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1. INTRODUCTION

Recent success in the description of static properties of
hadrons within the MIT bag model/!/ has raised considerable
interest in the physical and mathematical structure of the
model. One can distinguish two main ways of development of
the model’®/:the description of light hadronic states composed
of fermion fields in a spherical bag/2®3/ and studies of the
interaction between heavy quarks (considered as localized
color charges) and color (electrostatic) gauge fields confined
in the bag/4-7/, Along the second way a good description was
obtained for the quark interaction in heavy mesons at long
distances in the adiabatic approximation: quarks were treat-—
ed as fixed sources of color (effectively Abelian with a small
coupling constant) gauge fields. Boundary conditions of the
model define both the bag surface (far from being spherical)
and the field distribution inside the bag. The energy of
configuration "bag + field" is then used as an effective po-
tential in the Schrddinger equation for heavy quarks.

The basic mathematical problem in this approach is to find
the bag surface on which color electric fields should obey
the conditions

-5

ﬂﬁj =-0, (1a)

Lsg2.p, (1b)
25
where Bis the universal constant of the MIT bag model, B is
the unit normal to the surface. Inside the bag fields are
solutions to the equations

tdﬁ’lj =2 Ws@-r ) VxE,=0, (2)

L a a a. 1

where qg? are static color charges and r, are their positi-
ons. The system "quark + antiquark" is well described by one
gauge field’/%/.

The problem is much complicated in the case of three-quark
states (""heavy baryons') which require two effective Abelian
fields Elj%.The interaction of fields with color quarks for—

ming a singlet state is defined by the color hypercharge and
third projection of the color isospin’’’:
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42 ={0, V8 q, -y3ql.

In the three-dimensional space the free-boundary problem
(la-b) can be solved only by a variational method. Results
obtained for three-quark states by this approach’/®?/ gatis-
factorily describe the dependence of an effective potential
on adiabatic variables, separations between color sources,
in two limiting cases. At small separations the bag shape
was taken spherical and at large separations the bag shape was
approximated by a system of finite cylinders. Considering only
the two simplest forms, one obtains a tripod (Y)or a triangle
(A) shape. It turned out however /®7/ that within the varia-
tional approach .one has no way of distinguishing between the,
various configurations, i.e., of solving the question of the
spatial structure of heavy baryons in the model.

In two space dimensions the problem (la-b, 2) is essential-
ly simplified as in this case fields Ejcan be treated as
analytic functions of the complex variable z=x+iy (x,y are
space coordinates) with pole singularities at the positions
of charges. An exact solution has been found for two sources
by conformal mappings. Apparently, exact solutions may be
obtained for all problems of the type (la-b, 2). The construc-
tion of such solutions is extremely nontrivial, however, it
seems important for understanding the bag structure in three
dimensions.

Here we analyse the three- partlcle problem in a two-dimen-—
sional bag Particles are assumed to be sources ,of a gauge
field.

The particle charges Q; are taken the same as qél) in the
case of three quarks: gq,={2q, —q, —ql. The study of this
simplest three-particle model can be regarded as a first step
towards the construction of exact solutions to an interesting
but more complicated problem of three quarks interactihg“ with
two effective gauge fields. Our results may also help to’ galn
an idea on the bag shape for some 4-quark’ states.

We shall consider 3-charges configurations symmetric rela-
tively to, say, the =x-axis, in the (x,y) plane. Throughout
the paper we measure distances in units q(2B)~1/2 and energies
in units q%in these units the boundary conditions (la-b) are

1
q(a)=12q, -q,-q};

4/

3E =0, . (3a)
E? =1 (3b)
and q,={2,~1,-1L
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- 4

A method for constructlng solutions to the three—body prob-
lem is expounded in Sec.II. In Sec. III we present results
and conclusions.

-

ITI. METHOD OF SOLUTION IN TWO SPACE DIMENSIONS

The essential observation by R.Giles’*,which allows an
exact solution of the problem in the two-dimensional model,

is that the two boundary conditions (3a-b) can be represented
in the form

i@

wﬁ;re E=E x—iEyis an analytic function of variable Z =X +1iy,
eld ig the un1t tangent to the surface with angle 6 defined
relative to the x-axis. The functionE(z) has simple poles at

the charges z ( 2 =0)

ql.qu.zq3 2, qa with residues
- =(2m)"~
—{qu.zq 'zqs}

We assume that|E(z)|x.1
firmed later).

resE(z) |, Let2,-1,-13, (5)

inside the bag (this will be con-
By eq. (4) the conformal mapping

1= 5@ (6)
maps the bag boundary Gonto the unit-circle boundary; all
the three points of location of charges are mapped into the
center of the circle 21=0; the bag interior is mapped into
cut unit circle; the cut being to range along the real
axis from z;=-a to z1=1 0<a1<1

Our aim 1s to find an inversion of the mapping (6)

z=F(z1). o)

This transformation maps the unit circle in the z; -plane
onto the bag boundary in the Z plane. The center of the cir—
cle should be mapped into three points in the z plane: Zqq >
Zgy s Zqgq - Therefore, F(zl) should have three branches, each
being an analytic function in the cut unit circle in the z, -
plane. These three branches compose one function F(z) analytic
on the three-sheeted Riemann surface. From (4,6) it follows/4/
that on the boundary Zl—eio the condition

d

Re-a%-:O (8)

should hold.

Owing to symmetry of the charge conflguratlon relative to

the x-axis, at least one of the branches F(z should obey
the condition



ImF(z )=0 ‘ 9

at real z, . .

Appropriate functions F(z;)may be found by making one more
transformation that maps the upit circle into the half-plane
1+Z1

(10)

Zo= ‘.
2 1-—21

This maps the bag boundary to the axis Rezs=0, the circle
center to the point 2,=1, the cut in the Z,~plane to the
cut {ag Rezg<oo, Imzy=0}, 0O0<a<l.

Now we shall present the conditions to be satisfied by
the function F(z (2N =F(z5) . With the notation

aF_ #(Z) (1)
dzp  m(l+z,)%
the condition (8) reads
R.e¢>(z2)=0 at Rezzno. (83)
In view of (9), at least one of the branches ¢o(a)(22) (a =
=1,2,3) of the function ¢(z,) should obey the condition

Im¢(a)(z 2):0 at Im22=0. (9a)

. Zo+
The residues of E(2)= 2
zZg~1 4p *"dg

ted by formula (5); calculating them with the use of (7, 10-
11), we find that at Zp=1 the branches of ¢(z,) should satisfy
the conditions

sM(y=2,

rat points gyt are calcula-

(;()(2) (1)____¢(3) (1)=_1. . (Sa)

As F(zy is finite in the half-plane, |F(z,)| < const,
¢(25) has no poles:

B

l6(e) < l2g [0, B >0, [2y]so

(12)

16(z,) <z~ 23177 y >0
around any point of the half plane 22(0) .

By transformation #=F(z3) the cut in the z jplane should
not be mapped onto the bag boundary G in the z-plane. For
this condition to be fulfilled it suffices that the point
zZp=a (the cut start) be the only branch point of ¢(zp) at
Rezg 2. 0.

It is natural to look for the functions ¢(zg) obeying the
above conditions in the class of algebraic functions’8

P

-

®(z,,¢) =Py () ¢° +P; (2,)06° +Py(2,) ¢ + Py (2,) =0, (13)

where F (z,) are polynomials in zp. All functions of this class
have three branches, and branch points belong to a set of ~
zeros of Py(zy) and discriminant A(zg, a polynomial resulting
from the elimination of ¢ out of the equations
9
o
In accordance with (8a) and (12) Py (z,)=0, 1’21301 is an
even, and: PsPa'1 is an odd function of zg. As zz=a is the only
branch point of ¢(z,) at Rezg20, the polynomial PFy(zg) has only
one zero at Re zg>0: l’o,(z'g)=(z.%—.--a2 » . - n=1,2., All the
three branches of ¢(%5) should change into each other while
going around the point Zg=a; for this reason and in view
of (5a, 8a), n =1 is not possible, and the condition Py(a)=0
takes place.
So, formula (13) can be rewritten as

‘(D(zg "ﬁ) =0, (Z2,¢)=O,‘

¢ +’3p(Z 2) ¢ —=2q(z 2)=0'

(14)
p(z )=_S.£.Z..2é._..g_?...:- ( )=._rf3.£f§ +)
2 zé—a2 ' 2 (z 5-a%)

Here 8, A,T , u are real numbers; factors 3, =2 are introdu-
ced for convenience. For any different choice of polynomials
Py(zy), Py(zy) in (13) one of the conditions (8a, 12)
does not hold.

The coefficients S,A,r, u ,a
(5a, 8-9a, 12). According to (5a)

p()=~1, q)=1." (5b)

Note that (9a) is fulfilled automatically: at least one
root of the cubic equation with real coefficients is real.

All roots of eq. (l4) are imaginary on the axis z =ir,
Im#=0 if p@ir)>0, i.e.,

>0 (15)

and the cubic equation discriminant Z(Zz)=p3(zg)+q?(zz) is
non-negative at Zg=ir. Possible branch g)oint of ¢(z,), different
from zg=a, belong to a set of zeros zé‘B of the polynomial A(z,):

g 3
A@g)=(22-3%) B (2, )= (25-A") %22 -a% ) 1%, - )P 22, &
(note that zy=1, in view of (5b), belongs to the set {zz H.

If in the vicinity of z the polynomial A(z,) can be represen-
ted as A(zy)=const(z Z‘Z(EB y*n, with integer n and

are to be determined from



|p(z(B) )|+!q(z{3) ¥y > 0, then at 22=-22(B) there is no
branchlng of solutlon to eq. (14). Hence, z =a is the only
branch point of ¢(zy) in the half-plane Rez,>0,provided

A(z ,)=const (zg —1)2(222"3’)2 '
X2 hy (16)

with some real y.
Conditions (5b,
of functions #(2,):

15~16) determine the one-parameter family

s _(A2-1)f _ 02123t 1607 -
A2\ 3? A2y
17)
ao 1322 A%346. 2 -2t
A(AZ+8) 3AteBA® -1

A>1

The branches of ¢(z,) are standard solutions of cubic
eq. (14) with parameters (17). The branches ¢*Xz,) on axes
Rez, =0 and Imz,=0 are given in the Table with the notation
used:

p(r)= (.)‘2 =2 (2 +2%) b 23046 A% 1) 033+ 6X2-xH]

RO 4 (1438 )2 (- % )P0 R0R 3R 24 (143 B)2]) ©

(18)
A () =-AZ=DAz ) AP+ 3)t = (143K) 273
t - 2 E
A2 3)t£(1430%) AN B T(1+3)2)
Cubic roots in (18) should be taken real.
Table
Branches, of $(2y) at zy=t,Imt=0, and zy=ir, Imr=0.
3
z, PIEH 4® »®)
trie, 7. ~20 2 2mi_
t>a A+A_ A,_gzg__+-A_g3 kB Ale P+A e
t—ie, eri _fg’,’j ) ___%g: 2mi,
t>a A+eT+ A e Ace +A_e—.3- A +A”
_.2ni ami . emi 2mi
0t<a A e 3 4A e S A+A Ae ¥ +Ae B
a+2mn '

ir “2i /P cos (_..,.«) 2i \/Féos(a'é%:)

2i\/p’ cos -‘;—“

6

The Riemann surface of ¢(%s) is mapped into ‘the bag interior

in the z-plane by the transformation
. -
z=F(z, y=-L. (2 dve®) 19)
7 a (1+v)2 .

throughout the interior of
|E(z)}z.1 and approaches e at

The field strength E(z)=
the bag obeys the condltlgn
points of charge positions

qa qa+ 1y a=1,2,3." (20)

The bag boundary G is defined by eq. (19) at Rezgy=0.

III. RESULTS AND CONCLUSIONS
The equation for boundary G can be written as
xg(r)=ReF(ir), y,()=ImF(@r),

Integration in (19) can be performed numerically. The bag
shape at A =30 is shown in Fig.l. The boundary G has four

-0 {7y o0 ,

dxg
cusps at points, where .a.w and .g..y.g vanish simultaneously.
T

The positions of charges (Flg. ) are calculated by (20).
As was to be expected, the bag is symmetric relative to the

x —axis. At points A, Ag, Ae"“‘"— 0, —d.ZQ:;élo; at point Ay
dyG _o. dx G% 0. dr
dr _E

As A+ the bag "stretches" along the x-axis, with its

size along the y -axis being finite; the positions of all

charges and extremal points

of the boundary A;....A; can

‘be calculated analytically up

to the terms exponentially

A ) decreasing with growing xq1=R.
An idea of the bag asymptotic
shape can be gained from the

A»'*: <a, following relations as A-o:

. .

.

q, »

Fig.1. The bag shape at
A=30. Ay,..., A; are points at
which at least one of, the de-
. . dx dyG . '
+ rivatives —==', ——: vanishes;
dr ° dr
x denotes the charge positioms.

7



Vg = o, Vg =Yg, * 1/2;
X R +(2log2~1)/n; xAz-o—:élogz 1)
Tag= XAG_’-% é%)f‘%_“l"" Yag "Vaqg = Vg ‘yAB"T}""j?l;

Correﬁtions to coordinates in (21) are of the order
O(exp (~+5)).
From (21) it follows that at Iarge separations between the

charge q, and charges q23the bag 1s a set of three strips of

width 2, 1, 1, respectlvely, with the point of junction
X=y =0."

The total energy of the 3-particle state in the bag is
a sum of energies of the field, Ugp,and bag Ug:

U=Ue1 +U‘B,

where UB=m1*SB,SB is the bag area; Uel=~%{2®(zq1y-®(zqg—ﬂxzq3»,

2
® is the nonsingular part of the electrostatic potential. The
energy U can also be calculated numerically; by asymptotic
estimations, U~3R as R+ .

With decreasing A all points of the charge positions ap-
proach the origin of coordinates. At A=3,4 two parts of the
bqﬁ?Qary G corresponding to the integration of branches ¢ |
¢ in (19) osculate at a point (xg,0), Xg <0 (Fig.2). With

further decreasing A the boun-
dary G gets self-intersections;
such "two-sheeted" solutions,
) physically, are not acceptable.
x%2
A q, x
<::Efiﬁ

Fig.2. The bag shape at A'=3.4.
Two parts of the boundary os-~
culate at point A.The scale is
twice that of Fig.l.

=T s
o

P

The fact of appearance of self-intersections points to a pos—
sibility of other solutions for such configurations of char-
ges. Note that analogous self-intersections of the bag boun-—,
dary were observed in paper/5/for some states of four partic-
les placed on a straight line.

So, for 3.4 <A<~ we have found physically acceptable solu-
tions for symmetric three-particle states in the static bag,
described by the relations (14, 17, 19~20). These solutions
depend on one parameter A connected with coordinates of par-
ticles by (20), and these, naturally, do not cover the whole
(two-parameter) set of symmetric configurations. Complete des-
cription of all configurations of such a type, in our view,
can be achieved on the basic of the class of functions (13)
with a more complicated structure of cuts on the complex
Z, —plane.

It seems that in the two-dimensional model exact solutions
can be found also for three particles interacting with two
effective Abelian gauge fields (color quarks in a heavy bary-
on). In fact, the two gauge fields are subject to the fol-
lowing boundary conditions

Elele =.COS ¥ , Ezela =siny, Imy =0

and the transformation z,= maps the bag boundary

1
(Z) ) +E %(Z)

onto the unit circle. The cholce of appropriate analytic func-
tions E,(z),Ey(z) represents an interesting but much more
complex problem than in the case of one gauge field we have
considered.

The exact solutions we have obtained are the first ones
in the static bag model, which describe the states of partic-—
les not lying on the same straight line. These solutions al-
low us to understand what is the bag shape for configurations
of two pairs ''quark-antiquark" of one color, in which both
the quarks are very close to each other (and form an "effecti-
ve charge” 2q9) and the positions of antiquarks are symmetric
with respect to X-axis (charges 45.4, ). An exact solution of
the four—quark problem seems to be possible on the basis of
the class of functions like (13), where ®(z,,¢) is a polyno-
mial of the fourth power in ¢.

Further study of multiparticle states in the two-dimensio-
nal bag model is, in our opiniom, of a considerable interest
from the mathematical and physical viewpoint; it will allow a
deeper understanding of the structure of the model in a more
realistic case of three space dimensions.



The author is grateful to V.A.Meshcheryakov for useful

discussions.
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VuosemieB B.U. O TpexuacTHYHBIX COCTOAHHAX E2-82-166

B OBYMepHO#l cratucTmdeckoit MIT bag mopenn

PaccMaTpuBaOTCHA CHMMETDHUYHbe KOHQMUTypauun 3—-X dacTuy, B3a-
HMoAeHCTBYIMX C afeneBbM KanuGpOBOYHHIM IONEM B CTATHUCTHUECKOH
asyMepHoit MIT bag Mopenu. MeromoM KOHGOPMHHIX OTOBpameHHH Hal-
[eHO TOuYHOe pemeHHe A TpaHuup ''Memka'', 3aBucAmee OT OFHOrO
napaMerpa. HccleqoBaHa ACHMITOTHKA pelleHHA I[IpH SOJBUHX pPacCTOA~
HHAX MeXny OOHONH dacTHield H OBYMSA OPYIHMH.
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Dimensional Static MIT Bag Model

Symmetric configurations are considered for three particles
interacting with an Abelian gauge field in the static two-
dimensional MIT bag model. By a conformal mapping an exact so-
lution for the bag boundary is obtained, which depends on one
parameter. The asymptotic behaviour of the solution is -studied
at large separations between one particle and two others.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR.
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