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1. INTRODUCTION

Perturbative QCD is intensively applied now to various
processes involving large momentum transfers, both in spa-
cellke (q =—Q2<0) and timelike (q%>0) regions (for a review

e/l 3) However, the coupling constant g(g) (i.e., the ex~
pansion parameter) is defined usually with the reference to
some Euclidean (spacelike) configuration of momenta of scale
u. For spacelike q this produces no special complications.
One simply uses the renormalization group to sum up the lo-
garithmic corrections (g? (u)1In(Q2 /42 )N that appear in
higher orders and arrlves at the expansion in the effective
coupllng constant a (Q ) which in the lowest approximation is
given by the famous asymptotic freedom formula 71/,

N 4n
(11-2N, /3) In(Q¥/A%)

where A is the "fundamental" scale of QCD. In general the
A—parametrlzatlon of a (Q2)1s a series expansion in 1/L
(where L =1n(Q /A ), and the definition ofA is fixed
only if the O(1/L®) —term is added to eq. (1’4

For tlmellke q there appear, however, ir —factors
(In(Q /p ) » In(q® /;1 )t oim), and it is not clear a priori
what is the effective expansion parameter in this region. This
problem has been discussed recently in a very suggestive pa-
per by Pennlngton and Ross’5’. These authors analysed the ratio
R(q®)=o(e¢"e~ - hadrons)/o(e*e~» p*p~) for which the
analytic continuation from the spacelike to timelike region
is well defined and investigated whlch of the three ansitze

a  (Q

(1

(a (q )o lag (-a®) | and Rea (-q ) better absorbs the
(n2/L2)N ~Corrections * 1n the timelike region g >O Their
conclusmn was that lag (~q 2 )| is better than as(q )and

Rea (—q ). Nevertheless, it is easy to demonstrate by a stra-
1ghtforward calculation that a4 (-9®)| cannot absorb all the
(n?/L2)N  —terms associated w1th the analytic continuation
of the In(Q%/u?) -factors. Our main goal in the present let-
ter is to show that by using the A-parametrization for

* 0dd powers of (in/L) cancel because R 1s real.
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a_(Q2) in the spacelike region it is possible to construct
for R(q®) in the timelike region the expansion in which all
the (@®/L®)N -terms are summed up explicitly.

2. A-PARAMETRIZATION IN SPACELIKE REGION

The starting point for the A -parametrization is the Gell~-
Mann-Low equation taken as a series expansion in G=a /4n:

1 b bsbg - b?
L=l@%A®) = ——+—me+a+ 20 La.06?, (@
0 b’ by

where by are ;}36—;unction coefficients: bg=11 —2N,/3"t/ p 1=
=102-38N¢/3"%]  bY® =2857/2-5033N;/18 + 325N% /54" V. The
parameter A in eq. (2) is due to the lower boundary of the
GML integral/s'g/ By a particular choice of A one fixes the
definition of A: A=A{A)*. Eq. (2) is solved by iterations
and the result is reexpanded in 1/L:

2. dr Ly 4 2 by bebo —bf 3
a (Q7) = {1-————+-——2—[L1— —L .+ 1+0(/L D%, (3)
bl L L vy 1 b} (
where .
L, -2
1=—t;-(z)--ln(bol..)—A. (4)

The expansion (3) is useful, of course, only if it conver-
ges rapidly enough. In fact, the convergence of the 1/L  se-
ries depends (i) on the value of L we are interested in and
(ii) on the choice of A.

. We emphasize that the most important for perturbative QCD
1s the region L > 3, since L=3 corresponds to ¢ .0.5, and
the reliability of perturbation theory for larger a_1s ques-
tionable. Hence, in a realistic situation the naives expansion
parameter 1/L is smaller than (but usually close to) one third.
Of course, 1/3 is not very small, so one must check the coef-
§1c1ents of the 1/, expansion more carefully. First, there

1s a A-convention-independent term (b b b2 4,2

which reduces for Ny =3 to roughly O.(25;27I92 :éd)/g)i(\)rts,)there-
fore, less than 3%-correction to the simplest formula m.
There are also A-convéntion-dependent terms like Ly/L,L{/L2
and one should choose A so as to minimize the upper value of
the ratio Ly/L in the L-region of interest.

- . .
Of course, A depends also on the renormalization scheme
chosen.

-
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If one takes, e.g., A=Aopt=(b1/b§)ln(4b0) , then
L1=(b1/b%)ln(L/4) and the ratio L,/L is smaller than 7%
in the whole region L >3. Another choice /1%/is to take
A=A@Q%)=(b,/b5)In(bgLy), where LQ=1n(Q02/A2 } and
Q% lies somewhere in the middle of the QF-region analysed.

In this case L1=(b1/b(2))1n(L/L0), i.e., LyL is zero
for Q2=Q% and smaller than 7% for all@Q®in the region where
L >3. An important observation is that both the choices mi-
nimize the corrections not only in eq. (3) but also in the
GML equation (2).

Really, for small G the only dangerous term in eq. (2) is
InG, hence, the best thing to do is to compensate it by taking
A:—(bl/bg)ln(_}, where G is aS(Q2 Y/ 4n averaged (in some
sense) over the relevant Q? -region. After this has been done,
one may safely solve eq. (2) by iterations and perform the
1/1, —expansion. For a proper choice of A eq. (3) has 17 accura-
cy for L >3, and, moreover, the total correction to the
simplest formula (1) is less than 10%.. However, acce;ting the
most popular prescription Apop=(b1/bg)lnb0=A(Q2=eA )

(the only motivation forA being the "aesthetic" criterion
that L should have the shortest form L = (b, /b%)lnL) ) one
minimizes L,/L in the region Q2.3A% nobody is really interes—
ted in. Moreover, in the important region L -3 one has

L‘;OP/L ~1/3 and the convergence of the 1/L -series is very
poor in this case.

Thus, the A —parametrization (eq. (3)) gives a rather com-—
pact and sufficiently precise expression for the effective
coupling constant in the spacelike region provided a proper
choice of the A -parameter has been made.

3. A-PARAMETRIZATION AND R( e e - HADRONS; §)

The standard procedure(see,e.g., 11/ and references therein)
is to calculate the derivative D@Q%)=@Q%vdQ? of the vacuum
polarization t(Q%)related to R by

R(s) = %g(c(—s rid) —t-s —ieg). (5)

In perturbative QCD D(Qz) is given by the as(Qz)—expansion:

a Q%) Q%) 2 Q?®
D@®) =S eq 114 —° +d2(“s( ) +d3(-f—§£——2-)2 sl (6)
q 4 m
Only dp is known now ‘11127 jts value depending on the re-

normalization scheme chosen. Using eq. (5) and the definition
of D, one can relate R(8) (or, more precisely, its perturbative
QCD version R9CD(s) ) directly to D(Q%)



-8 + i
R9Pe) - 1 [ pde, )
] —g—ie o
Integration in eq. (7) goes below the real axis from -8 — ie
to zero and then above the real axis to -s +ie.
In a shorthand notation D—>R=0¢([D]. In some important

cases the integral (7) can be calculated explicitly: (8)
1 =1,
1 1 1 1 °
—— => —arctg(r/L ) = =1~ = we by,
L, T glr/Ls) L, 3 LES * (€))]
(L,/Ly) (/L4 L 0) = (Lg/maretg (/L ) + 1
=> =
2 2 2
L
) L% st 7 (10)
ln(Ls/LO){l 2 | 5 72
= - oo b4 — + ..
: L: 6 L]
arn
2
_13=> 21 5 = 12{1— 772 +ee b,
L2 L%+ n L2 L2
n—-2 2
SR DL B A R gL LD
Ly (n~1)! dL Lo+ 7 L? L 6

(12)

where [, = In(s/A%), La=ln(0//\2)
pending on the A-choice.

Using the A -parametrization for a (o) and incorporating
eqs. (8)-(12) (as well as their generalizations for 1n21_,/L3,
InL/L® etc.) produces the expansion for R®CD(g)

R9Ds) = (Eei){u 2, 4,0l /m* (13)

and 1, 0 is the constant de-

in which all the (#®?/L®%N-terms are summed up explicitly.

4. QUEST FOR THE BEST EXPANSION PARAMETER

Note that the expansion (13) is not an expansion in powers
of some particular parameter since the application of the
® ~operation normally violates nonlinear relations: (I)[I/Lz] #
# (@[1/L])%, etc. A priori, there are no grounds to believe
that a power expansion is better than any other (say, Fourier).
In fact, the expansion (13) converges better than the genera-—

ting expansion (6) for D{o) because, as it follows from eqs.
@-2), (I)[aIS‘I] is always smaller than aé“. Moreover,

((D[aIZH]I/N+1 <((‘D[ar\s{ )] /N i.e., the effective ex-— .
pansion parameter decreases in higher orders. Thus, if one
succeeded in obtaining a good als\I expansion for D(g){with all
dy being small numbers), then the resulting ®[a}] -expansion
for R 9 l:'(S) is even better, and the best thing to do is to
leave it as it is.

However, if one insists that the result for R®CP (5)should
have a form of a power expansion, then the best expansion
parameter is evidently ®laj/#] because the largest nontri-
vial (i.e., O(U‘S/")) term of the expansion is reproduced in
the exact form and only higher terms are spoiled. The analogue
of the simplest A -parametrization for as(Qz) (eq. (1)) is then

~ 2 4 7
ag (q%) = —— aretg( =) (14)
° bo In(q%/A%)

Using egqs. (8)-(13) it is easy to realize that as(qz)i~s real-
ly a bad expansion parameter, because if omne reexpands Es Q")
in agy(q"),then there appear terms with large coefficients

2

- 1,7bg 2 ag(q 2 - 2

% @) =a )-GO ELE aa ronEsi as)

If one reexpands ag @) in Reas(—qz) then the coyresponding
coefficient is even 2 times larger, whereas if a (qQD)is reex-
panded in IaS(—qz)l, the coefficient is 2 times smaller.

This observation is in full agreement with the result of
ref.’® quoted in the introduction.

5. CONCLUDING REMARKS

It should be noted that the change of the expansion para-—
meter as given by eq. (15) affects only the (as/”)3 coefficient
of the RQCD-expansion which has not been calculated yet. So,
within the present-day accuracy, all expansions for R9CD have
the same coefficients. It is worth emphasizing, nevertheless,

_ that the #%/L2 terms produce for a > 0.3 more than 20%-correc-

tion to a4,i.e., they are more important (for an optimal
choice of the A-parameter) than the 2-loop corrections in
eq. (3)).

To conclude, we have described the construction of an op-
timized (i.e., rapidly convergent) A-parametrization for the
effective QCD coupling constant in the spacelike region, and
then we used it to obtain the fastest convergent expansion
for the time-like quantity RQCD(S).The technique outlined in
the present paper can be applied also to other RRCD-]jike



quantities. Such quantities do appear, e.g., in the QCD sum
rule approach/13/in which the analysis of hadronic properties
is based on the study of vacuum correlators of various cur-
rents. They appear also in an alternative approach/14/ba§ed
on the finite-energy sum rules 1%/, It should be stressed that
in the latter approach the R8CP-1like quantities enter into the
basic integral relation, and the analysis is most convenient—
ly performed if one has a simple analytic expression similar
to that described above.
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Pamomrun A.B. ONTHMAanbHAS JAMOOA~1apAMETDPHSAHA E2-82-159
addexTrBHOM KoHCTAHTH CcBA3K B KX[I OiIsi NIpOCTPAHCTBEHHO™
¥ ppeMeHunonobHoil obnactedl

ChopMynUpPOBAH ANTOPHTM, ITO3BOJIAKIMII B SABHOM BHLE IPOCYMMH—
poBatry (» 2/1112 Q 2/A2 ))N —-onupaskd K a¢(Q 2), 06y CIIOBII@HHbIE
AHAMUTHYECKHM IIPOJOITKeHHEM H3 NMPOCTPAHCTBEHHO-TIONOGHOH BO Bpe-
MeHHNomo6Hyw o6llacThb Ilepelad HMIyIIbca. JI0Ka3aHo, YTO BO BpeMeHH

nogo6uoil of6acTy HAWNYUMHM [I2paMeTpPOM DAas3JIoKeHHs SIBIIAETCH
(4/b ) arctg(w/In(q%/A%)) .

PaGora Bumonnena B JlaBopaTopuu Teopernueckoi ¢usuxu OHIU.
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Radyushkin A.V. Optimized Lambda-Parametrization E2-82-159
for the QCD Running Coupling Constant in Spacelike and
Timelike Regions

The algorithm is described that enables one to perform an
explicit summation of all the (#®/In® (Q% /A% )N -correcti-
ons to a#Qz)thgt appear owing to the analytic continuation
from spacelike to timelike region of momentum transfer.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR.
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