

объеданенный hияtитуt
 ядериых

исследований
дубна
$2690 / 82$

$$
76-82
$$

E2-82-159
A.V.Radyushkin

OPTIMIZED LAMBDA-PARAMETRIZATION FOR THE QCD RUNNING COUPLING CONSTANT
IN SPACELIKE AND TIMELIKE REGIONS

Submitted to "Physics Letters B".

1. INTRODUCTION

Perturbative QCD is intensively applied now to various processes involving large momentum transfers, both in spacelike ($\mathrm{q}^{2}=-\mathrm{Q}^{2}<0$) and timelike ($\mathrm{q}^{2}>0$) regions (for a review see $\left.{ }^{/ 1-3 /}\right)$. However, the coupling constant $g(\mu)$ (i.e., the expansion parameter) is defined usually with the reference to some Euclidean (spacelike) configuration of momenta of scale μ. For spacelike q this produces no special complications. One simply uses the renormalization group to sum up the logarithmic corrections $\left(g^{2}(\mu) \ln \left(Q^{2} / \mu^{2}\right)\right)^{N}$ that appear in higher orders and arrives at the expansion in the effective coupling constant $a_{s}\left(Q^{2}\right)$ which in the lowest approximation is given by the famous asymptotic freedom formula ${ }^{1 / 1}$.

$$
\begin{equation*}
a_{\mathrm{s}}\left(\mathrm{Q}^{2}\right)=\frac{4 \pi}{\left(11-2 \mathrm{~N}_{\mathrm{f}} / 3\right) \ln \left(\mathrm{Q}^{2} / \Lambda^{2}\right)}, \tag{1}
\end{equation*}
$$

where Λ is the "fundamental" scale of $Q C D$. In general, the Λ-parametrization of $\alpha_{s}\left(Q^{2}\right)$ is a series expansion in $1 / L$ (where $\left.\mathrm{L}=\ln \left(Q^{2} / \Lambda_{2}^{2}\right)\right)$, and the definition of Λ, is fixed only if the $\mathrm{O}\left(1 / \mathrm{L}^{2}\right)$-term is added to eq. (1$)^{/ 4 /}$.

For timelike q there appear, however, $i \pi$-factors $\left(\ln \left(Q^{2} / \mu^{2}\right) \rightarrow \ln \left(\mathrm{q}^{2} / \mu^{2}\right) \pm \mathrm{i} \pi\right), \quad$ and it is not clear a priori what is the effective expansion parameter in this region. This problem has been discussed recently in a very suggestive paper by Pennington and Ross ${ }^{\prime 5}$. These authors analysed the ratio $\mathrm{R}\left(\mathrm{q}^{2}\right)=\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$ hadrons $) / \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right)$for which the analytic continuation from the spacelike to timelike region is well-defined and investigated which of the three ansätze $\left(a_{g}\left(q^{2}\right),\left|a_{g}\left(-q^{2}\right)\right| \quad\right.$ and $\operatorname{Re} a_{g}\left(-q^{2}\right)$ better absorbs the $\left(\pi^{2} / L^{2}\right)^{N}$-corrections * in the timelike region $q^{2}>0$. Their conclusion was that $\left|a_{\mathrm{s}}\left(-\mathrm{q}^{2}\right)\right|$ is better than $a_{\mathrm{g}}\left(\mathrm{q}^{2}\right)$ and $\operatorname{Re} \alpha_{\mathrm{s}}\left(-\mathrm{q}^{2}\right)$. Nevertheless, it is easy to demonstrate by a straightforward calculation that $\left|a_{s}\left(-q^{2}\right)\right|$ cannot absorb all the $\left(\pi^{2} / L^{2}\right)^{N}$-terms associated with the analytic continuation of the $\ln \left(\mathbf{Q}^{2} / \mu^{2}\right)$-factors. Our main goal in the present letter is to show that by using the Λ-parametrization for

[^0]
$a_{\mathrm{s}}\left(\mathrm{Q}^{2}\right)$ in the spacelike region it is possible to construct for $R\left(q^{2}\right)$ in the timelike region the expansion in which all the $\left(\pi^{2} / L^{2}\right)^{N}$ terms are summed up explicitly.

2. Λ-PARAMETRIZATION IN SPACELIKE REGION

The starting point for the Λ-parametrization is the Gell-Mann-Low equation taken as a series expansion in $G=a_{s} / 4 \pi$:

$$
\begin{equation*}
\mathrm{L} \equiv \ln \left(\mathrm{Q}^{2} / \Lambda^{2}\right)=\frac{1}{\mathrm{~b}_{0} \mathrm{G}}+\frac{\mathrm{b}_{1}}{\mathrm{~b}_{0}^{2}} \ln \mathrm{G}+\Delta+\frac{\mathrm{b}_{2} \mathrm{~b}_{0}-\mathrm{b}_{1}^{2}}{\mathrm{~b}_{0}^{3}} \mathrm{G}+\mathrm{O}\left(\mathrm{G}^{2}\right) \tag{2}
\end{equation*}
$$

where b_{k} are β-function coefficients: $\mathrm{b}_{0}=11-2 \mathrm{~N}_{\mathrm{g}} / 3^{/ 1 /} \mathrm{b}_{1} \mathrm{~b}_{1}=$ $=102-38 \mathrm{~N}_{\mathrm{f}} / 3^{/ 6}, \quad \mathrm{~b}_{2}^{\text {MS }}=2857 / 2-5033 \mathrm{~N}_{\mathrm{f}} / 18+325 \mathrm{~N}_{\mathrm{f}}^{2} / 54^{\prime / 7 /}$. The parameter Δ in eq. (2) is due to the lower boundary of the GML integra1 ${ }^{18,9 /}$. By a particular choice of Δ one fixes the definition of $\Lambda: \Lambda=\Lambda(\Delta)$. . Eq. (2) is solved by iterations and the result is reexpanded in $1 / L$

$$
\begin{equation*}
a_{s}\left(Q^{2}\right)=\frac{4 \pi}{b_{0} \mathrm{~L}}\left\{1-\frac{L_{1}}{\mathrm{~L}}+\frac{1}{\mathrm{~L}^{2}}\left[\mathrm{~L}_{1}^{2}-\frac{\mathrm{b}_{1}}{\mathrm{~b}_{0}^{2}} \mathrm{~L}_{1}+\frac{\mathrm{b}_{2} \mathrm{~b}_{0}-\mathrm{b}_{1}^{2}}{\mathrm{~b}_{0}^{4}}\right]+\mathrm{O}\left(1 / \mathrm{L}^{3}\right)\right\}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{L}_{1}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{0}^{2}} \ln \left(\mathrm{~b}_{0} \mathrm{~L}\right)-\Delta \tag{4}
\end{equation*}
$$

The expansion (3) is useful, of course, only if it converges rapidly enough. In fact, the convergence of the $1 / \mathrm{L}$ series depends (i) on the value of L we are interested in and (ii) on the choice of Δ.

We emphasize that the most important for perturbative QCD is the region $L>3$, since $L=3$ corresponds to $a_{s}-0.5$, and the reliability of perturbation theory for larger a_{s} is questionable. Hence, in a realistic situation the naive expansion parameter $1 / \mathrm{L}$ is smaller than (but usually close to) one third Of course, $1 / 3$ is not very small, so one must check the coefficients of the $1 / \mathrm{L}$ expansion more carefully. First, there is a Δ-convention-independent term ($\left.\mathrm{b}_{2} \mathrm{~b}_{0}-\mathrm{b}_{1}^{2}\right) /\left(\mathrm{b}_{0}^{4} \mathrm{~L}^{2}\right)$ which reduces for $N_{f}=3$ to roughly $0.25 / L^{2}$ and gives, therefore, less than 3%-correction to the simplest formula (1).
 and one should choose Δ so as to minimize the upper value of the ratio L_{1} / L in the L-region of interest.

[^1]If one takes, e.g., $\Delta=\Delta_{\mathrm{gpt}}=\left(\mathrm{b}_{1} / \mathrm{b}_{0}^{2}\right) \ln \left(4 \mathrm{~b}_{0}\right)$, then $L_{1}=\left(b_{1} / b_{0}^{2}\right) \ln (\mathrm{L} / 4) \quad$ and the ratio L_{1} / L is smaller than 7% in the whole region $L>3$. Another choice ${ }^{10 /}$ is to take $\Delta=\Delta\left(Q_{0}^{2}\right)=\left(\mathrm{b}_{1} / \mathrm{b}_{0}^{2}\right) \ln \left(\mathrm{b}_{0} \mathrm{~L}_{0}\right)$, where $\mathrm{L}_{0}=\ln \left(\mathrm{Q}_{0}^{2} / \Lambda^{2}\right)$ and Q_{0}^{2} lies somewhere in the middle of the Q^{2}-region analysed. In this case $L_{1}=\left(b_{1} / b_{0}^{2}\right) \ln \left(L / L_{0}\right)$, i.e., L_{1} / L is zero for $Q^{2}=Q_{0}^{2}$ and smaller than 7% for all Q^{2} in the region where $\mathrm{L}>3$. An important observation is that both the choices minimize the corrections not only in eq. (3) but also in the GML equation (2).

Really, for small G the only dangerous term in eq. (2) is $\ln G$, hence, the best thing to do is to compensate it by taking $\Delta=-\left(\mathrm{b}_{1} / \mathrm{b}_{0}^{2}\right) \ln \overline{\mathrm{G}}$, where $\overline{\mathrm{G}}$ is $a_{\mathrm{s}}\left(\mathrm{Q}^{2}\right) / 4 \pi \quad$ averaged (in some sense) over the relevant Q^{2}-region. After this has been done, one may safely solve eq. (2) by iterations and perform the $1 / \mathrm{L}$-expansion. For a proper choice of Δ eq. (3) has 1% accuracy for $\mathrm{L}>3$, and, moreover, the total correction to the simplest formula (1) is less than 10%. However, accepting the most popular prescription $\Delta_{\text {pop }}=\left(\mathrm{b}_{1} / \mathrm{b}_{0}^{2}\right) \ln \mathrm{b}_{0}=\Delta\left(\mathrm{Q}^{2}=\mathrm{e} \Lambda^{2}\right)$
(the only motivation for $\Delta_{\text {pop }}$ being the "aesthetic" criterion that L_{1} should have the shortest form $L_{1}=\left(b_{1} / b_{0}^{2}\right) \ln L$)) one minimizes L_{1} / L in the region $Q^{2} \sim 3 \Lambda^{2}$ nobody is really interested in. Moreover, in the important region L -3 one has $L_{1}^{\text {pop }} / \mathrm{L} \sim 1 / 3$ and the convergence of the $1 / \mathrm{L}$-series is very poor in this case.

Thus, the Λ-parametrization (eq. (3)) gives a rather compact and sufficiently precise expression for the effective coupling constant in the spacelike region provided a proper choice of the Δ-parameter has been made.

3. Λ-PARAMETRIZATION AND $R\left(e^{+} e^{-} \rightarrow\right.$ HADRONS; s)

The standard procedure(see,e.g., $/ 11 /$ and references therein) is to calculate the derivative $D\left(Q^{2}\right)=Q^{2} d / d Q^{2}$ of the vacuum polarization $t\left(Q^{2}\right)$ related to R by

$$
\begin{equation*}
R(s)=\frac{1}{2 \pi i}(t(-s+i \epsilon)-t(-s-i \epsilon)) \tag{5}
\end{equation*}
$$

In perturbative $Q C D D\left(Q^{2}\right)$ is given by the $a_{s}\left(Q^{2}\right)$-expansion:

$$
\begin{equation*}
\mathrm{D}\left(\mathrm{Q}^{2}\right)=\sum_{\mathrm{q}} \mathrm{e}_{\mathrm{q}}^{2}\left\{1+\frac{a_{\mathrm{s}}\left(\mathrm{Q}^{2}\right)}{\pi}+\mathrm{d}_{2}\left(\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{\pi}\right)^{2}+\mathrm{d}_{3}\left(\frac{a_{\mathrm{s}}\left(\mathrm{Q}^{2}\right)}{\pi}\right)^{2}+\ldots\right\} \tag{6}
\end{equation*}
$$

Only d_{2} is known now 11,12 , its value depending on the renormalization scheme chosen. Using eq. (5) and the definition of D, one can relate $R(s)$ (or, more precisely, its perturbative QCD version $R^{Q C D}(s)$) directly to $D\left(Q^{2}\right)$

$$
\begin{equation*}
\mathrm{R}^{\mathrm{QCD}}(\mathrm{~s})=\frac{1}{2 \pi \mathrm{i}} \int_{-\mathrm{s}-\mathrm{i} \epsilon}^{-\mathrm{s}+\mathrm{i} \epsilon} \mathrm{D}(\sigma) \frac{\mathrm{d} \sigma}{\sigma} . \tag{7}
\end{equation*}
$$

Integration in eq. (7) goes below the real axis from $-\mathrm{s}-\mathrm{i}$ to zero and then above the real axis to $-s+i \epsilon$.

In a shorthand notation $D \Rightarrow R \equiv \Phi[D]$. In some important cases the integral (7) can be calculated explicitly:

$$
\begin{equation*}
1 \Rightarrow 1 \tag{8}
\end{equation*}
$$

$\frac{1}{\mathrm{~L}_{\sigma}} \Rightarrow \frac{1}{\pi} \operatorname{arctg}\left(\pi / \mathrm{L}_{\mathrm{s}}\right)=\frac{1}{\mathrm{~L}_{\mathrm{s}}}\left\{1-\frac{1}{3} \frac{\pi^{2}}{\mathrm{~L}_{\mathrm{s}}^{2}}+\ldots\right\}$,

$$
\begin{equation*}
\frac{\ln \left(\mathrm{L}_{\sigma} / \mathrm{L}_{0}\right)}{\mathrm{L}_{\sigma}^{2}} \Rightarrow \frac{\ln \left(\sqrt{\mathrm{~L}_{\mathrm{s}}^{2}+\pi^{2} / \mathrm{L}_{0}}\right)-\left(\mathrm{L}_{\mathrm{s}} / \pi\right) \operatorname{arctg}\left(\pi / \mathrm{L}_{\mathrm{s}}\right)+1}{\mathrm{~L}_{\mathrm{s}}^{2}+\pi^{2}}= \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{\ln \left(\mathrm{L}_{\mathrm{s}} / \mathrm{L}_{0}\right)}{\mathrm{L}_{\mathrm{s}}^{2}}\left\{1-\frac{\pi^{2}}{\mathrm{~L}_{\mathrm{s}}^{2}}+\ldots\right\}+\frac{5}{6} \frac{\pi^{2}}{\mathrm{~L}_{\mathrm{s}}^{4}}+\ldots . \tag{11}
\end{equation*}
$$

$$
\frac{1}{\mathrm{~L}_{\sigma}^{2}} \Rightarrow \frac{1}{\mathrm{~L}_{\mathrm{s}}^{2}+\pi^{2}}=\frac{1}{\mathrm{~L}_{\mathrm{s}}^{2}}\left\{1-\frac{\pi^{2}}{\mathrm{~L}_{\mathrm{s}}^{2}}+\cdots\right\}
$$

$$
\begin{equation*}
\frac{1}{L_{\sigma}^{n}} \Rightarrow(-1)^{n} \frac{1}{(n-1)!}\left(-\frac{d}{d L_{s}}\right)^{n-2} \frac{1}{L_{s^{+}}^{2}-\pi^{2}}=\frac{1}{L_{s}^{n}}\left\{1-\frac{\pi^{2}}{L_{s}^{2}} \frac{n(n+1)}{6}+\ldots\right\}, \tag{12}
\end{equation*}
$$

where $\mathrm{L}_{\mathrm{s}}=\ln \left(\mathrm{s} / \Lambda^{2}\right), \mathrm{L}_{\sigma}=\ln \left(\sigma / \Lambda^{2}\right)$ and L_{0} is the constant depending on the Δ-choice.

Using the Λ-parametrization for $a_{s}(\sigma)$ and incorporating eqs. (8)-(12) (as well as their generalizations for $\ln ^{2} \mathrm{~L} / \mathrm{L}^{3}$, $\ln L / L^{3}$ etc.) produces the expansion for $R^{Q C D}(s)$

$$
\begin{equation*}
R^{Q C D}(s)=\left(\sum_{q} e_{q}^{2}\right)\left\{1+\sum_{k=1} d_{k} \Phi\left[\left(a_{s} / \pi\right)^{k}\right]\right\} \tag{13}
\end{equation*}
$$

in which all the $\left(\pi^{2} / L^{2}\right)^{N}$-terms are summed up explicitly.

4. QUEST FOR THE BEST EXPANSION PARAMETER

Note that the expansion (13) is not an expansion in powers of some particular parameter since the application of the Φ-operation normally violates nonlinear relations: $\Phi\left[1 / L^{2}\right] \neq$ $\neq(\Phi[1 / L])^{2}$, etc. A priori, there are no grounds to believe that a power expansion is better than any other (say, Fourier). In fact, the expansion (13) converges better than the genera-
ting expansion (6) for $D(\sigma)$ because, as it follows from eqs. (9)-(12), $\Phi\left[\alpha_{\mathbf{s}}^{\mathrm{N}}\right]$ is always smaller than $a_{\mathrm{s}}^{\mathrm{N}}$. Moreover,
$\left(\Phi\left[a_{s}^{N+1}\right]^{1 / N+1}<\left(\Phi\left[a_{\mathrm{s}}^{\mathrm{N}}\right]\right)^{1 / \mathrm{N}}\right.$ i.e., the effective expansion parameter decreases in higher orders. Thus, if one succeeded in obtaining a good $a_{\mathrm{s}}^{\mathrm{N}}$ expansion for $\mathrm{D}_{\mathrm{N}}(\sigma)$ (with all d_{N} being small numbers), then the resulting $\Phi\left[\alpha_{\mathrm{s}}^{\mathrm{N}}\right]$-expansion for $R^{Q C D}(s)$ is even better, and the best thing to do is to leave it as it is.

However, if one insists that the result for $R^{Q C D}$ (s) should have a form of a power expansion, then the best expansion parameter is evidently $\Phi\left[\alpha_{\mathrm{s}} / \pi\right]$ because the largest nontrivial (i.e., $O\left(\alpha_{s} / \pi\right)$) term of the expansion is reproduced in the exact form and only higher terms are spoiled. The analogue of the simplest Λ-parametrization for $a_{s}\left(Q^{2}\right)$ (eq. (1)) is then

$$
\begin{equation*}
\tilde{\alpha}_{s}\left(q^{2}\right)=\frac{4}{b_{0}} \operatorname{arctg}\left(\frac{\pi}{\ln \left(q^{2} / \Lambda^{2}\right)}\right) \tag{14}
\end{equation*}
$$

Using eqs. (8)-(13) it is easy to realize that $a_{s}\left(q^{2}\right)$ is really a bad expansion parameter, because if one reexpands $\tilde{\tilde{a}}_{\mathrm{s}}\left(\mathrm{q}^{2}\right)$ in $\alpha_{s}\left(q^{2}\right)$,then there appear terms with large coefficients

$$
\ddot{a}_{\mathrm{s}}\left(\mathrm{q}^{2}\right)=a_{\mathrm{s}}\left(\mathrm{q}^{2}\right)\left\{1-\frac{1}{3}\left(\frac{\pi \mathrm{~b}_{0}}{4}\right)^{2}\left(\frac{a_{\mathrm{s}}\left(\mathrm{q}^{2}\right)}{\pi}\right)^{2}+\ldots\right\} \simeq a_{\mathrm{s}}\left\{1-17\left(\frac{a_{\mathrm{s}}}{\pi}\right)^{2}+\ldots\right\} .(15)
$$

If one reexpands $\vec{a}_{\mathrm{s}}\left(\mathrm{q}^{2}\right)$ in $\operatorname{Re} a_{\mathrm{s}}\left(-\mathrm{q}^{2}\right)$ then the corresponding coefficient is even 2 times larger, whereas if $\tilde{a}_{s}\left(q^{2}\right)$ is reexpanded in $\left|\alpha_{s}\left(-q^{2}\right)\right|$, the coefficient is 2 times smaller. This observation is in full agreement with the result of ref. ${ }^{5}$ quoted in the introduction.

5. CONCLUDING REMARKS

It should be noted that the change of the expansion parameter as given by eq. (15) affects only the $\left(\alpha_{\mathrm{s}} / \pi\right)^{3}$ coefficient of the RQCD-expansion which has not been calculated yet. So, within the present-day accuracy, all expansions for $R^{\text {QCD }}$ have the same coefficients. It is worth emphasizing, nevertheless, that the π^{2} / L^{2} terms produce for $\alpha_{s} \geq 0.3$ more than 20% correc tion to a_{s}, i.e., they are more important (for an optimal choice of the Δ-parameter) than the 2 -loop corrections in eq. (3)).

To conclude, we have described the construction of an optimized (i.e., rapidly convergent) Λ-parametrization for the effective QCD coupling constant in the spacelike region, and then we used it to obtain the fastest convergent expansion for the time-like quantity $\mathrm{R}^{\mathrm{QCD}}(\mathrm{s})$. The technique outlined in the present paper can be applied also to other $R^{Q C D}-1$ ike
quantities. Such quantities do appear, e.g., in the QCD sum rule approach ${ }^{/ 13 /}$ in which the analysis of hadronic properties is based on the study of vacuum correlators of various currents. They appear also in an alternative approach ${ }^{14 /}$ based on the finite-energy sum rules $/ 15^{\prime}$. It should be stressed that
 basic integral relation, and the analysis is most conveniently performed if one has a simple analytic expression similar to that described above.

ACKNOWLEDGEMENTS

I am grateful to A.V.Efremov and D.V.Shirkov for their interest in this work and support. I thank D.I.Kazakov, O.V.Tarasov and A.A.Vladimirov for useful discussions.

REFERENCES

1. Politzer H.D. Physics Reports, 1974, 14C, p. 129.
2. Mueller A.H. Physics Reports, 1981, 73, p. 237. Reya E. Physics Reports, 1981, 69, p. 195.
3. Efremov A.V., Radyushkin A.V. Rivista del Nuovo Cimento, 1980, 3, No. 2.
4. Bace M. Physics Letters B, 1978, 78, p. 132.
5. Pennigton M.R., Ross G.G. Physics Letters B, 1981, 102, p. 167.
6. Caswe11 W. Phys.Rev.Letters, 1974, 33, p. 244. Jones D.R.T. Nucl.Physics B, 1974, 75; p. 531. Egoryan E.Sh., Tarasov O.V. Teor.Mat.Fizika, 1979, 41, p. 26 .
7. Tarasov 0.V., Vladimirov A.A., Zharkov A.Yu. Phys.Letters B, 1980, 93, p. 429.
8. Bardeen W.A. et al. Phys.Rev. D, 1978, 18, p. 3998.
9. Vladimirov A.A. Yad.Fizika, 1980, 31, p. 1083.
10. Abbott L.F. Phys.Rev.Letters, 1980, 44, p. 1569.
11. Chetyrkin K.G., Kataev A.L., Tkachov F.V. Nuc1.Phys.B, 1980, 174, p. 345.
12. Dine M., Sapirstein J. J.Phys.Rev.Lett., 1979, 43, p. 668. Celmaster W., Gonsalvez R. Phys.Rev.D, 1980, 21, p. 3112.
13. Shifman M.A., Vainshtein A.I., Zakharov V.I. Nuc1.Phys.B, 1979, 147, pp. 385, 448.
14. Krasnikov N.V., Pivovarov A.A. Preprint NBI-HE-81-38, Niels Bohr Institute, Kopenhagen (October 1981).
15. Chetyrkin K.G., Krasnikov N.V., Tavkhelidze A.N.. Physics Letters, B, 1978, 76, p. 83.

Received by Publishing Department
on February 261982.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the books listed below. Prices - in US $\$$, including the packing and registered postage

D9-10500 Proceedings of the Second Symposium on Collective Methods of Acceleration. Dubna, 1976. 11,00
D2-10533 Proceedings of the x International School on High Energy Physics for Young Scientists. Baku, 1976.
D13-11182 Proceedings of the IX International Symposium on Nuclear Electronics. Varna, 1977.
D17-11490 Proceedings of the International Symposium on Selected Problems of Statistical Mechanics. Subna, 1977.
D6-11574 Proceedings of the XV Symposium on Nuclear Spectroscopy and Nuclear Theory. Dubna, 1978.
D3-11787 Proceedings of the III International School on
D13-11807 Proceedings of the III International Meeting on Proportional and Drift Chambers. Dubna, 19 proceedings of the VI All-Union Conference on Charged Particle Accelerators. Dubna, 1978. 2 volumes.
D1,2-12450 Proceedings of the XII International School on High Energy Physics for Young Scientists. Bulgaria, Primorsko, 1978.

D-12965 The Proceedings of the International School on the Problems of Charged Particle Accelerators for Young Scientists. Minsk, 1979.
D11-80-13 The Proceedings of the International Conference on Systems and Techniques of Analytical Computing and Their Applications in Theoretical Physics. Dubna, 1979.
D4-80-271 The Proceedings of the International Symposium on Few Particle Problems in Nuclear Physics. Dubna, 1979.
D4-80-385 The Proceedings of the International School on Nuclear Structure. Alushta, 1980.

Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 2 volumes.
D4-80-572 N.N.Kolesnikov et al. "The Energies and Half-Lives for the $\alpha-$ and β-Decays of

D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981
9.50

Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980
9.00

Orders for the above-mentioned books can be sent at the address:
Publishing Department, JINR
Head Post Office, P.O.Box 79101000 Moscow, USSR

SUBJECT CATEGORIES of the jinr publications

Index
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Рапошкин А.B. Оптимальная лямбда-параметризация
 E2-82-159

 эффехтивной константы связи в КХД для пространственно-и времениподобной областей
Сформулирован алгоритм, позволяюпий в явком виде просуммировать $\left(\pi^{2} / \ln ^{2}\left(\mathrm{Q}^{2} / \Lambda^{2}\right)\right)^{N}$-поправки к $a_{\mathrm{s}}\left(\mathrm{Q}^{2}\right)$, обусповленнье аивитическим продолжением из пространственно-подобной во времениподобную область передач импульса. Показано, что во времени подобной области наилучшим параметром разложения является $\left(4 / \mathrm{b}_{0}\right) \operatorname{arctg}\left(\pi / \ln \left(\mathrm{q}^{2} / \Lambda^{2}\right)\right)$.

Работа выполнена в Лаборатории теоретической физики ОИЯи.

Препринт 0бъединенного института ядерных исследований. Дубна 1982

```
Radyushkin A.V. Optimized Lambda-Parametrization E2 ( DCD Running Coupling Constant in Spacelike and
Timelike Regions
The algorithm is described that enables one to perform an explicit summation of all the \(\quad\left(\pi^{2} / \ln ^{2}\left(Q^{2} / \Lambda^{2}\right)\right)^{N}\)-corrections to \(a_{s}\left(Q^{2}\right)\) that appear owing to the analytic continuation from spacelike to timelike region of momentum transfer.
The investigation has been performed at the Laboratory of Theoretical Physics, JINR.
```


[^0]: * Odd powers of ($i \pi / L$) cancel because R is real.

[^1]: * Of course, Λ depends also on the renormalization scheme chosen.

