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1. LNTRODUCTION

According to the quark model a pion is the bound state of
quark and antiquark. The discovered ¥ and y -particles and
their radial excitations were successfully described on the
basis of the Schrddinger equation. These mesons were consi-
dered to be compounds of heavy charmed and beauty quarks.
Alfter this there appeared an opinion that the quarks which
compose a pion should be light and their relative motion in
the pion should have a relativistic nature.

That is why the relativistic equations for two particle
hound states should be used for the description of the quarks
motion inside the pion. There are well-known relativistic
two-particle equations of Bethe—Salpeter/l/ and three-dimen-—
sional equations that appear in the single—time approach of
logunov and Tavkhelidze’23/ and in the diagram technique of
Kadyshevsky/45/-

In the present paper we shall apply the covariant single-
time equal for the description of the asymptotics of a pion
wave function (WF) when the interaction between quarks is
chosen to be mediated by one gluon exchange. The interest
in this problem stems from the interest to the problem of stu-
ding the asymptotic behaviour of the elastic pion form factor
in QCD.

Tt is natural that since in QCD there do not exist up to
now methods of describing the interactions at large distances,
the behaviour of the wave function (WF) can be studied only
at large values of relative momentum in the framework of this
theory.

In the paper to study the WF asymptotics we apply the
formalism of the covariant single~time equations for the
system composed of two particles with spins 1/2.

The covariant single-time WF (denoted by -~ ), which descri-
bes the relative motion in quark-antiquark system, is defined
through the Bethe-Salpeter WF as follows /%:6:7/
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where ¥(x) and ¥(x) are the quark and antiquark field opera-
tors, S =pi1+Pg, X =X 1~Xg , the vector |MK; So > charac-
terizes the compound system as a whole with the total mass
M, spin 8, its projection ¢ and moving as a whole with momen-
tum K. The presence of the invariant S[APx] -function. (A%)=
= PH/yP2) ,under the integrand in (1.1) leads in the
c.m.s. X? - %/y?P2 -0 to the coincidences of individual times
x{=%x%5 of quarks, .

To take into account the QCD effect of the asymptotically
free behaviour of the runnung coupling constant, we shall
use here a modification of the amplitude of the one-gluon ex-
change in the region of small values of the momentum transfer
Q%,This modification has been suggested in ref.’!% and pro-
vides the most simple Coulomb-like form of the corresponding
quasipotential in the relativistic configurational representa-
tion.

The relativistic single-time equation for spin WF (1.1!)
has the form /6:3:7-9,11/.
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In (1.2) the vectors Kp,mky and Xk,mAQ are the covariant
generalizations of the particles momenta ip the c.m.s. before
the scattering 61=—§}==5 and after: k;=-ko=k. They
are defined according to refs.’/1%7/ by the relations:
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Ak'm?Ek =(AA.(})kl) =—'(AA( k2) =-—Ak2'm?,
where A\ p is the matrix of the Lorentz boost in the rest frame

of the compound particle, moving with the 4-velocity M&:?#/ng,
33lthat j\A?(M'J)Z(?O, Py . The time components of
AR and AlhmAE
pAO? -1 ‘m2 + A2 . A° =k =y m+A2 (1.4)
p,mAp =Pg =Vm?+ pmA P k,mA P =Ko 7 komhp s Mo
In equation (1.2) the momenta of all the particles belong to
the mass hyperboloid
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but their time components are over the "enerﬁy shell" pg £kg.
As has been shown in refs. /313  4apq 791 the equa-
tion for a single-time WF of the system of two particles
with 1/2 spins derived by the Logunov-Tavkhelidze method_
coincides in the form with that obtaipned on the basis of
the diagram technique of Kadyshevsky’4:5:8/, The quasipoten-

/2/
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tial Vgl'oz' (Ap'm)‘f?; Ak,m)\'g; A is construc-
ted of the invariant matrix elements of the relativistic
scattering amplitude. The values Apmp (=po) that enter
the free Green function of equation (1.2) are ghe relativis-
tic invariants as well as the volume elementd3Ak_mWy2AqhmA@,
The covariance of the whole equation (1.2) has been proved
in refs. /%9

The aim of the present paper is to consider in a consis-
tent way the spin degrees of freedom of the quark-antiquark
system in a pion and to account their influence on the
structure of the interaction kernel as well as their influ-
ence on the asymptotics of the wave function at large values
of the relative momentum.

2. EQUATION FOR THE RELATIVE MOTION OF QUARK AND ANTIQUARK
IN A PION

We would use in equation (1.2) the quasipotential, which
is built of the amplitude of the massles vector particle
(gluon) exchange:
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and the coupling constant g can depend on the Q% in the case
of QCD. As has been mentioned in refs.’? the polarization
indices o; and v; of the quasipotential (2.1) are "sitting"
(by terminology of the authors of refs. 1214/ ) gach

on its momentum. It is convenient to pass from (2.1) to the
quasipotential, the polarization indicesoof which would

"sit" on one and the same momentum, the p (EKp.mA? ), for

example. This

can be acheived with the help of the trans-
formation’/
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where the summation is performed over the repeated indices
9,8 and Vg (i =1,2). The matrlces_}ﬂ/zlv 1(1\p k)
descrlbe the Wl%ner rotations of spins 1/2 RIVT" (Ap,k)} =

= Ay A Ay, where A, are the matrices of
the cgrrespondlng Lorentz boost: p (m 0) =(pg.P). Each pola-
rization index in ’2 3) is accompanled by the momentum /
which this index is "sitting" (see for details ref. ). As
a result of a set of "removes" of polarization indices, we
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In the second approx1matlon in the coupling constant, the
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whereAfo are the two component Pauli spinors, and the opera-

tor Ve , accarding to ref. gc can be expressed through

the variable A = h( )p, the momentum transfer in the Loba-
chevsky space/ls/

,in the following way:
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The variable A =(A73! i) in (2.5) is defined:
i S P ‘: %8 o o (2.6)
A=) =% - Bk - R K@y,
[+)
p m Pyt

e e

e

Mo = (¥ K)o = (kypy KBV m, 2.7)

t=(P-k% =2m® - 2mAg . (2.8)

As wey,can see the first two terms of the quasipotential

(2)(k@0p, B) (2.5) are the local functions in the
Lobachevsky momentum space, 1i. &: s they depend only on the
difference {-) of two vectors k(-)p = A in this space/15/
The other terms depend not only on the momentum transfer in
the Lobachevsky space A but also on the vector 8.

Let us perform an analogous "remove'" of the polarizaticn
indices of the wave function ‘vg o (p) It can be performed
with the help of the Wigner rotatlons

v ®- = DM vl p, )} x
9,3 020 . g9 0, Ap’ Pl
Pl/ 101,02 +1/2 ~1p ) P 2.9)
2 _ >
XDUO(T {v (AA? y P, L 09 ®).

After removing the spins of the pa;tlcles and their spin indi-
ces on one and the same momentum ﬁ (what corresponds to pas-
sing to their qugntlzatlon on one and the same axis taken
along the vector p), we can perform a covariant summation of
the splns/14 Tn this way we pass to the wave function that
is characterized by the total spin S and its projection ap/91H4

1 2
= b3 , S .
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For the state with the total spin 8 =0 and o, =0, we find that
the corresponding WF has the form: P
=2t . G- Di=v " G
0,0 b —-\/—— '/p, 1/2op ‘/p l/O(P = M ®). (2.11)

/9,111/ after removing in equation

and ¢, on one and the same

As has been shown in refs.
(1.1) all the sp1n indices o
momentum p = Ap mA? equatlon (1.1) for the state with
the total spin =0 deflned by (2.10) takes the form:

o =0
2A0 oap M=2A0 )0 ) B mg) = o1
1 d Ak,m)\? S=0 > - S=0,>
= A - p) ¥ s
e’ A mh g T Gy OmgiP Y em g )



where

=0 - d o

By o OA o D)= 3 % x

’ plm — —_
9 P 01‘5,023 =t+1/2 Vl‘[’)yl/2° =*i/2. -

O
11 715%p ‘ A 11
X<?,-2—-,018028‘0,0>VV1%V O( kmA? (—)Ap'm/\? ,p) <—-2—~2--,U'1%(7 Olo 0>.

(2.13)

Simple calculations show that the second term in (2.5) gives
the contribution to the matrix element (2.13) that equals to

o 2R%
vV T3
A2

--2¢% (2.14)
while the third and the last terms give a zero contribution.
The fourth term in (2.5), which contains the terms with the
orbital motion, can be transformed with the help of the identi-~

ty
Qo
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Combining together the first and the fifth terms in (2.5‘) and
adding them to (2.14) and (2.16), we find the final expres—

sion o
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So equation (2.13) can be written in the form
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Expanding ‘~I’SM—O ®) and Vg in partial waves*
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and the equation transforms into the Schrddinger equation
written in the momentum representation

o
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It is easy to show that an equation analogous to (2.18)
appears if we substitute into the main equation (1.2) the
wave function, chosen in the form o,

WO" 02 (o) (p ) ( ) ¢M(p)

W @ -0y e, 200 (2.25)
9. Py
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and take the quasipotential V in the same form (2.1) and (2.2).
Really, in this case we have

(2.26)
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*Due to ref. /12/ this expansion has an invariant nature for
details (see also ref, /%Iy
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and performing a summation of polarizations, we arrive
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The substitution of (2.28) into (2.26) leads us to equation

(2.18).

] Now 1¢?t us see what asymptotic behaviour has the wave func-
tion, which satisfies equation (2.18). First we shall consi-
der the spherically symmetric wave function éu (K] alone
and pass in (2.18) to new variables, the rapidities of quarks

X» by introducing the spherical coordinates on the mass-shell
hyperboloid (1.5):
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By bmhp =M EhX k, =A kmh g = WORX
o, N N [
b EAp,mg,:ng-mthp, k EAk’m)‘? =nlo(.mshxk, (2.29)
- -> e - g
i, =B/iPl; n, =K/|¥| .
After the integration over the polar angle in (2.18), we arrive
at:
chy (—M- ~chy )¢ (x_ )=
P om p M p
2o Tay fend ) + ch( )= 1
= - —_ - + -
sams Xl X+ X X
8

- — o

i,

B T L .

Xp + Xy y (2.30)
x [ dy Shy-V0(2m3h~)¢M(xk ).
Ix,<x, | 2
Xk .
Here we have introduced with the help of the relation
S=0 7 5=0 4
v (A h=V¥ (mshy = ——p ). (2.31)
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a new wave function d;(xp) and made use of the next parametri-
zation of the square of momentum transfer

0= (p,-k,)? =2m® -2mA( =2m®-
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In terms of these variables for the quasipotential of the
one-photon exchange in electrodynamics, we find

- y
chy = chy pCth“ (npn ) shx o shx, -

QED y 4ra wa
v 2msh-—) = - = - s
o (Bmshg) a2 m2sh? y/2

while for the quasipotential, which corresponds to the one
gluon—exchange in QCD, we find

(2.34)
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where B =11 - 2. (n, is the number of flavours).

Now, passing in the r.h.s. of (2.30) to the limit ‘Ap,m}\?‘-—)w
under the integral sign, we find the asymptotics of the wave
function at y b *

P [ax Xy by O )
=) (Ea—chxp) 0

2shy Vo (@mshy , R
m®shx pVo Bmshx, ) (2.36)

bxy) =

From (2.36) we conclude that in the case of the "QED" quasipo-
tential™ (2.34), the asymptotics has the form:
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and in the case of the QCD quasipotential (2.35)
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3. FORMULATION OF AN EQUATION IN THE RELATIVISTIC
CONFIGURATIONAL REPRESENTATION

) Pet.us perform in equation (2.18) a transition to the rela-
tivistic configurational representation introduced for the
first time in ref‘b/15 with the help of an expansion of the
wave function WM(ﬁ) on the Lorentz group

¥, G)= e G DY D

(3.1)
‘PM G) = _’i— f-dao_p’ é'&;v?)‘y (Io;,) ' (3 2)
@)% 2B, M '
where the functions
2 B - %ﬁ) ~1-ir
£@,7) = [— 1 L Par #Pat (3.3)
m

realize the principal series of the unitary representations of
SO (3.1) group/16/ and compose an orthogonal and complete
system of functions on the mass—shell hyperboloid (1.5). With
the help of the relation’/1%/
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where

(3.4)
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is the differential~difference (with step proportional to i/m)
operator of the free Hamiltonian, equation (2.18) can be
written in the form
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So, in the case of spin particles an interaction term Vg(r)
can enter an equation in a more complicated way than it takes
place in a case of scalar particles.

Now we pass to the partial-wave expansion of the wave
function

S=0 5 % g1, 8=0 -
¥y O =Z§0 RE+1i" ¢y OP, ®) . (3.7)
If we shall restrict our consideration to the ( =0 case, then
for the wave function ¢hf?goﬁ) a radial equation will have

the form

ﬁrad M _}’jlrad ) qS S=0 (r) -
0 0 M.?:O (3.8)
~ Vo () A =
_ rad 0 rad _ 5=0
—{HO P H, Vo(r)l¢>M'Z=0(r).
where for (=0 ‘
Ay o-2monch 2. 3.9)
L] = m r

4. CONCLUSION

In the present paper we have obtained the covariant equati-
on for the wave function of the bound state system, composed
of quark and antiquark with spins 1/2, when this system has a
total spin S=0. This equation describes a relative motion
of two quarks in z-meson. We have studied the asymptotic
behaviour of the wave function in the momentum representation
at large values of the relative momentum. In the subsequent
paper we shall study in detail the behaviour of the wave func-
tion for the case of confining potentials and the mass spectra
of a bound state.

The authors express their gratitude to V.G.Kadyshevsky,
S.P.Kuleshov, A.V.Sidorov and I.L.Solovtsov for the valuable
discussions.
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Caspuu B,H., Cxauxoms H,B., Tymenxos I'.10, E2-82-122
KoBapHaHTHOE TpexMepHoe ypaBHEeHHe [Jis BOJIHOBOH GYHKIHH
7 ~Me30Ha B COCTABHOH MOJEJIH CIIMHODPHBIX KBApKOB

[lonryyeHo KOBApPHAHTHOE TpexXMepHOoe ypaBHeHHe [Jisi BOJIHOBOM
GYHKUHH NMCEBOOCKANADHON UACTHIBE, COCTABJIEHHOH H3 OBYX KBADKOB
¢ paBHLMM MaccaMd M chnHHamu |/2. HccnemoBaHa acHUMIITOTHKA pe—
WeHHH STOro ypaBHEHWUs B UMIYJILCHOM MpefCcTaBieHUH B cjlydae,
KOT[a B3auMOeHCTBHE MexOy KBAPKaMU OCYHeCTBJIfeTCs 34 cueT 06—
MeHa OJHHM TIJIINOHOM.
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Covariant Three-Dimensional Equation for the Wave Function
of w-Meson in the Composite Model of Spinor Quarks

A covariant three dimensional equation is derived for a wa-
ve function of a pseudoscalar particle, compouéed of two
equal mass quarks with spins 1/2. An asymptotics of the solution
of this equation is found in the momentum representation in
the case of quarks interaction chosen in a form of a one gluon
exchange amplitude.
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