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I. lNTRODUCTION 

According to the quark model a pion is the bound state of 
qunrk and antiquark. The discovered '!' and y -particles and 
their radial excitations were successfully described on the 
bnsis of the SchrBdinger equation. These mesons were consi­
drrcd to be compounds of heavy charmed and beauty quarks. 
Aiter this there appeared an opinion that the quarks which 
compose a pion should be light and their relative motion in 
Lhc pion should have a relativistic nature. 

That is why the relativistic equations for two particle 
hounrl states should be used for the description of the quarks 
mntion inside the pion. There are well-known relativistic 
t\Jo-particle equations of Bethe-Salpeter 111 and three-dimen­
,;innal equations that appear in the single-time approach of 
l.ogunov and Tavkhelidze 12 •31 and in the diagram technique of 
Kadyshevsky 14 •51 · 

ln the present paper we shall apply the covariant single­
time equal for the description of the asymptotics of a pion 
wave function (WF) when the interaction between quarks is 
chosen to be mediated by one gluon exchange. The interest 
in this problem stems from the interest to the problem of stu­
uing the asymptotic behaviour of the elastic pion form factor 
in QCD. 

It is natural that since in QCD there do not exist up to 
now methods of describing the interactions at large distances, 
the behaviour of the wave function (1-JF) can be studied only 
.'lt large values of relative momentum in the framework of this 
theory. 

In the paper to study the WF asymptotics we apply the 
formalism of the covariant single-time equations for the 
system composed of two particles with spins 1/2. 

The covariant single-time \-JF (denoted by - ) , which descri ·· 
bcs the relative motion in quark-antiquark system, is defined 
through the Bethe-Salpeter WF as follows 12 •6 •71 : 
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where . 'P(x) and iP (x) are the quark and ant;,iquark field opera-
tors, P=Pt+P2, x =X 1-x2, the vector IMK; Sa> charac-
terizes the compound system as a whole with the total mass 
M, s_pin S, its projection a and moving as a whole with momen­
tumK. T~esence of the invariant 8[Apx] -function. (Ai(p = 
= P Jl. I ..J P 2 ) _.under the integrand in (I . I) leads in the 
c.m.s. Ap = P!..JP"2=o to the coincidences of individual times 
xl = X0

2 of quarks. 
To take into account the QCD effect of the asymptotically 

free behaviour of the runnung coupling constant, we shall 
use here a modification of the amplitude of the one-gluon ex­
change in the region of small values of the momentum transfer 
Q2.This modification has been suggested in ref.1101 and pro­
vides the most simple Coulomb-like form of the corresponding 
quasipotential in the relativistic configurational representa­
tion. 

The relativistic single-time equation for spin WF (1.1) 
has the form 16 •3 •7·9• 111 : 

2~ 0 [ M- 2~ 0 )IV a 1 a2 ci 
p,mA p p,mA p MK p,mA p 

3 ... 
1 d ~k,mAp 

=-- 2:. r--
(2" ) 3 a 'a ' 2~ o 

(1. 2) , , 
ala.2 -+ .., 2 -ala2 -+ . v , , (~ ; ~ ; p ) 'P (~ ) . a 1 a2 p,mAp k,m..\p M,K k,mAp 

1 2 k,mAp 
In (1.2) the vectors &p,mAp and &k,mAp are the covariant 
generalizations of the particles momenta in the c.m.s. before 
the scattering p 1=-P2 =p and after: k1 =-k 2= k. They 
are defined according to refs. 112 ·71 by the relations: 

... 0 -~ -------+ 
~p.mAp""~) =(AA~P1) =-(AA~P2) =-~P2.mAP ' 

0 ... ... -1 -1 ... 
~k,mAp=k =(AApk1) =-(AApk2) =-~k2 ,mAp• 

(I . 3) 

where AAp is the matrix of the Lorentz boost in the rest fra~ 
of the compound particle,...,moving with the 4-velocity fi=pllj...;P 2 , 

so that A,.\ p (M, o) = ( P 0 , P ) . The time components of 
~Jl.p,mA p 

0 

and ~Jl.k,mA T are defin~d by _the r_:_lations: 

~~.mAp=Po =Vm 2 +&~,mAp; ~tmAp=ko=..Jm4StmAp· (1. 4 ) 
In equation (1.2) the momenta of all the particles belong to 
the mass hyperboloid 

(~~.rnA p )2 
... 2 2 2 -+2 2 

- (~ p,mA p) = m ; p 10- pI =ffi (i = 1,2) 

( 0 2 ... 2 2 2 ... 2 2 
~ k,mA p) - (~ k,mA p) = m ; kiO- k iO = m 

(I • 5) 

!? 

:11· 

0 0 

but their time components are over the "enerfl shell"Po;iko. 
As has been shown in refs. 13 •131 and 19•1 the equa-

tion for a single-time WF of the system of two particles 
1 with 1/2 spin~ derived by the Logunov-Tavkhelidze method 12 

coincides in the form with that obtained. on the basis of' 
the diagram technique of Kadyshevsky /4, 5 ,81. The quasipoten-

. a1 a2 .... -+ 2 . 
t1al Val a~ (~p.mA p ; ~ k,mA p ; P ) lS construc-

ted of the invariant matrix elements of the relativistic 
scattering amplitude. The values ~ 0p,mAp (=Po) that enter 
the free Green function of equation (1.2) are the relativis­
tic invariants as well as the volume element ct3; k,~2~ 'k,mA p . 
The covariance of the whole equation (1.2) has been proved 
in refs. 15"91 . 

The aim of the present paper is to consider in a consis­
tent way the spin degrees of freedom of the quark-antiquark 
system in a pion and to account their influence on the 
structure of the interaction kernel as well as their influ­
ence on the asymptotics of the wave function at large values 
of the relative momentum. 

2. EQUATION FOR THE RELATIVE HOTION OF QUARK AND ANTIQUARK 
IN A PION 

We would use in equation (1.2) the quasipotential, which 
is built of the amplitude of the massles vector particle 
(gluon) exchange: 

V a 1 a2 (~ . ~ . ) 
(2)v1 v2 p,mA p ' k,mA p (2. 1) 

- a1 V - U. V - V 2 =luq (p1 )yJl. u_l (k 1 )l·gJl.v·lu_2 (p 2 )y u 2(k
2
)J.v0 (q ), 

q ' q 
where 

2 -g 2 
Vo(q )=---2; q=pl-kl 

(pl-kl) 
(2. 2) 

and the coupling constant g can depend on the Q2 .in the case 
of QCD. As has been mentioned in refs. 191 the polarization 
indices a 1 and v 1 of the quasipotential (2. I) are "sitting" 
(by terminology of the authors of refs. /12,14/ ) each 
on its momentum. It is convenient to pass from (2.1) to the 
quasipotential, the polarization indices of which would 

'<. ... "sit" on one and the same momentum, the p (=L.\ _, · ) , 
p,ITV\ p for 

example. This can be acheived with the help of the trans­
formation /9/ 
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a1 a2 v 
~~ 
(p ,k) = ~ 

+ 112 -1 ° + 1/2 -1 ° 
Daa IV (A.\m•P 1 )l·Daao IV (A.\m•P2 )lx v1 v2 ai,vi 1 1~ J 2 2p J 

(2. 3) a o a o ~ o.., ~ 112 -1 o 
xVv,!Pv2P0 (k(-)p;p)xDvo,v )V (Ao ,p 1 )1x 

lp 2p 1p 1k k 1 

x n 112 tv-1 (A , , k ) J.n 11 2 v 'klv -
1 (A~ , P 2 ) I-D~ 1~ v lv-1 (A.\~k2) I, 

v \) ,v 1\ (j) 1 v o' 2 2 2 • 2 :r 
1K 1 J 2p ' 

where the summation is performed over the repeated indices 
aip and v 1~, vip (i=l,2). Thematrices D112 tv-1 (Ap,k)l 
describe the w~yner rotations of spins I /2 R IV- 1 (A p , k ) I = 

= (A A -1 k ) -l A p A k , where A P are the matrices of 
the c8rrespondmg Lo.rentz boost: A p (m, o) =(Po, p). Each pola­
rization index in (2.3) is accompanied by the momentum/ on 
which this index is "sitting" (see for details ref. 19 ). As 
a result of a set of "removes" of polarization indices, we 

a o' a o 
come to the amplitude V lp 2p whose all spin indi-

vlo'v2o o 
ces would "sit" on one and Pthe ~arne momentum p. 

In the second approximation in the coupling constant, the 
a o ,a o ~ ~ ~ 

amplitude V lp 2p (k(-) p; p) 
(2)v o,v o 

can be repre-

sented in the tgr~~ 
a o ,a o ~ ~ ~ * a o * v o ~ ~ <2,. 

V \; 2p(k(-)p; p) =~ lp~ 2p V (k(--)p;p)~ o ~ o' 
iJ.p'v2p (2) vlP a2p 

(2. 4) 

where ~a are the two component Pauli spinors, and the opera-
" /9/ tor V(2) , according to ref. , can be expressed through 

0 0 

the variable K = k (-) P , the momentum transfer in the Loba­
chevsky space 115~in the following way: 

-+ 4- ~ .,.,. ~ -t -i-2 
" ~ ~ ~ 2 2m 2 (al 11) (a2 11) - (a1 a 2 ) 11 
v (2) (k(-)p; p) = -gv -11o-m-- gv ---!J.-2--------

2 i(;l +.;2) _, _, 2Po 1 
- g ------·[px11] ·1--- + --l-v ->2 

m 2 _ 110 - m 11 
0 0 -> 

p 2 (11 0 + m) + 2p 0 (i) 11 ) - 2m 3 0 
2->2 2 2 

- gV-2 
m 11 0 -m 

p -
- gv-;-2 

2 .... -> "'. -> 2 4 2 
- gvli(a1 +a2 ) · [p xl1] I 11 . m 2. 

The variable A = (A-;;1 k) 
j.L Po j.L 

in (2.5) is defined: 
0 .... 

-> -1 0 -> p 0 
11 =(A k) o=k - --[k 0 P m 

~ ~ 0 0 
kp -> .... 

---] o=k (-) p 
0 

p o + m 

4 

(2. 5) 

(2. 6) 

Jo oo oo 
11 0 = (A -P k) 0 = ( k0 p 

0 
- I{ p)/ m , (2. 7) 

t = (p - k) 2 = 2m 2 - 2ml1 o . (2. 8) 

As w~ca~ s~e the first two terms of the quasipotential 
V(2) (k(-)p; P) (2 .5) are the local functions in the 
Lobachevsky momentum space, i.%., they depend only· on the 
difference (-) of two vectors k(-)~ = K' in this space 1151 

The other terms depend not only on the momentum transfer in 
the Lobachevsky space K, but also on the vector v. 

Let us perform an analogous "remo'{,e" of the polarization 
indices of the wave function 'P a

1
a

2 
(p) • It can be performed 

with the help of the Wigner rotat~ons 
0 

.... 1/2 -1 
'P a o a 0 (p ) = ~ D a 0 a IV (A.\ · , P 

1 
) I x 

1p 2p a 1,a2 =± 112 1p 1 
0 

P (
2

•
9

) 
112 -1 -> 

xDa oa IV (A.\m ,p 2 )1'Pa a (p) 
2p 2 J 1 2 

After removing the spins of the pa~ticles and their spin indi­
ces on one and the same momentum p hrhat corresponds to pas­
sing to their qu&ntization on one and the same axis taken 
along the vector p), we can perform a covariant summation of 
the spins /l4l. 1n this· way we pass to the wave function that 
is characterized by the total spin S and its projection ao 19 • III/: 

p 
~ 1 1 ~ 

'P8 (p) = ~ <-2 ,-;a1o ,a
2

o I Sao> 'P . (p). (2.10) ao ao ao=+Y2 2 p p p a
1
o,a o p 1p' 2p - p 2p 

For the state with the total spin S =0 and a0 =0, we find that 
the corresponding HF has the form: P 

~ 1 ~ ~ S=O ~ 
'P 0,0 (p) = -::I'P u o uo(P)- 'P u o 11 o (p) I"= 'PM (p). y2 7% p,-72p -72 p '72 p (2. II) 

As has been shown in refs. 19•III1 after removing in equation 
(1. I) all the spin indices a. and a. on one and the same 

momentum ~"' KP m.\p , e~uation li.I) for the state with 
the total spin 's =0 defined by (2.IO) takes the form: 

s-o .... 
211~,m.\p (M-211~,m.\p )'PM- (11p,m.\p) 

d3 K . -> ~ S=O -> ) 
k,m.\p VS=O('K (-)11 _, ;p)IJIM (11km.\m • ----- '-' k,m.\ p p,nll' p ' J 

211 ~,m.\ p 

(2. I2) 
- 1 
- (2rr)3 f 
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where 
o_, 

~ X S=O -> ( ) A-> • p ) - ~ 
V (6.kmAW- 0 p,mA.p• -ao a

2
o=±112 

' J lp ' p vlp 'v2p = ± 112. 

1 1 a 1 p a 2p -> -> <; 1 1 
x<-,-;a

1
oa 2oi0,0>V (6. , (-)6. ... \ ;p)-<-,-;aoa ol0,0>. 

2 2 P P ~'tp~'2p k,m" P p,lli"p 2 2 lp 2p 
(2. 13) 

Simple calculations show that the second term in (2.5) gives 
the contribution to the matrix element (2.13) that equals to 

.,.2 
2 26. 2 -gv -~ =-2gv (2.14) 

/j. 

while the third and the last terms give a zero contribution. 
The fourth term in (2.5), which contains the terms with the 
orbital motion, can be transformed with the help of the identi­
ty 

~~ 
kp 

6. o-m 

p 0 2 
KoPo - ~- m 

= -~=-m 
0 

to the form 
2 0 0 ~ ~ 

2~. Po (6. o +m) + 2p 0 (p6.)- 2m3 
m2 6.o - m -------- = 

1 
02 

~-]. 
- m2 

= 2g~ [ (Po k ~-m2) 
m2···--

6.o - m 

(2. IS) 

(2. 16) 

Combining together the first and the fifth terms in (2.5) and 
adding them to (2.14) and (2.16), we find the final expres-
sion 

0 0 

<; <; <; 2 4k 0 p 0 ) 1 
V S=O (k (-) p; p ) = g v (2m - m 6. 0 - m 

So equation (2.13) can be written in the form 

o o S=O <; 
2p 0 (M - 2po ) 1{1 M (p) 

3<; 1 d k 0 0 <; 0 0 
= --3 J ----o- ( 4p oko - 2m 2 ) V o (k (-) P ) 'P s =O (k ) 

~rr) ~ 0 M 

\vhere 

~ ~ v 0 (ld-) p) = -

6 

2 2gv 
Q2 

2 -2gv -
2m 2 -2ml'l 0 

(2. 17) 

(2. 18) 

(2. 19) 

J 

ll 
\1 
\ • 

Expanding I{ISM=O (~) 

I{IS=O(~) = £ (21! +1) i£ 

and Vo in partial waves* 

M £=0 

1 0 .... 

-o-- ¢ Mo (p) Po (n 0 ) , 

I pI L L p 

~ 

S=O '; (). (). "" (2£ + 1) o o ... _, 
V (k(-)p,P)=~ Ve(k,p)Pe(cosnono) 

E = 0 4rr P k 

we find for ¢M£(p) an equation 

2p o (M- 2po ) ¢M£ tp) = 

2 "" 0 

gv r dk(20" = -- -- PoKo 

0 0 2 
2 koPo -m P 

-m)Qe( kp )¢Me(K). 
(2rr) 2 o 2k 0 0 

h 1 . . . 1 . . 0 2 ->k 2 /2 In t e nonre at~v~st~c ~m~t k
0 

-• me + m 
k 2 4 2 2 

Q E ( oP o-m c ) _, Q f ( k + p ) 
pkc2 2kp 

and the equation transforms into the Schrodinger 
written in the momentum representation 

p'2 
(- + Eo· ~ d ) ¢E o (p) 2m uUU bound, L 

g~ "" 2 2 
- J dk Q e < k + P ) ¢ (k) 

(2rr) 2 o 2kp Ebound,E 

(2. 20) 

(2. 21) 

(2. 22) 

(2. 23) 

equation 

(2. 24) 

It is easy to show that an equation analogous to (2.18) 
appears if we substitute into the main equation (1.2) the 
wave function, chosen in the form <; 

at a2 '; -al -a2 ¢M(p) 
I{IM (p) =Uq (p1)y5uq (p2) --o-, 

. 2Po 
p. Pt 

~0 
M 

(2. 25) 

and take the quasipotential V in the same form (2. I) and (2.2). 
Really, in this case we have 

0 0 1 
(M- 2Po)ilqCPl)r5 il_(p2)¢MCP) = --sJ 

q (2rr) 

0 

d~k 
-~-o·- X 

(2k c) 2 

(2. 26) 

*Due to ref. /12/ this expansion has an invariant nature for 
details (see also ref. /9,III/ ). 
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X U Q (p 1 ) y /-( U Q (k 1 ) • U q (k 2 ) y /-( U Q (p 
2 

) • V O ci (-) ~) X 

0 

x uq(k 1)y5 Uq (k 2 )¢M(k). 

(2. 26) 

Multiplying (2.26) by uq- (p2)Y5 uq(P1) from the left-hand 
side and performing a summation of polarizations, we arrive 
at 

2(2 p 0 ) 
2 (M - 2p 0 ) cp M (i>) = 

1 
(2rr) 3 J 

0 

d 3 k '"' '"' o_, 
~A(p,k) V 0 (k (-)p) · ¢M (k) 
(2k 0) 

where 

A(p,k) = Sp!cP2 -m)y5 cP 1+m)yl-l(k +m)y cP -m)y 
1 5 2 p 

I 2 2 = -4 4(p1p 2)(k 1k 2)- 4m (k1k 2 )+ 4m (p 1p2) 
(2. 27) 

- 2m2 (p 1 + p2 )(k1 + k2) + 4m 4 I , 
0 0 0 0 

(2. 28) 
A (p, k) = 4· 2p o · 2k 0 (2p 0 k 0 - m 2 ) . 

The substitution of (2.28) into (2.26) leads us to equation 
(2. 18). 

Now let us see what asymptotic behaviour has the wave func­
tion, which satisfies equation (2.18). First we s~ll consi­
der the spherically symmetric wave function ¢M <lrl) alone 
and pass in (2.18) to new variables, the rapidities of quarks 
x, by intrQducing the spherical coordinates on the mass-shell 
hyperboloid (1.5): 

~ = ~o , . = m chx ; 0 - p,m"p P ko=~ok,rnl.p =mchxk 

0 

P = ,1' p, rnA p = n; · m sh X P ; 
~ ,-+ -+ 

k =~k.ml.p =nk·mshxk• (2.29) 

rip= IiI I PI ; ... -> -> 
nk =k/lkl. 

After the integration over the polar angle in (2.18), we arrive 
at: 

M 
chx (-- chx )·¢M <x ) = 

P 2M P P 
2 00 m 

---- f d x ! ch <x - x ) + ch <x + x: ) - 1 I x 
2(2rr ) 3 0 k p k p k 

8 

. 
.1, .. 

\ I 

11 

i 

~ 
{. 
.lj 

. \ 
ll 
1' ·I 

Xp+Xk 
x J dy shy . V 0 (2m sh ; ) ¢ M (x k ) . 

1>-p -xk I 

(2. 30) 

Here we have introduced with the help of the relation 

s-o .. s-o 4 
I!'M- ([~ >. [)=I!'M- (mshx )= ----¢(x ) . 

p,rn P P m sh P 
Xp 

(2. 31) 

a new wave function ¢(x ) and made use of the next parametri-
. p 

zat~on of the square of momentum transfer 

q2= (p1-k1)2 =2m2 -2m~o =2m2-
(2. 32) 

0 0 

- 2m y m 2 + (p (-) k )2 (2m shL )2 
2 ' 

where 

ell y = ch X P ch X k- (!i P n k) sh X P · sh X k (2. 33) 

In terms of these variables for the quasipotential 
one-photon exchange in electrodynamics, we find 

of the 

QED y 4rra rra 
V 0 (2msh-) =- -- = _ -----, 

2 q 2 m2sh2 y/2 
(2. 34) 

while for the quasipotential, which 
gluon-exchange in QCD, we find 

corresponds to the one 

QCD y (4rr) 2 
' V 0 (2m sh-) =- -------- ~- = 

2 .BoQ2lnQ2/A2 

(2rr) 2 (2 .35) 

2---;--;--~---;--- ' 
,8 0 m sh - ln (- sh- ) 

2 A 2 
2 • 

where ,B =11- 3 nr (nf is the number of flavours). _, 
Now, 0passing in the r.h.s. of (2.30) to the limit [~p,rn>.p[->oo 

under the integral sign, we find the asymptotics of the wave 
function at X P _, "" 

¢ M<x P) ::: 
m 

2 
sh X p V 0 (2m s~~P ~) ["" dx k · X k · ¢ M (x k ) 

-(2rrf(~- chxp) o 
2m 

(2. 36) 

From (2.36) we conclude that in the case of the "QED" quasipo­
tential" (2.34), the asymptotics has the form: 
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)' 

QED a· Sh Xp 1 00 QED 
¢ <x ) =: ------ • ---- • I ctx · x · ¢ <x ) = 

M P M (Chx -1) 0 k k k rr(chx - --) p 
P 2m 

:: const/chx P , 

and in the case of the QCD quasipotential (2.35) 

¢ Q_CD (x ) :: 
M p 

shxv __ 
--- - _M_) 
2(30 (chx p- 2m 

1 
X 

(chxP- 1) 

x [ln( 2m sh Xp )]-1 
A 2 

d -" QCD ( , ~ 
I xk-xk '~-'M xk 
0 

=: const/x P · chx P 

3. FORMULATION OF AN EQUATION IN THE RELATIVISTIC 
CONFIGURATIONAL REPRESENTATION 

(2. 3 7) 

(2. 38) 

Let us perform in equation (2.18) a transition to the rela­
tivistic configurational representation introduced for the 
first time in refb 1151 with the help of an expansion of the 
wave function 'I'M (p) on the Lorentz group 

~ a~ o_. -+ 
'I'M (p) = I d r t * (p , P) 'I' M (i) , (3. I) 

1 d3~ 0 0 
~ v -+ -+ -+ 

'I'M (r) = -- ( ---t(p,r)'I'M (p) 
(217)3 2po (3. 2) 

where the functions 
0 0 -> 

~ -> p - pn 
t(Ii,r) = [---

-1- irm 
] -> ·-> 

r = rn; ii2= 1 (3. 3) 
m 

realize the principal series of the unitary representations of 
SO (3. I) group 11 61 and compose an orthogonal and complete 
system of functions on the mass-shell hyperboloid (1.5). With 
the help uf the relation115/ 

~ 0 0 0 "o t cP • r) = 2 (p 0) t (p. r) • (3. 4) 

where 
i .a 

~ ( i a ) 2i ( i a ) 11 e,¢ rn a;-H =2mch-- +-sh------e 0 m ar r m ar mr 2 

is the differential-difference (with step proportional to 
operator of the free Hamiltonian, equation (2.18) can be 
written in the form 

~0 

(3. 5) 

ilm) 

1 

' ~I 
\• 

f 
I 

l 
( 
• 
I 

. I 

1 
! 

A ~ S=O -• ~ Vo(r) ~ S=O ... 
H 0 (M-H 0)'1'M (r)=IH 0--2 H 0 -V0 (r)I'JIM (r). 

2m 
(3. 6) 

So, in the case of spin particles an interaction term V o (r) 
can enter an equation in a more complicated way than it takes 
place in a case of scalar particles. 

Now we pass to the partial-wave expansion of the wave 
function 

S=O -> oo E 1 S=O -> 
'I'M (r) = !, (2f + 1) i - ¢ M f (r) P 0 (n) . (3. 7) 

£=0 r • L 

If we shall restrict our consideration to the f =0 case, then 
for the wave function ¢ 8£0 (r) a radial equation will have 
the form M, =O 

Hrad (M _ Hrad ) ¢ S=O (r) = 
0 0 M,~ =0 (3. 8) 

= {Hrad Vo(r)Hrad -V (r)l¢S=O (r), 
0 2m2 0 0 M,f=O 

where for e =0 

H rad = 2m ch (_!_ _a_) . 
o.£=0 m ar 

(3. 9) 

4. CONCLUSION 

In the present paper we have obtained the covariant equati­
on for the wave function of the bound state system, composed 
of quark and antiquark with spins 1/2, when this system has a 
total spin S=O. This equation describes a relative motion 
of two quarks in 17 -meson. We have studied the asymptotic 
behaviour of the wave function in the momentum representation 
at large values of the relative momentum. In the subsequent 
paper we shall study in detail the behaviour of the wave func­
tion for the case of confining potentials and the mass spectra 
of a bound state. 

The authors express their gratitude to V.G.Kadyshevsky, 
S.P.Kuleshov, A.V.Sidorov and I.L.Solovtsov for the valuable 
discussions. 
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CaBpHH B.H., CKa4KOB H.B., TyMeHKOB r.ill. E2-82-122 
KoBapHaHTHoe TpexMepHoe ypaBHeHne p;JJH BOJJHoBoii ¢YHK11;HH 
17 -Me30Ha B COCTaBHOH MOp;eJJH CDHHOpHbiX KBapKOB 

iloJJyqeHO KOBapHaHTHOe TpexMepHoe ypaBHeHHe p;JJH BOJ1HOBOH 
lPYHKll;HH nceBp;OCKaJJHpHOH qacTHll;hl, COCTaBJJeHHOH H3 p;ByX KBapKOB 
C paBHhlMH MaccaMH H CDHHaMH J/2, HCCJJep;oBaHa aCHMDTOTHKa pe­
meHHH 3TOrO ypaBHeHHH B HMDYJJhCHOM npep;CTaBJJeHHH B CJJyqae, 
KOrp;a B3aHMOp;eHCTBHe Me~p;y KBapKaMH ocy~eCTBJJffeTCff 3a cqeT o6-
MeHa Op;HHM rJJIDOHOM. 

Pa6oTa BbmoJJHeHa B J1a6opaTOPHH TeopeTHqecKoii ¢H3HKH OH5IH. 

npenpHHT 06beAHHeHHOro HHCTHTyTa RAePHbiX HCCJleAOBa.HHH. ,lly6Ha 1982 

Savrin V.I., Skachkov N.B., Tyumenkov G.Yu. E2-82-122 
Covariant Three-Dimensional Equation for the Wave Function 
of 77-Meson in the Composite Model of Spinor Quarks 

A covariant three dimensional equation is derived for a wa-
ve function of a pseudoscalar particle, compou.sed of two 
equal mass quarks with spins 1/2. An asymptotics of the solution 
of this equation is found in the momentum representation in 
the case of quarks interaction chosen in a form of a one gluon 
exchange amplitude • 

The investigation has been performed at the Laboratory of 
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