СООБЩЕНИन
 OБbЕАИНЕННOГO ИНСТИТУТА คАЕРНЫХ ИССАЕАОВАНИЙ

A.Uhlmann

PROPERTIES OF THE ALGEBRAS L^{+}(D)

1974

ААБОРАТОРИЯ TEOPETИYECHOЙ

A.Uhlmann

PROPERTIES OF THE ALGEBRAS L^{+}(D)

Ульман А.

Свойства алгебр $\mathscr{L}^{+}(\mathscr{D})$

Рассматриваются свойства алгебры всех операторов, которые вместе со своими сопряженными операторами отображают в себе данное линейное подмножество гильбертового пространствя. Каждый автоморфизм и каждая проиэводная этой алгебры являются внутренними. Их можно определить алгебраическим образом.

Сообщение Объединенного института ядерных исследований Дубна, 1974

Uhlmann A.

E2 - 8149

Properties of the Algebras $\mathbb{L}^{+}(\mathscr{D})$

We consider properties of the algebra of all operators which together with its abjoints transform a given dense linear manifold of an Hilbert space into itself. This algebra admits inner *-automorphisms and derivations only and there is an algebraic characterisation of this algebra.

Communications of the Joint Institute for Nuclear Research. Dubna, 1974

1. Definitions, results.

Let $\mathscr{\sigma}$ be a dense linear submanifold of the Hilbert space \mathcal{X}. With $\mathcal{L}^{+}(J)$ we denote the set of all such linear operators a from \mathscr{J} into $\mathscr{D}, a \mathscr{D} \varsigma \mathbb{D}$, for which D is in the domain of definition of a^{*} and $\alpha^{*} \delta \Sigma D \cdot \mathcal{L}^{+}(\mathscr{J})$ is an algebra with respect of the ordinary addition and multiplication of operators. $\mathcal{L}^{+}(\mathscr{D})$ becomes a ${ }^{*}$-algebra by the involution $a \rightarrow a^{+}$, where a^{+}is defined to be the restriction of a^{*} onto D.
We shall prove the following theorems:
Theorem 1: Let $\}$ be a*-isomorphism from $\mathcal{L}^{+}\left(\mathcal{N}_{1}\right)$ onto $\mathcal{L}^{+}\left(\mathcal{D}_{2}\right)$
Then there exists a unitary map u from \mathscr{D}_{1} onto D_{2}
(1)

$$
u \mathscr{D}_{1}=D_{2}
$$

with
(2)

$$
\tau(a)=u a u^{-4} \quad \text { for all } a \in \mathcal{L}^{+}(D)
$$

Theorem 2: Every ${ }^{(}$-automorphism τ of $\mathcal{L}^{+}(D)$ is an inner one, i.e., there is a unitary element $u \in \mathcal{L}^{+}(\mathbb{J})$ with $\tau(a)=u a u^{-1}$ for all $a \in \mathcal{L}^{+}(D)$.

Theorem 2 is an obvious consequence of theorem 1. Note that these theorems suggest the existence of a "space-free" definition of $\mathcal{L}^{+}(D)$ (theorems $4-6$).

Let us now remind that a derivation of $\mathcal{L}^{+}(\mathbb{L})$ is a linear map of $\mathcal{L}^{+}(\infty)$ into itself satisfying
(3)

$$
\varphi(a b)=\varphi(a) \cdot b+a \cdot \varphi(b)
$$

Theorem 3 (P.Krëger): Is φ a derivation of $\mathcal{L}^{+}(D)$, then
there exists on element $x \in \mathcal{L}^{+}(\delta)$ with
(4)

$$
\varphi(a)=x a-a x
$$

Hence every derivation is an inner one. [1]

Suc knows [2] that $\mathcal{L}^{+}(\mathcal{X})$, where \mathcal{H} is a Hilbert sace, is the von i.vumem algebra of all bounded oparators. Von :remani hac rioved taat every left ideal oi tais algebra
 $p=p^{*}=p^{2} \quad$ (see for instance [3]). The technique of this proof also works in the more eineral case of the $\mathcal{L}^{+}(\mathbb{D})$ alge Tas. "ie now explain shortly, how one can use these Fetniaues to ch rscterise the algebras $\mathcal{L}^{+}(\mathbb{D})$ abstractly. Definitior 1: Let $\&$ be $a *$-algebra. \& is called an algebria with "property I" if and only if
(i) Every proper left ideal contains a minimal left ideal, (ii) cvery mirinal left ideal is generated by a minimal projection, and
(iii) every element of every subalgebra \boldsymbol{A}_{0}, which zontains an identity e_{0}, has a non-empty spectrum.
Let us irst add some remarks. A projector p is minimal in A iff $p \neq 0$ and $p q=q p$ implies $p q=p$ for evei. r rojector q of A. If \mathcal{A}. is an almebra with identity e_{0}, tiaen the spectrum of one of its elements a is the cet of all complex numbers λ such, that $\left(\alpha-\lambda e_{0}\right)^{-1}$ does not exist in A. .

Fo now construct an examile of a ${ }^{\text {n }}$-algebra with property . Let T be an index set (an abstract set) and assume to be associated to every $t \in T$ an algebra $\mathcal{L}^{+}\left(\mathbb{D}_{t}\right)$. Then the *-algebra
(5) $\prod_{t \in T} \mathcal{L}^{+}\left(D_{t}\right) \equiv \mathcal{L}^{+}\left(D_{t}, t \in T\right)$
consists of all functions $t \rightarrow x(t)$ defined on T with $x(t) \in \mathcal{L}^{+}\left(\mathcal{L}_{t}\right)$ together with the composition laws

$$
\left(x_{1}+x_{2}\right)(t)=x_{1}(t)+x_{2}(t),\left(r_{1} x_{2}\right)(t)=x_{1}(t) x_{2}(t)
$$

$$
\left(x^{+}\right)(t)=x(t)^{+},(\lambda x)(t)-\lambda x(t)
$$

This construction provides us with a *-algebra.
Theorem 4i $\mathcal{L}^{+}\left(\mathscr{J}_{t}, t \in T\right)$ satisfies property I.
Theorem 5: Let A be a *-algebra with property I Then there exists up to ${ }^{*}$-isomorphisms one and only one algebra $\mathcal{L}^{+}\left(\mathcal{D}_{t}, t \in T\right)$ and a *-isomorphiam τ of \mathcal{A} into $\mathcal{L}^{+}\left(\mathcal{J}_{t}, t \in T\right)$ which maps the set of all minimal projectors of A onto the set of all minimal projectors of $\mathcal{L}^{+}\left(X_{t}, t \in T\right)$.

Definition 2: A *-algebra is called a "type I_{d} algebra" if the following two conditions are fullfilled:

1) A has property I
2) Let τ be a *-isomorphism from \mathcal{A} into a *-algebra L. with propertz I. If τ maps the set of all minimal projectors of \mathcal{A} onto the bet of all minimal projectors of \mathcal{L}, then r maps \mathcal{A} onto \mathcal{L}.

Theorem 6: A *-algebra is a type I_{d} algebra if and only if it is *-1somorph to a certain algebra $\mathcal{L}^{\dagger}\left(\mathcal{D}_{t}, t \in T\right)$.
According to theorem 6 the centre of a type I_{d} algebra is a discrete one, i.e., it is generated by its own minimal projectors. Especially, a type I_{d} algebra, which is to an algebra of bounded operators isomorphic, is a W^{*}-algebra with discrete centre.

2. Algebras with property I.

To prove the theorems we need some further insight in the considered class of algebras.
Theorem 7: For every *-algebra with property I the following statements are true:

1) If P is a minimal projector, then there exists a positive linear form f with
pap $=f(a) \cdot p \quad$ for all $a \in A$
2) If A contains only one minimal projector P_{0}, then p. is the identity element of A and A is isomorphic to the algebra of complex numbers.

We beginn with the second assertion. For every non-zero $a \& A$ the left ideal Aa contains a minimal projector P_{0}. The case $\mathcal{A} a=0$ can be excluded, because in this situation α and the zero form a left ideal, that has to contain a minimal projector and this is impossible. Now there is an element a^{\prime} with $a=a^{\prime} p_{0}$ and thus $\left(a-\alpha^{\prime}\right) p_{0}=0$. By the same reasoning $a-a^{\prime}=b p_{0}$ and from $p_{0}^{2}=p_{0}$ it follows $a=a^{\prime}$. So we see $a p_{0}=a, p_{0} \alpha^{*}=a^{*} \quad$ for all afd and p_{0} is the identity of \mathcal{A}. For every ac \mathcal{A} there should be a complex number λ such that $a-\lambda p_{0}$ is not inversible. It follows $a=\lambda p_{0}$ because otherwise $\mathcal{A}\left(\alpha-\lambda p_{0}\right) \geqslant p_{0}$ wich contradicts the assumption that λ belongs to the spectrum of a. The second assertion of the theorem is now available and the farst assertion becomes obvious: The subalgebra $p \mathcal{A} p=\mathcal{A}$., where P is a minimal proiector of \mathcal{A}, has to satisfy property I too. In virtue of the minimality of P, no projector different from p is in \mathcal{A}. . Therefore, \mathcal{A}. is isomorphie to the algebra of complex numbers and $p a p=f(a) p$ with some number $f(a)$. Cleariy, f depends lineariy on a and
$p a^{*} \alpha p=f \cdot p$ has to be a positive element of \mathcal{A}. Hence f is a positive linear form.

The property (6) is an essential characteristicum of minimal
projectors for property I algebras. This shows
Theorem 8: Let \mathcal{A} be a *-algebra. Denote by $\gamma x(\mathcal{A})$ the set of all such projectors p of \mathcal{A} for which (6) is fulfilled with a certain linear form f.
4 has property I if and only if

$$
\text { pap }=0 \quad \text { for all } p \in M(\mathcal{A})
$$

implies $\alpha=0$ in 4 .
The proof proceeds in two steps. Firstly we need
Lemma 1: $\boldsymbol{\mu}(\mathcal{A})$ consista of minimal projectors of \mathcal{A}.
From pap=f(a)p for all $a \in 4$ and $f\left(b^{*} b\right) \neq 0$ we have
(7) $\quad q=b p b^{*} / f\left(b^{*} b\right) \in \gamma(\mathcal{A})$
and

$$
\begin{equation*}
q a q=\frac{f\left(b^{*} a b\right)}{f\left(b^{*} b\right)} \cdot q \tag{8}
\end{equation*}
$$

We see this in the following way: $p \nmid M(\mathcal{A})$ and $p \tilde{q}=\tilde{q}$ implies $f(\tilde{q}) p=p \tilde{q} p=\tilde{q} p=\tilde{q} \quad$ for projectors \tilde{q} and thus $p=\tilde{q}$. Therefore $\boldsymbol{m (L A})$ consists of minimal projectors only. The other part of the lemma is a straight-forward application of equ. (6).
We can now be sure that $\mathcal{X}(\mathcal{H})$ consists of all minimal projectors if \mathcal{A} has property I. In this case $\mathcal{A} a z \mathcal{A} p$ with a certain $p \in \operatorname{za}(A)$ for a given $a \neq 0$ and we get $b a=p$. Now $f(p b a) \neq 0$ implies by positivity $f\left(b_{p}^{*} b\right) \neq 0$ and we obtain $b_{p}^{*} b a b_{p b}^{*}=b^{*} a b \neq 0$. According to lemna 1 it is $\mathcal{F}=\lambda h^{a} p t$ in with some λ and
$q a q \neq 0$. To prove the other part of the theorem 8 we choose an element $a \neq 0$ out of a given left ideal γ. According
to the assumption we can find $p \in \gamma\}$ with $p a p \neq 0$. By (6)
one shows $f(a) \neq 0$ and the positivity of f implies $\lambda^{-1}=f\left(a a^{*}\right) \neq 0$. Now $q=\lambda a^{*} p \alpha \in f \cap \gamma I L$ shows that f contains the minimal subideal $A q$ and theorem 8 is proved.

As a consequence of theorem 8, every *-algebra with property I is a reduced one [3].

Theorem 8 implies theorem 4 in virtue of
Lemma 2: Let $\mathcal{A}=\dot{\mathcal{L}}\left(\mathcal{J}_{t}, t \in T\right)$. For every $\xi_{t} \in \mathcal{J}_{t},\left\langle\xi_{t}, \xi_{t}\right\rangle=1$
the element

$$
\begin{aligned}
& (p x)\left(t^{\prime}\right)=0, \quad t \neq t^{\prime} \\
& (p x)(t) \eta_{t}=\left\langle\xi_{t} \eta_{t}\right\rangle \xi_{t}, \quad \eta_{t} \in \delta_{t}
\end{aligned}
$$

is a minimal projector and there are no other minimal projectors in $\mathcal{4}$.
Indeed, every projector q of \mathcal{A} defines new projectors by $q(t)=q_{t}(t), q_{t}\left(t^{\prime}\right)=0$ for $t \neq t^{\prime}$. q_{t} is smaller than q and if q was minimal and $q_{t} \neq 0$ then $q=q_{t}$, One sees that q_{t} projects \mathcal{J}_{t} onto a one-dimensional subspace of δ_{t} provided q_{t} is a minimal projector. On the other hand, every one-dimensional subspace of J_{t} defines its projector and this projector is aminimal one.
Let us mention two further properties of $\mathscr{L}^{+}\left(\delta_{t}, t \in T\right)$. For every pair of projectors piq $\in \boldsymbol{M}$ we distinguish two possibilities: Either they project into the same or in different \mathcal{X}_{t}. Let us denote by $\boldsymbol{\mu}_{t}$ the set of all minimal projectors that are defined according to lemma 2 by the subspaces of \mathbb{D}_{t}. Then μ_{l} is the union of the $\gamma_{t}, t \in T$ and $M_{t} \cap \mu_{t^{\prime}}$ is empty for $t \neq t^{\prime}$. One 1mmediately sees that two projectors belong to the same \boldsymbol{m}_{t} if and only if there is an a
with paq*0. Of course, the later condition can be extended to an arbitrary property I algebra, the proof of this fact is evident.
Lemma 3: Let \mathcal{A} be a *algebra with property I. There is an index set T and a decomposition of $\boldsymbol{z}(\boldsymbol{U})$ in disjunct sets $M_{t}(\mathcal{A}), t \in T$ such, that $q, p \in \mathcal{M (N)}$ belong to the same t if and only if there is an ard with paq⿻o Now suppose q bp $\neq 0$ for $q, p \in \gamma \pi_{t}(d)$. The element $d=q b$ satisfies $d p d^{*}=q b p b^{k} q=\lambda q$ and $\lambda \neq 0 \quad$, for A is reduced and $\lambda q=(q b p)(q b p)^{*}$.This gives
Lemma 4: p, $q \in 2 \mu_{t}(\mathcal{A})$ if and only if there is a positive
inear form f and an element $b \in \mathcal{A}$ such, that equ. (7) and (8) are valid.

3. Representations.

Let
(9) $\tau: \quad a \rightarrow \tau(a), a \in \mathcal{A}$
be a*-representation of the *-algebra \mathcal{A}. with domain of definition D_{z}. If $q \in \partial \mathcal{X}(\mathcal{4})$ and $r(q) \neq 0$, then the functional g defined by $q a q=g(\alpha) q$ is a vector state of τ. Indeed, for $\Phi \in \mathcal{V}_{\tau}$ and $\mathcal{Y}=\tau(q) \Phi \neq 0$ we have $\langle\boldsymbol{\Psi}, \tau(a) \Psi\rangle=g(a)\langle\boldsymbol{\Psi}, \boldsymbol{\Psi}\rangle$. If now (7) and (8) is valid for the projector $p \in m(\mathcal{A})$, we conclude $\tau(p) \neq 0$ and with f as defined by (6) we have $\left\langle\Psi^{\prime}, \tau(a) \mathcal{Y}^{\prime}\right\rangle=f(\alpha)\left\langle\mathcal{F}^{\prime}, \Psi^{\prime}\right\rangle$ with a vector $\Psi^{\prime}=\tau(p) \Psi^{\prime}$. Now $\tau(p)$ is a projector and hence

$$
g(p)\langle\Psi, \Psi\rangle=\langle\Psi, \tau(p) \Psi\rangle \geqslant \frac{\left|\left\langle\Psi_{1} \tau(p) \Phi_{0}\right\rangle\right|^{2}}{\left\langle\Phi_{0}, \Phi_{0}\right\rangle}
$$

for all 玉. $^{\text {. Setting }} \Phi_{0}=\mathcal{Y}^{\prime}$ we get

$$
g(P)=\left|\left\langle\mathcal{F}, \mathcal{F}^{\prime}\right\rangle\right|^{2} /\left\langle\boldsymbol{E} \mathcal{F}^{\prime}\right\rangle\left\langle\mathcal{F}^{\prime}, \mathcal{I}^{\prime}\right\rangle
$$

and the equality sign holds for $\boldsymbol{\Psi}^{\prime}=\boldsymbol{\tau}(p) \boldsymbol{F}$.
Theorem 2: For any $p, q \in \boldsymbol{J r}(\mathcal{A})$ and
(10)

$$
p \alpha p=f(a) p, q \alpha q=g(a) q, a \in \mathcal{d}
$$

every "-representation τ of \mathcal{A} with $\tau(p) \neq 0$ satisfies

$$
\begin{equation*}
g(p)=f(q)=\sup \frac{\left|\left\langle\Psi, \Psi^{\prime}\right\rangle\right|^{2}}{\langle\Psi, \Psi\rangle\left\langle\Psi^{\prime}, \Psi^{\prime}\right\rangle} \tag{11}
\end{equation*}
$$

where the supremum runs over all $\Psi, \Psi^{\prime} \in \mathcal{N}_{\tau}$ with the restriction
(12) $\quad \tau(p) \Psi=\Psi, \tau(q) \Psi^{\prime}=\Psi^{\prime}$

We are now in the position to show theorem 5. Let \mathcal{A} be a
-algebra with property I. With T we denote the index set given by lemma 3. For every $t \in T$ we choose $P_{t} \in \boldsymbol{M}_{t}(\mathcal{A})$ and define f_{t} by $p_{t} \propto p_{t}=f_{t}(a) p_{t}$. Let us now perform the GNS-representation τ_{t} of A determined by f_{t} with domain of definition ∇_{t} and cyclic vector $\Phi_{t} \in \delta_{t}, f_{t}(a)=\left\langle\Phi_{t}, \tau(a) \Phi_{t}\right\rangle$. It is $\tau_{t}\left(P_{t}\right) \Phi_{t}=\Phi_{t}$. If for some $\phi \epsilon \delta_{t}$ we have $\tau_{t}\left(P_{t}\right) \Phi-\Phi$, then $r_{t}\left(p_{t} \alpha\right) r_{t}\left(p_{t}\right) \Phi=r_{t}(p \alpha) \Phi$ and with the help of (6) we find Φ depending linearly on Φ_{}. This shows that $\tau_{t}\left(P_{t}\right)$ is a one-dimensional projector. The same conclusion can be drawn for every $\tau_{t}(q) \quad$ with $q \in \boldsymbol{T}_{\ell}(\mathcal{d})$ by similar arguments. Lemmata 1 and 4 now indicate a one-to-one correspondence between $M_{t}(\mathbb{U})$ and the set of all one-dimensional subspaces of δ_{t}.

Hence the vectors (12) form one-dimensional spaces and equ. (12) is valid without performing the operation "sup" ! We construct the direct sum τ of the representations γ_{t}, $t \in T$, and the result is a -isomorphism of \mathcal{A} into $\mathcal{L}^{+}\left(\delta_{t}, t \in T\right)$ with properties required by theorem 5.
We consider now a second $\boldsymbol{F}_{-r e p r e s e n t a t i o n ~}^{\tilde{\tau}}$ into $\mathcal{L}^{+}\left(\tilde{D}_{t}, t \in T\right)$
with the same properties. Then the one-dimensional subspaces of \mathscr{N}_{t} and $\tilde{\omega}_{t}$ are given by $\tau_{t}\left(P_{t}\right) \tilde{D}_{t}$ and $\tilde{\tau}\left(P_{t}\right) \tilde{D}_{t}$ and
there is a one-to-one correspendence
(13)

$$
\tilde{r}\left(p_{t}\right) \tilde{x}_{t} \quad \leftrightarrow \tau\left(p_{t}\right) D_{t}
$$

As proved above, the transition probabilities between onedimensional subspaces remain unchanged by the mapping (13). Applying a theorem of Wigner [4] there is a unitary or antiunitary one-to-one mapping u_{t} from Δ_{t} onto \tilde{J}_{t} with (14)

$$
\tilde{\tau}\left(p_{t}\right) u_{t}=u_{t} r\left(p_{t}\right)
$$

Considering now with the help of (14)the validity of

$$
\tilde{\tau}(q)\left\{\tilde{\tau}(a) u_{t}-u_{t} \tau(a)\right\} \tau(q)=\left\{\tilde{\tau}(q \propto q) u_{t}-u_{t} \tau(q a q)\right\}=0
$$ for every minimal projector of we get

(15) $u^{-1} \tau(a) u=\tau(a), u=\Sigma u_{t}$

Applying this to ia too, one proves linearity of u. By this wey we have not only proved theorem 5 but also a generalisation of theorem 1. Indeed, let $\mathcal{A}=\mathcal{L}^{+}\left(\mathcal{D}_{t}, t \in T\right)$, τ the identic automorphism and $\tilde{\boldsymbol{\tau}}$ a ${ }^{\text {E }}$ isomorphism onto $\mathcal{L}^{+}\left(\tilde{\mathcal{D}}_{t}, t \in T\right)$. There is a unitary map u of the direct sum of all D_{t} onto the airect sum of all $\widetilde{\mathcal{J}}_{t}$ which impliments $\tilde{\boldsymbol{\tau}}$.

The last part of the proof of theorem 5 contains the following statement:
Theorem 10: Let τ be a^{*}-isomorph1sm of $\mathcal{L}^{+}\left(X_{t}, t \in T\right)$ onto $\mathscr{L}^{+}\left(\tilde{\mathcal{J}}_{\left.t^{\prime}, t^{\prime} \in \tilde{T}\right)}\right.$. Then there exists a unitary map u from $\sum \mathscr{S}_{t}, t \in T$ onto $\sum \bar{J}_{t^{\prime}, t}, t^{\prime} \widetilde{T}$ and a map j from T onto \tilde{T} with

$$
u \delta_{t}=\tilde{\alpha}_{j(t)}
$$

and

$$
\tau(a)=u a u^{-1} \quad, \quad a \in \mathcal{L}^{+}\left(\delta_{t}, t \in T\right)
$$

Theorem 10 implies the theorems 1 and 2 and shows how to prove theorem 6: We have to consider an imbedding

$$
A=\mathscr{L}^{+}\left(J_{t}, t \in T\right) \leq \mathcal{B} \quad \text { with } \operatorname{rr}(\mathcal{A})=\operatorname{\partial ot}(\mathcal{B})
$$

Theorem 5 tells us, that we need to consider the case

$$
\mathcal{A}=\mathcal{L}^{+}\left(\mathcal{D}_{t}, t \in T\right) \leq \mathcal{L}^{+}\left(\tilde{\mathcal{L}}_{t}, t \in T\right)=\mathcal{L}, \quad \operatorname{M}(\mathcal{A})=\operatorname{Zd}(\mathbb{L})
$$

only. Further, \mathcal{A} and \mathcal{G} have to be -isomorph (theorem 5) and hence theie is a -isomorphism from \mathcal{L} onto \mathcal{A}, i.e.; into \mathcal{H} that leaves stable the set of all minimal projectors as a whole. This *-isomorphism has therefore to be an *-automorphism and it follows $\mathcal{L}=\mathbb{A}$.

4. Froof of theorem 3.

Let φ be a derivation of $\mathcal{L}^{+}(\Delta)$. Using an idea of P.Krüger we construct the element X of eq. (4) explicitely. For any two vectors $\xi_{1} \eta$ of D we define $P_{5, \eta}$ by

$$
\left(P_{1, \eta}\right) \eta=\xi,\left(P_{f, \eta}\right) \eta^{\prime}=0 \text { for all } \eta^{\prime} \perp \eta
$$

Now $\xi \rightarrow P_{f, \eta}$ is a linear map of D into $\mathcal{L}^{2}(\delta)$ and we have $a P_{f \eta}=P_{o r s, \eta}$ for all $a \in \mathcal{L}^{+}(\delta)$.
Now we define

$$
x \eta=\varphi\left(P_{\eta, \xi}\right) \xi
$$

and get a linesr map $\eta \rightarrow x \eta$ from \mathcal{J} into δ. How $\Phi_{1}(a)=x a-\alpha x, \quad a \in \mathcal{L}^{+}(\partial)$
is a map of δ into δ for every $a \in \mathcal{L}^{+}(\delta)$ and

$$
\varphi_{1}(\alpha) \eta=\varphi\left(P_{\alpha, \eta, \xi}\right) \xi-\alpha \varphi\left(P_{\eta, \xi}\right) \xi=\left\{\varphi\left(\alpha P_{\eta, \xi}\right)-\alpha \varphi\left(P_{\eta, \xi}\right\}\right\} \xi
$$

shows that

$$
\varphi_{1}(\alpha) \eta=\varphi(a) P_{\eta_{1} \xi} \xi=\varphi(\alpha) \eta .
$$

Hence $\boldsymbol{\varphi}_{\uparrow}=\boldsymbol{\varphi}$, Substitutins $a=P_{\eta, \xi}$ we get $\langle\xi, x \xi\rangle=0$. Next we consider $\psi(\alpha)=\varphi\left(\alpha^{*}\right)^{*} . \psi$ is again a derivition and we construct as above $y \eta=\varphi\left(P_{\eta, f}^{*}\right)^{*} \xi$ so trat $\psi(a)=[y, a] \quad$ and

$$
\left\langle[y, a] \eta_{1}, \eta_{2}\right\rangle=\left\langle\eta_{1}\left[x, a^{*}\right] \eta_{2}\right\rangle
$$

Choosing $\eta_{1}=\xi \quad, \quad a=P_{\bar{\xi}, \xi} \quad$ we obtain with $\langle\xi, x \xi\rangle=\langle\xi, y, \xi\rangle=0$ $\left\langle y \bar{\eta}, \eta_{2}\right\rangle=-\left\langle\bar{\eta}, x \eta_{2}\right\rangle$.
Now y maps δ into δ and $x^{+}=-y$ so that $x, y \in \mathcal{L}^{+}(J)$ and the theoren. is proved.

Reference

1) P. Kräger, Ableitunfen in $\mathcal{L}^{+}(\mathcal{X})$. preprint,Leipzig 1974.
2) G. Lassner, Rep. Nath. Phys. 3 (1972) 279 ;

Math.Nachr. 52 (1972) 161.
3) M.A. Neumark, Normierte Algebren, Berlin 1959.
4) Bargmann, Ann. Matb. 59 (1954) 1.

