СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> 9/11-74 E2 - 8149

A.Uhlmann

C131.1

11-27

468119-24

PROPERTIES OF THE ALGEBRAS L + (D)

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСНОЙ ФИЗИНИ

E2 - 8149

•

A.Uhlmann

PROPERTIES OF THE ALGEBRAS L⁺(D)

		······
Ульман А.	E2	· 8149
Свойства алгебр 🖓 (D)		
Рассматриваются свойства алгебры всех операторов, со своими сопряженными операторами отображают в себе подмножество гильбертового пространства. Каждый автом производная этой алгебры являются внутренними. Их можн алгебраическим образом.	данно орфиз	элинейное микаждая
Сообщение Объединенного института ядерных ис Дубна, 1974	следо	ваний
Uhlmann A.	E2	- 8149
Properties of the Algebras	L)+L'))
We consider properties of the algebra of which together with its abjoints transform a linear manifold of an Hilbert space into itse algebra admits inner *-automorphisms and deri and there is an algebraic characterisation of	given lf. 1 vatio	n dense This ons only

4

1. Definitions, results. Let J be a dense linear submanifold of the Hilbert space \mathcal{X} . With $\mathcal{L}^{\dagger}(\mathcal{J})$ we denote the set of all such linear operators a from $\mathcal J$ into $\mathcal J$, a $\mathcal J \subseteq \mathcal J$, for which $\mathcal J$ is in the domain of definition of a^* and $a^*JsJ. L^*(J)$ is an algebra with respect of the ordinary addition and multiplication of operators. $\mathcal{L}^{+}(\mathcal{D})$ becomes a \neq -algebra by the involution $\mathbf{a} \rightarrow \mathbf{a}^{\dagger}$, where \mathbf{a}^{\dagger} is defined to be the restriction of a^* onto \mathcal{J} . We shall prove the following theorems: <u>Theorem 1:</u> Let r be a *-isomorphism from $\mathcal{L}^{*}(\mathcal{J}_{r})$ onto $\mathcal{L}^{*}(\mathcal{J}_{r})$ Then there exists a unitary map u from \mathcal{J}_{1} onto \mathcal{J}_{1} u D. = D. (1)with $\gamma(\alpha) = u \alpha u^{-1}$ for all $\alpha \in \mathcal{L}^{+}(\mathcal{J})$. (2) Theorem 2: Every \bigstar -automorphism γ of $\mathcal{L}^*(\mathcal{J})$ is an inner one, i.e., there is a unitary element $u \in \mathcal{L}^{+}(\mathcal{S})$ with $\gamma(a) = uau^{-1}$ for all $a \in \mathcal{L}^{+}(D)$. Theorem 2 is an obvious consequence of theorem 1. Note that these theorems suggest the existence of a "space-free" definition of $f'(\mathcal{D})$ (theorems 4 - 6). Let us now remind that a derivation of $f(\mathcal{U})$ is a linear map of $f^{\dagger}(\mathcal{D})$ into itself satisfying $\varphi(ab) = \varphi(a) \cdot b + a \cdot \varphi(b)$. (3) Theorem 3 (P.Kräger): Is φ a derivation of $\mathcal{L}^{*}(\mathcal{D})$, then there exists an element $x \in \mathcal{L}(\mathcal{S})$ with $\varphi(\alpha) = x\alpha - \alpha x$. (4) Hence every derivation is an inner one. [4]

One knows [2] that $\mathcal{L}'(\mathcal{U})$, where \mathcal{H} is a Hilbert space, is the Mon Leumann algebra of all bounded operators. Von Neumann has proved that every left ideal of this algebra is constructed by a projection, i.e., an operator p with $p = p^4 \cdot p^2$ (see for instance [3]). The technique of this proof also works in the more general case of the $\mathcal{L}^+(\mathcal{J})$ algebras. We now explain shortly, how one can use these techniques to characterise the algebras $\mathcal{L}^+(\mathcal{J})$ abstractly. <u>Definition 1:</u> Let \mathcal{A} be a *-algebra. \mathcal{A} is called an algebra with "property I" if and only if

(i) every proper left ideal contains a minimal left ideal.

- (ii) every minimal left ideal is generated by a minimal projection, and
- (iii) every element of every subalgebra \mathcal{A}_{\circ} , which contains an identity \boldsymbol{e}_{\circ} , has a non-empty spectrum.

Let us first add some remarks. A projector p is minimal in \mathcal{A} iff $p \neq 0$ and pq = qp implies pq = p for every projector q of \mathcal{A} . If \mathcal{A} , is an algebra with identity e_{o} , then the spectrum of one of its elements ais the set of all complex numbers λ such, that $(a - \lambda e_{o})^{-1}$ does not exist in \mathcal{A} .

We now construct an example of a *-algebra with property I. Let \top be an index set (an abstract set) and assume to be associated to every $t \in T$ an algebra $L^{+}(\mathcal{J}_{t})$. Then the *-algebra

(5)
$$\prod_{t \in T} \mathcal{L}^{\dagger}(\mathcal{D}_{t}) \equiv \mathcal{L}^{\dagger}(\mathcal{D}_{e}, t \in T)$$

consists of all functions $t \rightarrow x(t)$ defined on T with $\begin{aligned} \mathbf{x}(t) &\in \mathcal{L}^{+}(\mathcal{J}_{t}) \text{ together with the composition laws} \\ &\quad (\mathbf{x}_{t} + \mathbf{x}_{t})(t) = \mathbf{x}_{t}(t) + \mathbf{x}_{t}(t) , \quad (\mathbf{x}, \mathbf{x}_{t})(t) = \mathbf{x}_{t}(t) \mathbf{x}_{t}(t) , \end{aligned}$ $(x^{+})(t) = x(t)^{+} \quad (\lambda x)(t) = \lambda x(t)$ This construction provides us with a #-algebra. <u>Theorem 4:</u> $f^{*}(J_{t}, t \in T)$ satisfies property I. Theorem 5: Let A be a *-algebra with property I. Then there exists up to *-isomorphisms one and only one algebra $\mathcal{I}'(\mathcal{J}, t \in T)$ and a *-isomorphism τ of \mathcal{A} into $\mathcal{I}'(\mathcal{J}_t, t \in T)$ which maps the set of all minimal projectors of A onto the set of all minimal projectors of $\mathcal{J}^{+}(\mathcal{J}_{\epsilon}, \epsilon \in T)$. Definition 2: A *-algebra is called a "type I algebra" if the following two conditions are fullfilled: 1) A has property I 2) Let 7 be a *-isomorphism from A into a *-algebra \mathcal{L} with property I. If γ maps the set of all minimal projectors of A onto the set of all minimal projectors of L , then 2 maps A onto L . Theorem 6: A *-algebra is a type I algebra if and only if it is *-isomorph to a certain algebra $\mathcal{L}^{*}(\mathcal{J}_{t}, \iota \in \mathcal{T})$. According to theorem 6 the centre of a type I algebra is a discrete one, i.e., it is generated by its own minimal projectors. Especially, a type I algebra, which is to an algebra of bounded operators isomorphic, is a W -algebra with

discrete centre.

2. Algebras with property I.

To prove the theorems we need some further insight in the considered class of algebras.

- <u>Theorem 7</u>: For every *-algebra with property I the following statements are true:
 - 1) If p is a minimal projector, then there exists a positive linear form f with
- (6) pap = f(a) · p for all a · A
 - If A contains only one minimal projector P., then
 p. is the identity element of A and A is
 isomorphic to the algebra of complex numbers.

We beginn with the second assertion. For every non-zero $\alpha \in \mathcal{A}$ the left ideal $\mathcal{A} \alpha$ contains a minimal projector p_{α} . The case $A\alpha = 0$ can be excluded, because in this situation a and the zero form a left ideal, that has to contain a minimal projector and this is impossible. Now there is an element a' with $a = a' p_s$ and thus $(a - a') p_s = 0$. By the same reasoning $\mathbf{q} - \mathbf{a}' = \mathbf{b} \mathbf{p}_{\mathbf{a}}$ and from $\mathbf{p}_{\mathbf{a}}^{2} = \mathbf{p}_{\mathbf{a}}$ it follows $\mathbf{e} = \mathbf{a}'$. So we see $a_{P_{a}=a}$, $P_{a}a^{*} = a^{*}$ for all $a \in \mathcal{A}$ and P_{a} is the identity of \mathcal{A} . For every $\mathbf{q} \in \mathcal{A}$ there should be a complex number λ such that $\alpha - \lambda p_o$ is not inversible. It follows $a = \lambda p_0$ because otherwise $\mathcal{A}(a - \lambda p_0) \Rightarrow p_0$ wich contradicts the assumption that λ belongs to the spectrum of \mathbf{q} . The second assertion of the theorem is now available and the first assertion becomes obvious: The subalgebra $p \mathcal{A}_{P} = \mathcal{A}_{\bullet}$, where p is a minimal projector of \mathcal{A} , has to satisfy property I too. In virtue of the minimality of p , no projector different from p is in A. . Therefore, A. is isomorphis to the algebra of complex numbers and $p = f(\alpha) p$ with some number \$(a). Clearly, \$ depends linearly on a and

 $p \propto a p = f \cdot p$ has to be a positive element of \mathcal{A} . Hence f is a positive linear form.

The property (6) is an essential characteristicum of minimal projectors for property I algebras. This shows

<u>Theorem 8:</u> Let \mathcal{A} be a *-algebra. Denote by $\mathcal{M}(\mathcal{A})$ the set of all such projectors \mathfrak{p} of \mathcal{A} for which (6) is fulfilled with a certain linear form \mathfrak{f} .

A has property I if and only if

papes for all pem (.4)

implies $\alpha = 0$ in \mathcal{A} .

The proof proceeds in two steps. Firstly we need Lemma 1: $\mathfrak{M}(\mathcal{A})$ consists of minimal projectors of \mathcal{A} . From $p = f(\alpha)p$ for all $\alpha \in \mathcal{A}$ and $f(b^*b)\neq 0$ we have (7) $q = bpb^*/f(b^*b) \in \mathfrak{M}(\mathcal{A})$

and

(8) $q \alpha q = \frac{f(b^{\alpha} b)}{f(b^{\alpha} b)} q$.

We see this in the following way: $p \in \mathfrak{M}(\mathcal{A})$ and $p \tilde{q} = \tilde{q}$ implies $f(\tilde{q}) p = p \tilde{q} p = \tilde{q} p = \tilde{q}$ for projectors \tilde{q} and thus $p = \tilde{q}$. Therefore $\mathfrak{M}(\mathcal{A})$ consists of minimal projectors only. The other part of the lemma is a straight-forward application of equ. (6).

We can now be sure that $\mathfrak{M}(\mathcal{A})$ consists of all minimal projectors if \mathcal{A} has property I. In this case $\mathcal{A} \neq 2\mathcal{A}p$ with a certain $p \in \mathfrak{M}(\mathcal{A})$ for a given a to and we get ba = p. Now $f(pba) \neq 0$ implies by positivity $f(b^{a}pb) \neq 0$ and we obtain $b^{a}pba b^{a}pb = b^{a}ab \neq 0$. According to lemma 4 it is $q = \lambda b^{a}pb \in \mathfrak{M}$ with some λ and $qa q \neq 0$. To prove the other part of the theorem 8 we choose an element $a \neq 0$ out of a given left ideal j. According to the assumption we can find $p \in \mathfrak{M}$ with $p = p \neq 0$. By (6)

6

one shows $f(\alpha) \neq 0$ and the positivity of f implies $\chi^{-1} = f(\alpha \alpha^{-1}) \neq 0$. Now $q = \lambda \alpha^{-1} p \alpha \in \mathcal{J} \cap \mathcal{M}$ shows that \mathcal{J} contains the minimal subideal $\mathcal{A}q$ and theorem 8 is proved. As a consequence of theorem 8, every *-algebra with

property I is a reduced one [3].

Theorem 8 implies theorem 4 in virtue of Lemma 2: Let $\mathcal{A} = \hat{L}(\mathcal{J}_t, t \in \mathcal{T})$. For every $\S_t \in \mathcal{J}_t, \langle \S_t, \S_t \rangle = 1$ the element $(px)(t') = \circ$, $t \neq t'$ $(px)(t) \gamma_t = \langle \S_t, \gamma_t \rangle \ \S_t$, $\gamma_t \in \mathcal{D}_t$

is a minimal projector and there are no other minimal projectors in \mathcal{A} .

Indeed, every projector **q** of \mathcal{A} defines new projectors by $\mathbf{q}(t) = \mathbf{q}_t(t), \mathbf{q}_t(t') = 0$ for $t \neq t'$. \mathbf{q}_t is smaller than \mathbf{q}_t and if **q** was minimal and $\mathbf{q}_t \neq 0$ then $\mathbf{q} = \mathbf{q}_t$, One sees that \mathbf{q}_t projects \mathcal{J}_t onto a one-dimensional subspace of \mathcal{J}_t provided \mathbf{q}_t is a minimal projector. On the other hand, every one-dimensional subspace of \mathcal{J}_t defines its projector and this projector is a minimal one.

Let us mention two further properties of $\mathcal{L}^*(\mathcal{J}_{t_1}, t \in T)$. For every pair of projectors $p_{i,q} \in \mathcal{M}$ we distinguish two possibilities: Either they project into the same or in different \mathcal{J}_t . Let us denote by \mathcal{M}_t the set of all minimal projectors that are defined according to lemma 2 by the subspaces of \mathcal{J}_t . Then \mathcal{M} is the union of the $\mathcal{M}_{t_1} \in T$ and $\mathcal{M}_t \cap \mathcal{M}_{t'}$ is empty for $t \neq t'$. One immediately sees that two projectors belong to the same \mathcal{M}_t if and only if there is an **Q** with $paq \neq o$. Of course, the later condition can be extended to an arbitrary property I algebra, the proof of this fact is evident.

Lemma 3: Let \mathcal{A} be a *-algebra with property I. There is an index set T and a decomposition of $\mathcal{M}(\mathcal{A})$ in disjunct sets $\mathcal{M}_{\ell}(\mathcal{A})$, $t \in T$ such, that $q, p \in \mathcal{M}(\mathcal{A})$ belong to the same t if and only if there is an $a \in \mathcal{A}$ with $paq \neq 0$. Now suppose $q bp \neq 0$ for $q, p \in \mathcal{M}_{\ell}(\mathcal{A})$. The element d=qbsatisfies $dpd^*=qbpbq=\lambda q$ and $\lambda \neq 0$, for \mathcal{A} is reduced and $\lambda q = (qbp)(qbp)^*$. This gives Lemma 4: $p, q \in \mathcal{M}_{\ell}(\mathcal{A})$ if and only if there is a positive linear form f and an element $b \in \mathcal{A}$ such, that equ. (7) and (8) are valid.

3. Representations.

Let

(9) τ : $\mathbf{a} \rightarrow \tau(\mathbf{a})$, $\mathbf{a} \in \mathcal{A}$

be a *-representation of the *-algebra \mathcal{A} with domain of definition \mathcal{J}_{τ} . If $q \in \mathcal{R}(\mathcal{A})$ and $\tau(q) \neq 0$, then the functional q defined by $q \neq q = q(\alpha) q$ is a vector state of τ . Indeed, for $\overline{q} \in \mathcal{J}_{\tau}$ and $\overline{T} = \tau(q) \overline{q} \neq 0$ we have $\langle \overline{T}, \tau(\alpha) \overline{T} \rangle = q(\alpha) \langle \overline{T}, \overline{T} \rangle$. If now (7) and (8) is valid for the projector $p \in \mathcal{M}(\mathcal{A})$, we conclude $\tau(p) \neq 0$ and with fas defined by (6) we have $\langle \overline{T}', \tau(\alpha) \overline{T}' \rangle = f(\alpha) \langle \overline{T}', \overline{T}' \rangle$ with a vector $\overline{T}' = \tau(p) \overline{T}'$. Now $\tau(p)$ is a projector and hence $q(p) \langle \overline{T}, \overline{T} \rangle = \langle \overline{T}, \tau(p) \overline{T} \rangle \geq \frac{|\langle \overline{T}, \tau(p) \overline{T}_{0} \rangle|^{2}}{\langle \overline{T}_{0}, \overline{q}_{0} \rangle}$ $g(P) = |\langle \vec{\tau}, \vec{\tau}' \rangle|^2 / \langle \vec{\tau} \vec{\tau} \rangle \langle \vec{\tau}', \vec{\tau}' \rangle$ and the equality sign holds for $\Psi' = \tau(P) \vec{T}$.

<u>Theorem 9:</u> For any $p, q \in \mathcal{M}(\mathcal{A})$ and

(10) $p \alpha p = f(\alpha) p$, $g \alpha q = g(\alpha) q$, $\alpha \in \mathcal{A}$

every t-representation τ of \mathcal{A} with $\tau(p) \neq 0$ satisfies

(11)
$$g(p) = f(q) = \sup \frac{|\langle \hat{T}, \hat{T} \rangle|^2}{\langle \hat{T}, \hat{T} \rangle \langle \hat{T}', \hat{T}' \rangle}$$

where the supremum runs over all $\Psi, \Psi' \in \mathcal{O}_{\tau}$ with the restriction

(12) モ(マ) 王·王 , モ(マ) 王 = 王'

We are now in the position to show theorem 5. Let \mathcal{A} be a *-algebra with property I. With T we denote the index set given by lemma 3. For every $t \in T$ we choose $P_t \in \mathcal{M}_t(\mathcal{A})$ and define f_t by $P_t \alpha P_t = f_t(\alpha) P_t$. Let us now perform the GNS-representation τ_t of \mathcal{A} determined by f_t with domain of definition \mathcal{J}_t and cyclic vector $\bar{\Phi}_t \in \mathcal{J}_t$, $f_t(\alpha) = \langle \bar{\Phi}_t, \tau_t(\alpha) \bar{\Phi}_t \rangle$. It is $\tau_t(P_t)\bar{\Phi}_t = \bar{\Phi}_t$. If for some $\bar{\Phi} \in \mathcal{J}_t$ we have $\tau_t(P_t)\bar{\Phi} = \bar{\Phi}_t$, then $\tau_t(P_t\alpha)\tau_t(P_t)\bar{\Phi} = \tau_t(P\alpha)\bar{\Phi}$ and with the help of (6) we find $\bar{\Phi}$ depending linearly on $\bar{\Phi}_t$. This shows that $\tau_t(P_t)$ is a one-dimensional projector. The same conclusion can be drawn for every $\tau_t(\bar{\Phi})$ with $q \in \mathcal{M}_t(\mathcal{A})$ by similar arguments. Lemmata 1 and 4 now indicate a one-to-one correspondence between $\mathcal{M}_t(\mathcal{A})$ and the set of all one-dimensional subspaces of \mathcal{J}_t . Hence the vectors (12) form one-dimensional spaces and equ. (12) is valid without performing the operation "sup" ! We construct the direct sum τ of the representations τ_t , $t \in T$, and the result is a "-isomorphism of \mathcal{A} into $\mathcal{L}'(\mathcal{S}_t, t \in T)$ with properties required by theorem 5.

We consider now a second *-representation $\tilde{\tau}$ into $t^*(\tilde{\mathfrak{d}}_{t}, t \in T)$ with the same properties. Then the one-dimensional subspaces of \mathfrak{d}_t and $\tilde{\mathfrak{d}}_t$ are given by $\tau_t(\mathfrak{p}) \ \mathfrak{d}_t$ and $\tilde{\tau}(\mathfrak{p}) \ \mathfrak{d}_t$ and there is a one-to-one correspondence

(13) $\tilde{\tau}(\mathbf{p}_t) \tilde{\boldsymbol{\mathcal{X}}}_t \leftrightarrow \tau(\mathbf{p}_t) \tilde{\boldsymbol{\mathcal{X}}}_t$

As proved above, the transition probabilities between onedimensional subspaces remain unchanged by the mapping (13). Applying a theorem of Wigner [4] there is a unitary or antiunitary one-to-one mapping U_{4} from δ_{4} onto $\widetilde{\delta}_{4}$ with (14) $\widetilde{\tau}(\mathbf{p}_{4})U_{4} = U_{4}\tau(\mathbf{p}_{4})$

Considering now with the help of (14) the validity of

$$\begin{split} \widetilde{\tau}(\mathbf{q}) \left\{ \widetilde{\tau}(\alpha)u_{t} - u_{t}\tau(\alpha) \right\} \tau(\mathbf{q}) &= \left\{ \widetilde{\tau}(\mathbf{q} \alpha \mathbf{q})u_{t} - u_{t}\tau(\mathbf{q} \alpha \mathbf{q}) \right\} = 0 \\ \text{for every minimal projector } \mathbf{q} \text{ we get} \\ (15) \quad u^{-1}\widetilde{\tau}(\alpha)u = \tau(\alpha) \quad , \quad u = \Sigma u_{t} \\ \text{Applying this to i a too, one proves linearity of } u \\ \text{By this way we have not only proved theorem 5 but also a} \\ \text{generalisation of theorem 1. Indeed, let } \mathcal{A} = \mathcal{L}^{+}(\mathcal{A}_{t}, t \in T), \\ \widetilde{\tau} \text{ the identic automorphism and } \widetilde{\tau} \quad a^{\pm} \text{isomorphism onto} \\ \mathcal{L}^{+}(\widetilde{\mathcal{A}}_{t}, t \in T) \text{ . There is a unitary map } u \text{ of the direct sum} \\ \text{of all } \mathcal{A}_{t} \text{ onto the direct sum of all } \widetilde{\mathcal{A}}_{t} \text{ which impliments} \\ \widetilde{\tau} \\ \end{split}$$

The last part of the proof of theorem 5 contains the following statement:

<u>Theorem 10:</u> Let τ be a *-isomorphism of $\mathcal{L}^{*}(\mathcal{J}_{e_{i}}, t \in T)$ onto $\mathcal{L}^{*}(\widetilde{\mathcal{J}}_{e'}, t' \in \widetilde{T})$. Then there exists a unitary map \mathcal{U} from $\sum \mathcal{J}_{e_{i}}, t \in T$ onto $\sum \widetilde{\mathcal{J}}_{e'}, t' \in \widetilde{T}$ and a map j from T onto \widetilde{T} with $\mathcal{U} = \widetilde{\mathcal{J}}_{j(t)}$

and

$$\tau(\alpha) = u \alpha u^{-1}$$
, $\alpha \in L^{+}(J_{t}, t \in T)$.

Theorem 10 implies the theorems 1 and 2 and shows how to prove theorem 6: We have to consider an imbedding

 $\mathcal{A} = \mathcal{L}^{+}(\mathcal{J}_{t}; t \in T) \subseteq \mathcal{L}$ with $\mathfrak{M}(\mathcal{A}) = \mathfrak{M}(\mathcal{B})$. Theorem 5 tells us, that we need to consider the case

 $\mathcal{A} = \mathcal{L}^{+}(\mathcal{J}_{\ell_{1}}, t \in T) \leq \mathcal{L}^{+}(\mathcal{J}_{\ell_{1}}, t \in T) = \mathcal{J}, \quad \mathfrak{m}(\mathcal{A}) = \mathfrak{M}(\mathcal{L})$ only. Further, \mathcal{A} and \mathcal{L} have to be *-isomorph (theorem 5) and hence there is a *-isomorphism from \mathcal{L} onto \mathcal{A} , i.e., into \mathcal{L} that leaves stable the set of all minimal projectors as a whole. This *-isomorphism has therefore to be an *-automorphism and it follows $\mathcal{L} = \mathcal{A}$.

4. Proof of theorem 3.

Let φ be a derivation of $\mathcal{L}^{+}(\mathcal{J})$. Using an idea of P.Kräger we construct the element X of eq. (4) explicitly. For any two vectors ξ, η of \mathcal{J} we define $P_{\xi, \eta}$ by

$$(P_{\xi,\eta}) \gamma = \xi (P_{\xi,\eta}) \gamma' = 0$$
 for all $\eta' \perp \eta \downarrow$

Now $\mathfrak{F} \to P_{\mathfrak{f},\eta}$ is a linear map of \mathfrak{D} into $\mathcal{L}'(\mathfrak{D})$ and we have $\mathfrak{a}_{\mathfrak{F},\eta} = \mathcal{F}_{\mathfrak{a}\mathfrak{f},\eta}$ for all $\mathfrak{a} \in \mathcal{L}'(\mathfrak{D})$. Now we define

$$\begin{split} & \stackrel{}{\sim} \eta = \mathcal{G}(\mathcal{P}_{\eta,\xi}) \ \\ \text{and get a linear map} \ \eta \to \kappa \eta \quad \text{from } \mathcal{J} \quad \text{into } \mathcal{D} \quad \text{. Now} \\ & \mathcal{P}_{\tau}(\alpha) = \mathcal{N}\alpha - \alpha \kappa \ , \quad \alpha \in \mathcal{L}^{+}(\mathcal{D}) \\ \text{is a map of } \mathcal{D} \quad \text{into } \mathcal{D} \quad \text{for every } \alpha \in \mathcal{L}^{+}(\mathcal{J}) \text{ and} \\ & \mathcal{P}_{\tau}(\alpha) \eta = \mathcal{G}(\mathcal{P}_{\alpha\eta,\xi}) \ \\ \xi - \alpha \, \mathcal{G}(\mathcal{P}_{\eta,\xi}) \ \\ \xi = \left\{ \mathcal{G}(\alpha \mathcal{P}_{\eta,\xi}) - \alpha \, \mathcal{G}(\mathcal{P}_{\eta,\xi}) \right\} \ \\ \xi \end{split}$$

shows that

$$\varphi_1(\alpha)\eta = \varphi(\alpha)p_{\eta,\frac{1}{2}}\xi = \varphi(\alpha)\eta$$

Hence $\varphi_{\tau} = \varphi$, Substituting $\alpha = P_{\tau, \xi}$ we get $\langle \xi, x, \xi \rangle = 0$. Next we consider $\gamma(\alpha) = \varphi(\alpha^*)^*$. γ is again a derivation and we construct as above $\gamma \gamma = \varphi(P_{\tau,\xi}^*)^* \xi$ so that $\gamma(\alpha) = [\gamma, \alpha]$ and

$$\langle [y, \alpha] \eta_{1}, \eta_{2} \rangle = \langle \eta_{1} [x, \alpha^{*}] \eta_{2} \rangle .$$
Choosing $\eta_{1} = \{ , \alpha = P_{\overline{\eta}, \{ \}}$ we obtain with $\langle \{, x, \{\}\} = \langle \{, y, \} \rangle = 0$

 $\langle \overline{y}\overline{\eta}, \eta_i \rangle = - \langle \overline{\eta}, x \eta_i \rangle$. Now y maps \mathcal{J} into \mathcal{J} and $x^+ = -\overline{y}$ so that $x', y \in \mathcal{I}^{\dagger}(\mathcal{J})$ and the theorem is proved.

Reference

- 1) P. Kröger, Ableitungen in $\mathcal{L}^{+}(\mathcal{J})$. preprint, Leipzig 1974.
- 2) G. Lassner, Rep. Math. Phys. 3 (1972) 279;

Math.Nachr. 52 (1972) 161 .

- 3) M.A. Neumark, Normierte Algebren, Berlin 1959.
- 4) Bargmann, Ann. Math. 59 (1954) 1.

Received by Publishing Department on July 25, 1974.