime}\right| \mathcal{O}^{5}|\mathrm{~B}\rangle^{\mathrm{NF}}=-\left\langle\pi \mathrm{B}^{\prime}\right| \mathcal{O}^{6}|\mathrm{~B}\rangle^{\mathrm{NF}}
$$

owing to antisymmetry of the quark wave functions in baryons;
 rators, and consequently, $\mathcal{O}_{\Delta}^{A}=1$ does not contribute to the right-hand side of relation $(\overline{3})$.

Thus, we have shown that the sum rule (3) can be applied to the total effective hamiltonian (4) with

$$
\begin{equation*}
\frac{{ }^{c} \Delta S=0}{c_{\Delta S=1}}=\frac{\left(c^{6}-c^{5}\right) \Delta S=0}{\left(c^{6}-c^{5}\right) \Delta S=1} \tag{5}
\end{equation*}
$$

III. Finally, we consider the factorizing parts of the amplitudes

$$
\begin{aligned}
& A_{\pi}^{F}=-\frac{4}{3}\left(c^{6}+3 c^{5}\right) \Delta S=0 \frac{f_{\pi}}{m_{u}+m_{d}} \cdot \eta_{n},
\end{aligned}
$$

$$
\begin{align*}
& +\frac{4}{3}\left(\mathrm{c}^{6}+3 \mathrm{c}^{5}\right) \mathrm{Ds}=1^{\mathrm{f}_{\pi}} \mathrm{m}_{\mathrm{u}}+\mathrm{m}_{\mathrm{d}}\binom{\eta_{\Lambda}}{\eta_{\Xi}} . \tag{6}
\end{align*}
$$

Here, we choose the value $\eta_{\mathrm{n}}=\langle\mathrm{p}| \overline{\mathrm{u}} \mathrm{d}|\mathrm{n}\rangle \approx 0.5, \eta_{\Lambda}=\langle\mathrm{p}| \overline{\mathrm{u}} \mathrm{s}\left|\Lambda^{\circ}\right\rangle \approx 0.6$, $\eta_{\Xi}=\left\langle\Lambda^{\circ}\right| \mathrm{us} \mid \Xi^{-}>\approx 0.6$ (that is in agreement within the factor 2 with other estimates $/ 4,3 /$), and concentrate our attention on the factor $\mathrm{f}_{\pi} /\left(\mathrm{m}_{\mathrm{u}}+\mathrm{m}_{\mathrm{d}}\right)$. This factor appears in the calculation of the matrix element $\left\langle\pi^{-}\right| \overline{\mathrm{d}} \gamma_{5} \mathbf{u}|0\rangle$. using the free equations of motion $\left(i \gamma^{\mu} \partial_{\mu}-m_{q}\right) \mathbf{q}=0, \quad \mathbf{q}=\mathbf{u}, \mathrm{d}$ and the assumption that the form of these equations does not change in the presence of strong interactions ${ }^{\prime 4 /}$. There arises a question: "What meaning should be attributed to the masses m_{q} ?"

If the quarks were really free, the use of current masses $\mathrm{m}_{\mathrm{q}}^{\circ} \sim 5 \mathrm{MeV}$ would be justified. The situation is different when the quarks are confined. In this case the role of m_{q} is played by the effective mass $\mathrm{m}_{\mathrm{q}}^{*}$, which bears the information on the quark confinement ${ }^{111 /}$. The mass $\mathrm{m}_{\mathrm{q}}^{*}$ is not a universal characteristic of the quark q and depends on the problem under consideration. At that $\mathrm{m}_{\mathrm{q}}^{*} \sim \mathrm{R}_{\mathrm{c}}^{-1}$, where R_{c} is the radius of confinement, which is characteristic of this problem. Here are two examples of calculation of $\mathrm{m}_{\mathrm{q}}^{*}$ in the simplest version of the MIT bag with $\mathrm{m}_{\mathrm{q}}^{\circ}=0^{112 /}$

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{q}}^{*}=-\frac{\mathrm{i}}{2} \partial^{\mu}\left\langle\pi^{-}\right| \mathrm{d} \gamma_{\mu} \gamma_{5} \mathrm{u}\left|0>/<\pi^{-}\right| \mathrm{d} \gamma_{5} \mathrm{u}|0\rangle=\frac{2 \omega}{3(\omega-1)} \cdot \mathrm{R}_{\pi}^{-1}, \\
& \left.\underset{\mathrm{q}}{\mathrm{~m}_{=}-\frac{\dot{1}}{2}} \dot{\partial}^{\mu}\langle\mathrm{p}| \overline{\mathrm{u}}^{\prime} \gamma_{\mu} \gamma_{5} \mathrm{~d}|\dot{\mathrm{n}}>/<\mathrm{p}| \overline{\mathrm{u}}_{\gamma_{5}} \mathrm{~d} \right\rvert\, \dot{\mathrm{n}}>=\frac{2 \omega^{2}}{4 \omega-3}-\mathrm{R}_{\mathrm{N}}^{-1},
\end{aligned}
$$

where $\omega=2.04$. : We note that in both the cases the coefficients at R_{c}^{-1} do not differ strongly from unity. Hence, it follows that for the calculation of A^{F}, in (6) it is reasonable to choose $\mathrm{m}_{\mathrm{d}}^{*}=\mathrm{m}_{\mathrm{d}}^{*} \approx 200 \mathrm{MeV}$ that corresponds to $\mathrm{R}_{\mathrm{c}}=1 \mathrm{fm}$. In this case $f_{\pi} /\left(m_{u}+m_{d}\right)=1 / 2 f_{\pi} R_{c}=0.23$ and A_{π}^{F} practically vanishes.

Now we can calculate the amplitude A_{π} : Substituting the values of c^{r} from the table into formulae (6), (5) and (3), we get

$$
\mathrm{A}_{\pi}=\mathrm{A}_{\pi}^{\mathrm{NF}}+\mathrm{A}_{\pi}^{\mathrm{F}} \approx \mathrm{~A}_{\pi}^{\mathrm{NF}} \approx 3.5
$$

The obtained A_{π} is $1.5-2$ times as large as the average value of $A_{\pi}^{\text {exp }} / 88 /$, that is, in our opinion, due to the approximations $/ \cdot 4,9 /$ which have been adopted in the calculation of the coefficient functions c^{r} of the effective hamiltonian $\mathcal{H}^{\mathrm{PV}}$. The coefficients $c \delta_{S=1}$ and $c \Delta S=1$, which are determined by the behaviour of the $Q C D$ running constant $a_{s}(\mu)$ at $\mu \leqslant m_{c}\left(m_{c}\right.$ is the mass of c -quark), are especially sensitive to such approximations. Thus, the amplitude A_{π} may serve as a "touchstone" for the study of the quark-gluon interactions at large distances.

ACKNOWLEDGEMENT

We would like to thank S.B.Gerasimov, A.B.Govorkov and V.M.Lobashov for useful discussions.

APPENDIX

Here we give the field-theoretical description of the amplitude $<{ }_{\pi} B^{\prime} \mid \mathcal{H}^{P} Y_{B}>$ (part A) and show that the ETC-part of this amplitude corresponds to the diagrams (a) and (b) of the figure with $k_{\pi} \rightarrow 0$ (part B).
A. We write down the effective hamiltonian $\mathcal{H}^{P V}$ in the form

$$
\mathcal{H}^{\mathrm{rm}}=\sqrt{2} \bar{G}_{\mathrm{M}, \mathrm{~N}} \mathrm{c}^{\mathrm{MN}} \mathcal{O}^{\mathrm{MN}},
$$

where $\mathcal{O}^{M N}=: \bar{q} M q \bar{q} N q:, M$ and N are the matrices in the (spinor) \otimes (flavour) \otimes (colour) space, and consider the matrix elements $\left.\mathbb{Q}=\ll n^{\prime} \cdot\left|\mathcal{O}^{\mathrm{MN}}\right| \mathrm{B}\right\rangle$: Using the reduction formula and PCAC, we get

$$
\begin{align*}
& \left.\mathbb{Q}=\frac{i\left(-k_{\pi}^{2}+m_{\pi}^{2}\right)}{f_{\pi} m_{\pi}^{2}} \int \mathrm{~d}^{4} x e^{i k^{x}}<B^{\prime} \right\rvert\, \dot{\partial}^{\mu} T\left(: \bar{q}(x) P_{\mu} q(x):, \otimes \mathcal{O}^{M N}(0)\right)- \\
& -\delta\left(x^{\circ}\right)\left[: \bar{q}(x) P_{0} q(x):, \mathcal{O}^{M N}(0)\right]|B\rangle, \tag{A1}
\end{align*}
$$

where $\mathrm{P}_{\mu}=y_{\mu} \gamma_{5} \frac{\lambda}{2}, \lambda$ is the matrix defining the pion isotopic properties.

Expand the T -product and commutator in (AI) according to the Wick theorem

$$
\begin{align*}
& \partial^{\mu_{\mathrm{T}}\left(: \overline{\mathrm{q}}(\mathrm{x}) \mathrm{P}_{\mu} \mathrm{q}(\mathrm{x}):, \mathcal{O}^{\mathrm{MN}}(0)\right)=\mathrm{T}_{9}(\mathrm{x})+\mathrm{T}_{6}(\mathrm{x})+\mathrm{T}_{6}^{\prime}(\mathrm{x})+\mathrm{T}_{3}(\mathrm{x}),} \tag{A2}\\
& T_{9}(x)=1: \bar{q}(x) P q(x) \bar{q}(0) M q(0) \bar{q}(0) N q(0):, \tag{a}\\
& \mathrm{T}_{6}^{\prime}(\mathrm{x})=:\left[\overline{\mathrm{q}}(0) M S^{\mathrm{c}}(-\mathrm{x}) \mathrm{Pq}(\mathrm{x})+\overline{\mathrm{q}}(\mathrm{x}) \mathrm{PS}^{\mathrm{c}}(\mathrm{x}) \mathrm{Mq}(0)\right] \bar{q}(0) \mathrm{Nq}(0):+\{\mathrm{M} \leftrightarrow N\}, \tag{b}\\
& \left.\mathrm{T}_{\mathrm{G}}^{\prime}(\mathrm{x})=-\delta^{4}(\mathrm{x}):\left[\overline{\mathrm{q}}(0) \mathrm{M} \gamma_{0} \mathrm{P}_{0} \mathrm{q}(\mathrm{x})+\overline{\mathrm{q}}(\mathrm{x}) \gamma_{0} \mathrm{P}_{0} \mathrm{Mq}(0)\right] \overline{\mathrm{q}}(0) \mathrm{Nq}(0):+\{\mathrm{M}\lrcorner \mathrm{N}\right\}, \tag{c}\\
& \left.\mathrm{T}_{3}(\mathrm{x})=\mathrm{J}^{\mu}\left[\mathrm{Sp}_{\mathrm{p}} \mathrm{~S}^{\mathrm{c}}(-\mathrm{x}) \mathrm{P}_{\mu} \mathrm{S}^{\mathrm{c}}(\mathrm{x}) \mathrm{M}\right): \overline{\mathrm{q}}(0) \mathrm{Nq}(0):-: \overline{\mathrm{q}}(0) \mathrm{MS}^{\mathrm{c}}(-\mathrm{x}) \mathrm{P}_{\mu} \mathrm{S}^{\mathrm{c}}(\mathrm{x}) \mathrm{Nq}(0): \mathrm{f}_{+} \mathrm{d}\right)
\end{align*}
$$

$+\left\{\mathrm{M}_{\mapsto} \mathrm{N}\right\}$;

$$
\begin{equation*}
\left[:-\bar{q}(x) P_{0} q(x):, \mathcal{O}^{M N}(0)\right]=C_{6}(x)+C_{3}(x) \tag{A3}
\end{equation*}
$$

$$
C_{6}(x)=-i:\left[\bar{q}(x) P_{0} S(x) \cdot M q(0)-q(0) M S(-x) P_{0} q(x)\right] \bar{q}(0) N q(0):+\{M \leftrightarrow N\} \text {. }(a)
$$

$$
\begin{equation*}
\mathrm{C}_{3}(\mathrm{x})=\left[\mathrm{Sp}_{\mathrm{S}}\left(\mathrm{~S}^{+}(\mathrm{x}) \mathrm{MS}^{-}(-\mathrm{x}) \mathrm{P}_{0}\right)-\mathrm{Sp}\left(\mathrm{~S}^{+}(-\mathrm{x}) \mathrm{P}_{0} \mathrm{~S}^{-}(\mathrm{x}) \mathrm{M}\right)\right]: \overline{\mathrm{q}}(0) \mathrm{Nq}(0):+ \tag{b}
\end{equation*}
$$

$$
+: \bar{q}(0)\left[M S^{+}(-x) P_{0} S^{-}(x) N-M S^{-}(-x) P_{0} S^{+}(x) N\right] q(0):+\{M \rightarrow N\}
$$

where the following notation is used: $P=y_{5}\left\{\mathrm{~m}_{\mathrm{q}}^{*}, \frac{\lambda}{2}\right\} ; \mathrm{S}^{\mathrm{c}}(\mathrm{x})=$ $=\mathrm{i}<0|\mathrm{~T}(\mathrm{q}(\mathrm{x}), \overline{\mathrm{q}}(0))| 0\rangle ; \mathrm{S}_{\beta a}^{+}(\mathrm{x})=\mathrm{i}<0 \mid \overline{\mathrm{q}}_{a}^{-}(0) \mathrm{q} \beta^{(\mathrm{x}) \mid 0>,} \quad \mathrm{S}_{a \beta}^{-}(\mathrm{x}) \mathrm{x}$. $=\mathrm{i}\langle 0| \mathrm{q}_{a}(\mathrm{x}) \overline{\mathrm{q}}_{\beta^{\prime}}(0)|0\rangle, \quad \mathrm{S}(\mathrm{x})=\mathrm{S}^{+}(\mathrm{x})+\mathrm{S}^{-1}(\mathrm{x})$.
The subscripts of the operators $T(x)$ and $C(x)$ denote their operator dimensions.

We introduce the matrices Q and R through the Fierz transformation

$$
M_{A B} \otimes N_{C D}=Q_{A D} \otimes \dot{R}_{C B}
$$

Then from (Al), (A2d), (A3b) and relations

$$
\langle 0| T\left(: \bar{q}(x) P_{\mu} q(x):,: \bar{q}(0) L q(0):\right)|0\rangle=\operatorname{Sp}\left(S^{c}(-x) P_{\mu} S^{c}(x) L\right),
$$

$$
\begin{gathered}
<0\left|\left[: \bar{q}(x) P_{0} q(x):,: \bar{q}(0) L q(0):\right]\right| 0>=S p\left(S^{+}(x) L S^{-}(-x) P_{0}\right)- \\
\quad-S p\left(S^{+}(-x) P_{0} S^{-}(x) L\right), \quad L=M, N, Q, R
\end{gathered}
$$

we find

$$
\begin{aligned}
& \frac{\mathrm{i}\left(-\mathrm{k}_{\pi}^{2}+\mathrm{m}_{\pi}^{2}\right)}{\mathrm{f}_{\pi} \mathrm{m}_{\pi}^{2}} \int \mathrm{~d}^{4} \mathrm{e}^{i \mathrm{k}_{\pi^{x}}}\left\langle\mathrm{~B}^{\prime}\right| \mathrm{T}_{3}(\mathrm{x})-\delta\left(\mathrm{x}^{\circ}\right) \mathrm{C}_{3}(\mathrm{x})|\mathrm{B}\rangle= \\
& =\langle\pi|: \overline{\mathrm{q}}(0) \mathrm{Mq}(0):|0\rangle ;\left\langle\mathrm{B}^{\prime}\right|: \overline{\mathrm{q}}(0) \mathrm{Nq}(0):|\mathrm{B}\rangle-\langle\pi|: \ddot{\mathrm{q}}(0) Q \mathrm{q}(0):|0\rangle\left\langle\mathrm{B}^{\circ}\right|: \overline{\mathrm{q}}(0) \mathrm{Rq}(0):|\mathrm{B}\rangle+
\end{aligned}
$$

$$
\begin{equation*}
+\{M \leftrightarrow N, Q \leftrightarrow R\} . \tag{A4}
\end{equation*}
$$

Noting now that from $\left.S(x)\right|_{x^{\circ}=0}=1 y^{\circ} \delta^{3}(x)$ it follows

$$
\begin{equation*}
\left.\int \mathrm{d}^{4} \mathrm{x} \mathrm{e}^{\mathrm{ik} k^{x}}<\mathrm{B}^{\prime}\left|\mathrm{T}_{6}^{\prime}(\mathrm{x})-\delta\left(\mathrm{x}^{\circ}\right) \mathrm{C}_{6}(\mathrm{x})\right| \mathrm{B}\right\rangle=0 \tag{A5}
\end{equation*}
$$

we get the final expression

$$
\begin{align*}
& \left.\mathbb{Q}=\frac{i\left(-k_{\pi}^{2}+m_{\pi}^{2}\right)}{f_{\pi} m_{\pi}^{2}} \int d^{4} e^{i k_{\pi} \mathbf{x}}<B^{\prime}\left|T_{9}(x)+T_{6}(x)\right| B\right\rangle+Q^{F}, \tag{A6}\\
& \text { ere the factorizing part of the amplitude } Q, Q^{F}
\end{align*}
$$

where the factorizing part of the amplitude $\mathbb{Q}, \mathbb{Q}^{\mathrm{F}}$ is defined by expression (A4).

The comparison of (A2a, b) and (A6) with the diagrams of the figure shows that the matrix element of the operator T_{9} corresponds to the diagram (c), and the matrix element of ${ }^{9} \mathrm{~T}_{6}$ to the diagrams (a) and (b). As is seen from (A2a), the matrix element of the operator T_{9} vanishes at $k_{\pi} \rightarrow 0$, and consequently, the diagrams (a) and (b) dominate in the nonfactorizing part of the amplitude $\mathbb{A}, \mathbb{Q}^{N F}$.
B. By definition $\mathbb{Q}^{\mathrm{ETC}}=\lim _{\operatorname{kim}_{\boldsymbol{m}} \mathbb{Q}} \mathbb{Q}$.

According to the canonical current algebra

$$
\begin{equation*}
\mathfrak{Q}^{\mathrm{ETC}}=-\frac{\mathrm{i}\left(-\mathrm{k}_{\pi}^{2}+\mathrm{m}_{\pi}^{2}\right)}{\mathrm{f}_{\pi} \mathrm{m} \frac{2}{2}} \cdot \int \mathrm{~d}^{4} \mathrm{xe}^{\mathrm{ik} \mathrm{k}^{\mathrm{x}}} \delta\left(\mathrm{x}^{\mathrm{D}}\right)<\mathrm{B}^{\prime}\left|\mathrm{C}_{6}(\mathrm{x})\right| \mathrm{B}>\left.\right|_{\mathrm{k}_{\pi} \rightarrow 0} \tag{A7}
\end{equation*}
$$

It should be mentioned now that as $k_{\pi} \rightarrow 0$
$\int d^{4} x e^{i k^{x}} \pi^{x}<B^{\prime}\left|T_{6}(x)+T_{6}^{\prime}(x)\right| B>\rightarrow 0$.
Hence and from relations (A7) and (A5), we get immediately $Q^{\text {ETC }}=\frac{i\left(-k_{\pi}^{2}+\mathrm{m}_{\pi}^{2}\right)}{\mathrm{f}_{\pi} \mathrm{m}_{\pi}^{2}}: \int \mathrm{d}^{4} \mathrm{x} \mathrm{e}^{\mathrm{i} k_{\pi^{\mathrm{x}}}}<\mathrm{B}^{\prime}\left|\mathrm{T}_{6}(\mathrm{x})\right| \mathrm{B}>\left.\right|_{\mathrm{k}_{\pi} \rightarrow 0}$,
i.e., $\mathbb{Q}^{\mathrm{ETC}}$ corresponds to the diagrams (a) and (b) with $\mathrm{k}_{\pi} \overrightarrow{\mathrm{F}}_{\mathrm{N}} 0$,
and since the diagram (b) in this limit valishes, $\mathbb{Q}^{\mathrm{ETC}}=\mathbb{Q}_{k_{\pi} \rightarrow 0}$

REFERENCES

1. Desplanques B. Nuc1.Phys., 1980, A335, p. 147.
2. Fishbach E., Trabert K. Phys.Rev., 1968, 174, p. 1843.
3. Körner J.G., Kramer G., Willrodt J. Phys.Lett., 1979, 81B, p.365; Guberina B., Tadić D., Trampetić J. Nuc1. Phys., 1979, B152, p.429; Buccella F. et al. Nucl.Phys., 1979, B152, p.461.
4. Shifman M.A., Vainshtein A.I., Zakharov V.I. JETP, 1977, 72, p. 1275.
5. Weinberg S. In: Festschrift for I.I.Rabi, ed. by Lloyd Motz. New York Academy of Science, N.Y., 1977.
6. Donoghue J.F. Phys.Rev., 1976, D15, p. 184.
7. Körner J.G., Kramer G., Willrodt J. Z.Phys. C, Particles and Fields, 1979, 2, p.ll7.
8. Desplanques B., Donoghue J.F., Holstein B. Ann.Phys., 1980, 124, p. 449.
9. Gi1man F.J., Wise M.B. Phys.Rev., 1979, D20, p.2392; Dubovik V.M., Zamiralov V.S., Zenkin S.V. Yad.Fiz., 1981, 34, p.837.
10. Miura K., Mimamikawa T. Prog.Theor.Phys., 1967, 38, p.954; Körner J.G. Nuc1.Phys., 1970, B25, p.282; Pati J.C., Woo C.H. Phys.Rev., 1971, D3, p. 2920.
11. Abe Y. et al. Progr.Theor.Phys., 1980, 64, p. 1363.
12. Adler S.L. et al. Phys.Rev., 1975, D11, p.3309.

Дубовик В.М., Зенкин С.В.
Новый взгляд на несохранение четности в π NN вершине
Рассмотрена нарушающая четность амплитуда $A_{\pi}=A\left(n \rightarrow \pi^{-} p\right)$. B рамках теоретико-полевого подхода показано, что каноническая ETC-часть A_{π} соответствует нефакторизационным (NF) диаграммам. $A_{T}^{N F}$ может быть выиислена для полного эффективного гамильтониана теории $\operatorname{SU}(2)_{L} \otimes \mathrm{U}(1)$ \& $\operatorname{SU}(3)$ с с помощью SU(3) правила сумм и оказывается очень чувствительной к поведени бегущей константы QCD $\alpha_{s}(\mu)$ при $\mu \leq \mathrm{m}_{\mathrm{c}} / \mathrm{m}_{\mathrm{c}}$ - масса с-кварка/. Приведены аргументы, согласно которым вклад факторизационных диаграмм в A_{π} пренебрежимо мал.

Работа выполнена в Лаборатории теоретической физики оияи,

Сообщение 0бъединенного института ядерных исследований. Аубна 1982

ubovik V.M., Zenkin S.V

Ansight into the Parity Violation at π NN Vertex
$\mathrm{A}_{\pi}=\mathrm{A}\left(\mathrm{n} \rightarrow \pi^{-} \mathrm{p}\right) \quad$ parity-violating amplitude is considered. Within the ield-theoretical approach it is shown that canonical ETC-part of A corresponds to nonfactorizing (NF) diagrams. ANF may be calculated for the total effective Hamiltonian in $\operatorname{SU}(2) \oplus(1) \otimes \operatorname{SU}(3)$, \oplus, $\operatorname{SU}(3)$ sum rule and is very sensitive to the behaviour of running OCD stant $\cdot_{a_{s}}(\mu)$ at $u \leq m_{c}$ (m_{c} is mass of c-quark). it is argued that in con ribution of factorizing diagrams into A_{n} is negligible.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR

[^0]: *Institute of Nuclear Research of the USSR
 Acad. of Sciences, Moscow.

