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I. INTRODUCTION 

Recent success in the description of static properties of 
hadrons within the MIT bag model/1/has raised considerable 
interest in the physical and mathematical structure of the 
model. One can distinguish two main ways of development of 
the model121:the description of light hadronic states composed 
of fermion fields in a spherical bag /2,3/ and studies of the 
interaction between heavy quarks (considered as localized 
color charges) and color (electrostatic) gauge fields confined 
in the bag 14-71. Along the second way a good description was 
obtained for the quark interaction in heavy mesons at long 
distances in the adiabatic approximation: quarks were treat­
ed as fixed sources of color (effectively Abelian with a small 
coupling constant) gauge fields. Boundary conditions of the 
model define both the bag surface (far from being spherical) 
and the field distribution inside the bag. The energy of 
configuration "bag + field" is then used as an effective po­
tential in the Schrodinger equation for heavy quarks. 

The basic mathematical problem in this approach is 
the bag surface on which color electric fields should 
the conditions 

to find 
obey 

...... 
nEi =0, 

L,}.; EJ~=B. 
2 j 

(I a) 

(I b) 

where B is the universal constant o( the MIT bag model, n is 
the unit normal to the surface. Inside the bag fields are 
solutions to the equations 

;>,... (j) ... ... 
vE1.=lq o(r-r ), VxE 1·:.0, a a. a. (2) 

where q~) are static color charges 
ons. The system "quark + antiquark" 
gauge field 141. 

and ra are their posi ti -. 
is well described by one 

The problem is much complicated in the case of three-quark 
states ("heavy baryons") which require two effective Abelian 
fields E 1.~ .The interaction of fields with color quarks for­
ming a singlet state is defined by the color hypercharge and 
third projection of the color isospin 171 : 
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(1) 12) - -· qa == l2q. -q. -q I; qa .. to. v 3 q, -v 3 q I. 

In the three-dimensional space the free-boundary problem 
(la-b) can be solved only by a variational method. Results 
obtained for three-quark states by this approach/C,7/ satis­
factorily describe the dependence of an effective potential 
on adiabatic variables, separations between color sources, 
in two limiting cases. At small separations the bag shape 
was taken spherical and at large separations the bag shape was 
approximated by a system of finite cylinders. Considering only 
the two simplest forms, one obtains a tripod(Y)or a triangle 
(~) shape. It turned out however 16 •7' that within the varia­
tional approach .one has no way of distinguishing between the 
various configurations, i.e., 'of solving the question of the 
spatial structure of heavy baryons in the model. 

In two space dimensions the problem (la-b, 2) is essential­
ly simplified as in this case fields Ej can be treated as ' 
analytic functions of the complex variable Z•«+iy ( x, y are 
space coordinates} with pole singularities at the positions 
of charges. An exact solution has been found for two sources'41 

by conformal mappings. Apparently, exact solutions may be 
obtain~d for all problems of, the type (la-b, 2). The construc­
tion of such solutions is extremely nontrivial, however, it 
seems important for understanding the bag structure in th,r~e 
dimensions. 

Here we analyse the three-particle prqblem in a two-dimen­
sional bag. Particles are assumed to be sources ,of ~ gauge 
field. 

The particle charges qa are taken the same as ~l) in the 
case of three quarks: qa.==l2q, -q, -ql. The study of this 
simplest three-particle model can be regarded as a first step 
towards the construction of exact solutions to an intere?ting 
but more complicated problem of three quarks interactihg' with 
two effective gauge fields. Our results may also help 'to'gain 
an idea on the bag shape .for some 4-quark'' states. 

We shall consider 3-charges configurations symmetric rela­
tively to, say, the x-axis, in the (x.,y) plane. Throughout 
the paper we measure distances in units q(2B)-112 and energies 
in unitsq~in these units the boundary conditions (la~b) are 

nE = o. . Oa) 

'E 2 =1 (3b) 

and Qa=12,-1,-1l. 
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A method for constructing solutions to the three-body prob­
lem is expounded in Sec.II. In Sec. III we present results 
and conclusions. 

II. METHOD OF SOLUTION IN TWO SPACE DIMENSIONS 

The essential observation by R.Giles 14~which allows an 
exact solution of the problem in the two-dimensional model, 
is that the two boundary conditions (3a-b) can be represented 
in the form 

Ee 10 =l, (4) 

where E=Ex-iEyis an analytic function of variable Z=X+-iy, 
e10 is the unit tangent to the surface with angle 0 defined 
relative to the x -axis. The functionE(z) has simple poles at 

3 
the charges zq ,zq ,zq (~Za=·O) with residues 

1 2 3 a=1 ·-a 

resE(z) I -I l ==·(21T)-1xl2,-1,-1}, (5) Z- Zqt•Zq ,Zq 
We assume that!g(z)!~.1 inside the bag (this will be con­

firmed later). By eq. (4) the conformal mapping 
1 

Zt== -· (6) E(z) 
maps the bag boundary Gonto the unit-circle boundary; all 
the three points of location of charges are mapped into the 
center of the circle Zt=O; the bag interior is mapped into 
cut unit circle; the cut being to range along the real 
axis from z 1 =-~ to z 1 ..,1, O<a 1 <1. 

Our aim is to find an inversion of the mapping (6) 

Z=F(z 1 ). (7) 

This transformation maps the unit circle in the z1-plane 
onto the bag'boundary in the z plane. The center of the cir­
cle should be mapped j.nto three points in the z plane: zq

1 
, 

Zq 2 , zq 3 • Therefore, F(zt) should have three branches, each 
being an analytic function in the cut unit circle in the z1-
plane. These three branches compose one function F(z~ analytic 
on the three-sheeted Riemann surface. From (4,6) it follows/4/ 
that on the boundary z1=e 10 the condition 

dF Re-=0 dz 1 
(8) 

should hold. 
Owing t'o symmetry of the charge configuration relative to 

the x -axis, at least one of the branches F (z 1) should obey 
the condition 
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Im:F(z 1)=0 (9) 

at real z 1 • 

Appropriate functions F(z1)may be found by making one more 
transformation that maps t.he u1.1it circle into the ha~f-plane 

l+Z1 
Z2=·~•. 

1 -z 1 

(I 0) 

This maps the bag boundary to the axis Rez 2 =0, the circle 
center to the point z2 =1, the cut in the z 1-plane to the 
cut I a 5, Re z 2 < oo , Im z 2 = 0 l, 0 < a < 1 . 

Now we shall present the conditions to be sa~isfied by 
the function F(z 1(z2)) = F(z 2 ). · With the notation 

~•= ¢(z2) , (II) 
dz 2 7T(l+z2)2 

the condition (8) reads 

Re rp(z 2)=0 at Rez 2 ... o. (Sa) 

In view of (9), at least one of the branches ¢{a)(z 2) (a= 
=1,2,3) of the function ¢(z 2) should obey the condition 

Im¢(a)(z 2)= 0 at Imz2 =0. (9a) 

Z2+1 
The residues of E(z) =·~1 • at points zq

1
,zq ,zq are calcula-

z2- 2 3 
ted by formula (S); calculating them with the use of (7, lO­
ll), we find that at z2=1 the branches of rp(z 2) should satisfy 
the conditions 

¢ 0 >(1)=2. </> (2) (1) = </> {3 ) (1)=-1. . 

As F (z2) is finite in the half-plane, I F(z2)1 < const, 
rp(z2)has no poles: 

1-{3 
I 1><z2) I< I z2 I • f3 > o. I z2 1 ... oo 

l¢(z2)1< lz - z(O)Iy-1 
2 2 • y >0 

around any point of the half plane zJ0> 

(Sa) 

(12) 

By transformation Z=-F(z2) the cut in the z 2-plane should 
not be mapped onto the bag boundary G in the z -plane. For 
this condition to be fulfilled it suffices that the point 
z2=a (the cut start) be the only branch point of ¢(z 2) at 
Rez 2 ~.o:· 

It is natural to look for the functions ¢(z 2)obeying the 
above conditions in the class of algebraic functions/8/ 
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3 2 
<ll(z2,rp)=Po(z2)¢ +Pl(z2).¢ +P2(z2)¢+·Pa(~2)=0, (13) 

where ~(z2) are polynomids in z 2. All f~nctions of this class 
have three branches, and branch points belong to a set of ' 
zeros of P0(z2) and discriminant il(z r?), a polynomial resulting 
from the elimination of ¢ out of the equations 

<ll(z2 ,</J) =·0, 
act~ a.p (z2,</J) =0 .. 

-1 
In accordance with (8a) and (12)P1 (z 2):0, P 2 P 0 is an 

even, and' P 3 P01 is an odd function of z2. ·As z~a is the only 
branch point of </J(z 2) at Rez2~P. the polynomial Po(z2) has only 
one zero at Rez2 ~0: .P0 (z2)=(z~ ... a2 ) 0

,. n=J,2. All the 
three branches of </J(z2) should change into each other while 
going around the point Zz=a; ·for this reason and in view 
of (Sa, 8a), n =I is not possible, and the condition P 2(a)=O 
takes place. 

So, formula (13) can be rewritten as 

¢ +·3p(z 2)cp-·2q(z 2)=0, 

p(z2) = s(z~-l) 
2 z2 -a2 

rz2 (z~ -p.) 
q(z ) =·--'2:2'· 2 

(z ~-a ) 

(14) 

Here s, A, r , p. are real numbers; factors 3, -2 are introdu-
ced for convenience. For any different choice of polynomials 
P2 (z 2), P3 (z 2) in (13) one of the conditions (8a, 12) 
does not hold. 

The coefficients s, >.,r, p. ,a 
(Sa, 8-9a, 12). According to (Sa) 

are to be determined from 

p(1) =· -1, q(1)=l. · (Sb) 

Note that (9a) is fulfilled automatically: at least one 
root of the cubic equation with real coefficients is real. 

All roots of eq. (14) are imaginary on the axis z =ir, 
Imr=Oif p(ir)>O, i.e., 

s>O (IS) 

and the cubic equation discriminant X(z 2 )=p3 (z 2 )+q2 (z 2 ) is 
non-negative at z 2=ir. Possible branc1{{3)oint of </J(z 2 ), different 
from z 2=a, belong to a set of zeros z2 of the polynomial il(z 2): 

il(z2)=(z;-a2 )4--ii (z2)= i (z~-:A2 ) 3(z 2 -a 2 ) +r2(z22 -p. ) 2 z~ 
(note that z2 =I, in view of (Sb), belongs to the set I z ~) l). 
If in the vicinity of z 't> the polynomial il(z 2) can be represen-
ted as ll(z2)=const(z 2-z<{!> )2 n, with integer. n and 
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!P(z~) )!+!q(z~B) )! > O, then at z 2~.zJf3) there is no 
branching of solutions to eq. (14). Hence, z =a is the only 
branch paint of ¢(z2 ) in the half-plane Re z~p. provided 

~(z 2)=const (z~ -1) 2(z~-y) 2 

A2 ;,)L 

with some realy. 

( 16) 

Conditions (Sb, 15-16) determine the one-parameter family 
of functions ¢(z2 ): 

_(/..2-1}2 ,• _('A2-1)2(3'A4+6A2-1) 
s -A2(A2+af' r -~4(,\~-:-i)r--•, 

a= 1_-f:1L.; 
A (A 2+3) 

'A>l 

2 2 4 A (3+6X -'A ) 
Jl.= -~ -· 

3A 4 +6A2 -1 

( 17) 

The branches of ¢(z2 ) are standard solutions of cubic 
eq. (14) with parameters (17). The branches qJ.a)(z 2) on axes 
Rez 2 =0 and Imz 2 =0 are given in the Table with the notation 
used: 

p (r) = (A? -1l2J.C.ti~-----; cos a= _1r 
2~~~4_;:!~~=!~~:.~_+_2~:.:fJl,_ 

A2(A2+3)2r 2 + (1+3K )2 !(r 2+'A2)3[A"('A2+3)2r2+(1+3'A2)2Jli'2 

A± (t) = ('A 2 -l)~A ,;}.L--[ ~;;_2+ 3).t_,:j_~+3'A2 ) J 2/3 
'A(A2+ 3)t ±(1+3'A2) A('A2+3)t :j:(l+3A2) 

(18) 

Cubic roots in (18) should be taken real. 

Table 

Branches. -of .¢(z 2) at z2=t, Imt,.Q, and z2=ir, Imr=O. 

z2 

t+i£. 
t>a 

t -if. 

t> a 

0.5,t<a 

ir 

6 

¢<H cP (2) 

A++A_, 

~-· .21Ti a- -·s-
A+-e +A_~ 

21Ti 21Ti ' 21Ti 21Ti 
. -a· -s- --::r· 

A eT + A e A e +A e . 
'+- -· + -· 

21Ti 21Ti 
A e-·a~A e,.-· A +A. 
' + . ·; -· ·' :1- -· 

'.2i v'pcos c ~~ .) 2i v'P cos c a-
3
2") 

3 ' 

¢(3) 

21Ti 2rr\ 
A ;-3-+ A e -32 + _, 

A +A'" ',· ··· 
+ -

. 21Ti 21Tl 
A e;r +A e-3 

+ -· 

2 i vi>" cos _q:· 
' ' 3 

;~ 

]} 

The Riemann surface of ¢(z2) is mapped into'the bag interior 
in the z-plane by the transformation 

Z=F(z )=·-L? dvck{v) '· '(19) 
2 1T a (1+v)2 

z +l 
The field strength E (z) =·-zk-· throughout the interior of 
the bag obeys the conditi5n !E(z)! L, 1 and approaches oo at. 
points of charge positions 

. 1 1 dv¢(a)(v) 
Z =X +'lY =·- ( -·----• a=-1,2,3.. (20) 

<la <la <la . rr a ( 1+ v) 2 

The bag boundary G is defined by eq. (19) at Rez 2 =0-

III. RESULTS AND CONCLUSIONS 

The equation for boundary G can be written as 

x
0

(r)=ReF(ir), y
0

(r)=lmF(ir), -=<r<oo. 

Integration in (19) can be performed numerically. The bag 
shape at A =30 is shown in ~· The boundary G has four 

. dxa dyo . h . cusps at po1nts, where ---.and _,vanls s1multaneously. 
dr dr 

The positions of charges (~)are calculated by (20). 
As was to be expected, the bag is synnnetric relat,ive to the 

dXo dyn . 
A4 .J\,A6-= 0, ----"';6·0; at pomt A3 

d T d T 
x -axis. At points 
dy 0 dx0 - =·0, --·;6•0. 
dr ~lr 

As A->oo the bag "stretches" along the x-axis, with its 
s12e along the y -axis being finite; the positions of all 

charges and extremal points 
of. the boundary A1 ... ,A 7 can 
'be calculated analytically up 

A, 

..-----r-

A,;> •Q2 
A5 A, 

q, 

(A1 
•q, 

to the terms exponentially 
decreasing with growing Xq =R. 
An idea of the bag asymptJtic 
shape can be gained from the 
following relations a~ A~oo: 

Fig.l. The b~g shape af 
'A=30. At····•.A7 are po~nts at 

which at least one of.the de-
. . dxa dya . . I 

r1vat1ves -d-, -d--· van1shes; 
T . T .. 

x denotes the charge po'si tions. 
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Xq
1 

=·R ... :-(log 4~:..., ~ ) ; 
Yq

1
=0, Yq =·-Y ->112· 2 Qo • ' ., 

R 
Xq =· Xq3=·-·2' . 2 

xA ... R+(2log2-1)/rr; xA ... _,_g_log2 
1 2 1T 

lo!!:2 . 3log2-1 
XA -+ ~'• YA -+ 1' X A -> R +: ' 

3 1T 3 4 2rr ' 

XA ·= XA -> _,.!i,_, 3lo~2-1 '• y A _,y = y 
5 6 2 4rr 6 · q2 q2 

R 2log2-1 1 XA ... _,_, ____ ., YA -+Y .. -• 
7 2 2rr 7 q2 2 

YA ... J...,_.l 
4 2 7;"' 

-Y A ... l..,_J_ 
6 4 2rr 

Corrections to coordinates in (21) are of the order 

(21) 

O(exp ( _,-;li)). 
From (21) it follows that at large separations between the 

charge q 1 and charges q2 3 the bag is a set of three strips of 
width 2, I, I, respectively, with the point of junction 
X=Y =0 .. 

The total energy of the.3-particle state in the bag is 
a sum of energies of the field, U eJ•, and bag U B: 

U=U61 +U~. 

1 where UB=·ySB,SB is the bag area; U61 =-]-(2<1l(zq
1

)-<ll(zq
2
)-<l>(zq

3
)), 

<ll is the nonsingular part of the electrostatic potential. The 
energy U can also be calculated numerically; by asymptotic 
estimations, U .. aR as R ... oo. · 

With decreasing A all points of the charge positions ap­
proach the origin of coordinates. At A =3, 4 two parts of the 
boundary G corresponding to the integration of branches ¢ (1) , 

¢(3)in (19) osculate at a point (x 0 ,o), x 0 <o (Fig.2). With 

xq2 

A 

• q~ 

8 

Y further decreasing A the boun­

X 
q, 

dary G gets self-intersections; 
such "two-sheeted" solutions, 
physically, are not acceptable. 

Fig.2. The bag shape at A·=3.4. 
Two parts of the boundary os­
culate at point A.The scale is 
twice that of Fig.!. 
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The fact of appearance of self-intersections points to a pos­
sibility of other solutions for such configurations of char­
ges. Note that analogous self-intersections of the bag boun-, 
dary were observed in paper 151 for some states of four partic­
les placed on a straight line. 

So, for 3.4.::;.A<oo we have found physically acceptable solu­
tions for symmetric three-particle states in the static bag, 
described by the relations (14, 17, 19-20). These solutions 
depend on one parameter A connected with coordinates of par­
ticles by (20), and these, naturally, do not cover the whole 
(two-parameter) set of symmetric configurations. Completedes­
cription of all configurations of sucfi a type, in our view, 
can be achieved on the basic of the class of functions (13) 
with a more complicated structure of cuts on the complex 
z 2 -plane. 

It seems that in the two-dimensional model exact solutions 
can be found also for three particles interacting with two 
effective Abelian gauge fields (color quarks in a heavy bary­
on). In fact, the two gauge fields are subject to the fol­
lowing boundary conditions 

i8 ·e 
E1e =-cosx. E 2e

1 
=sinx. Imx=·O 

and the transformation z 1 =·-;;2 ___ !..__~, maps the bag boundary 
E 1 (z)+E 2(z) 

onto the unit circle. The choice of appropriate analytic func­
tions E 1 (z), E2 (z) represents an interesting b.ut much more 
complex problem than in the case of one gauge field we have 
considered. 

The exact solutions we have obtained are the fi'rst ones 
in the static bag model, which describe the states of partic­
les not lying on the same straight line. These solutions al­
l~w us to understand what is the bag shape for configurations 
of two pairs "quark-antiquark" of one color, in which both 
the quarks are very close to each other (and form an "effecti­
ve charge" 2q) and the positions of antiquarks are symmetric 
with respect to x-axis (charges q2 ,q

3 
). An exact solution of 

the four-quark problem seems to be possible on the basis of 
the class of functions like (.13), where <l>(z 2 ,¢) is a polyno­
mial of the fourth power in ¢. 

Further study of multiparticle states in the two-dimensio­
nal bag model is, in our opinion, of a considerable interest 
from the mathematical and physical viewpoint; it will allow a 
deeper understanding 9f the structure of the model in a more 
realistic case of three space dimensions. 
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liH03eMQeB B.ll. 0 Tpext:IaCTii'IHbiX COCTOSIIUUIX 
B ABYMepHOH CTaTHCTH'leCKOH MIT bag MOAenn 

E2-82-166 

PaCCMaTpHBaiDTCSI CHMMeTpHt:IHble KOH~HrypaQHH 3-x t:IaCTHU, BSa­
HMOAeHCTBYIO~X C aoeneBbiM KannopOBO'!Hb!M noneM D CTaTllCTU'IeCKOH 
AByMepHOH MIT bag MOAenll. MeTOAOM KOH~opMHhiX OToopaJKeHHH uaif­
AeHo TO'lHOe pemenne AnSI rpaHHUbl 11MemKa11

, SaBHCR~ee OT OAHOrO 
napaMeTpa. HccneAoBaaa acnMnToTnKa pemeana npn 6onbmHX paccToa­
HHHX Me~y OAHOH t:IaCTHQeH ll ABYMH APYrHMH. 

Pa6oTa BbiiiOnHeHa B naoopaTOPHH TeopeTH'leCKOH ~HSHKH mum. 

npenpHHT 06~eAHHeHHOro HHCTHTYTa RAePHWX HCCneAO&aHHH. Ay6Ha 1982 

Inozemtsev V.I. On Three-Particle States in Two­
Dimensional Static MIT Bag Model 

E2-82-166 

Symmetric configurations are considered for three particles 
interacting with an Abelian gauge field in the static two­
dimensional MIT bag model. By a conformal mapping an exact so­
lution for the bag boundary is obtained, which depends on one 
parameter. The asymptotic behaviour of the solution is ·studied 
at large separations between one particle and two others. 

The inves.tigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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