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1. Introduction 

In paper /I I devoted to the relativistic-covariant 
description of a system of interacting particles a problem 
was raised to find the quasipotential Green functions 1
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for composite particles with correct projective proper
ties. 

Note should be made that the hypothesis on projective 
properties of the Green functions has been used essen
tially in a series of papers /4/ in studying various proper
ties of composite particles within the parton model in the 
infinite-momentum frame ( p z _. "" ) . In this connection 
the investigation of projective properties of the Green 
functions within the quasipotential formalism, without 
using additional assumptions, is of a fundamental signifi
cance. Results of the paper /1/ clearly show that this 
problem can be considered in a consistent way within the 
framework of the relativistic -covariant quasipotential 
equations without appealing to the limit p z _. '"' . 

Hence it follows that the quasipotential approach is 
thus an adequate realization of concepts of the parton 
model. We would remind that this methGd is based on the 
relativistic generalization of the concept of equal time 
in describing a system of particles. 

The present paper deals with studying the structure 
of perturbation theory expansion for the quasipotential 
Green functions of the system of two scalar particles. 
It is shown that for many various types of diagrams the 
two-particle quasipotential Green function has the required 
projective properties. 
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2. Definition of the Concept of Equal Time 

In quantum field theory information on an interaction 
process of two particles can be extracted from the Green 
function 

G (
_, _, I__., , _., , ) 
ri,ti;r2,t2 ri,ti;r2,t2 . 

However, as is known, the Green function in the four
dimensional formalism depends on relative times which 
have no direct physical interpretation and besides result 
in extra mathematical difficulties. To remove the above 
difficulty, A.A.Logunov and A.N.Tavkhelidze have sug
gested a quasipotential method 121 based on the consi
deration of equal-time procedure. Within the framework 
of the approach it is possible to formulate the theory in 
terms of the two-time Green functions G (tI-t 2= t {- t 2 =0) 
all the merits of quantum field theory being conserved. 
In doing so, wave functions become functions of equal 
time, i.e., they have a probabilistic quantum-mechanical 
interpretation. 

In paper I I I it has been suggested to perform the 
removing of the relative times within the quasipotential 
approach via the transition to the space-like surface 

( tl- t 2 ) + ( z l- z 2) = 0 . (1) 

For this method of "equating of times" it is convenient 
to introduce the following relative coordinates 

X+ = X ± X 
- 0 3 

and their conjugate momenta 

p = p ± p . ± 0 z 

(2) 

The four-dimensional vectors are parametrized as 
follows 
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X = (X ,x ' ;L) ' 
+ -

P=(p,p,pL). 
+ -

(3) 

In this parametrization the scalar products of 4-vectors 
p and q qa ve the form :;1 )-, 

p2=2pp -p2 
+ - .L. 

,-) / ' -------
(4) 

(pq) = p+q- +p_q+- (p~ ql). 

In terms of the introduced variables the operation of 
"equating of times" (2) can be written as 

X+ = 0 . (5) 

In this momentum space condition (5) or transition to the 
equal-time functions is realized through integrating over 
the variable p_ . 

Thus, our consideration starts from the two-time 
quasipotential Green function 

G(p+,pL; q+,q1)8(P-Q) 
(6) 

= Jdp_ dq_ G (p +'P_, q+, q_, q L'Pl )n(P-Q), 

where P and Q are the total momenta of the system 0 

As has been shown in /t I a specific feature of the 
consideration is that the function (6) has definite projec
tive properties when there is no interaction. These are 
as follows: 

G (x,y,P )o(P-Q) = i770(x-1 )O(x)n(rc<l\)15(x-y) 
0 + 

0 

(7) 
->:! m2 ->2 2 

x (1-x ) p 2 ( M 2 _ p e- I p l + m 2 

where 

p+ 
X = 1 

2 
+ --

and 

Y=-1-+ 
2 

M2 = p2 . 

p+ 

q+ 

Q+ 

+ ---+---) 
X 1 -X 

(8) 
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Following a standard procedure we construct the 
quasipotential ----v = G~ G 0 K G 0 'G-~ , (9) 

where K is the interaction kernel. 
Due to definite projective properties of the operator 

G 0 in I I I a transition is made to the subspace 

0 < X < 1 (10) 

when constructing the quasipotential. 
The operators given in this subspace have the inverse 

ones, i.e., they possess all properties necessary for 
defining the quasi-potential (9). 

It will be shown below that at least for some class 
of the Feynmann diagrams the projective properties of the 
total Green function naturally follow from the above 
defined procedure of removing the relative times. 

3. Construction of the Quasipotential for 
One-Meson Exchange 

Proceeding from the quasipotentia1 equation for com
posite systems written in terms introduced in Sect. 1 
(see ref. I I I) 

.... 
(p2_ P[+ mi 

X 

.... 2 .... ) 
P[+ ':_:_)if! (x,pl 

--1- X 
(ll) 

.... .... .... .... -1 -1 -1 
=fdy dq-l.'V (y,x,p.l,q-l.)if!(y,p.l) P+ x (1-x) 

we consider the kernel K in (9) corresponding to the 
scalar-meson exchange: 
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p 
PI= 2 +P 

p 
P2 = "T -P 

.. 

p 
-f+q =ql 

_R -q =q2 
2 --In expression (9) we calculate G 0 K G 0 (tilde means 

the operation (6)): ---GOK Go(PI ,p2 ;ql ,q2) 0 (pl+p2-ql-q2) 

P 
.... 2+m2 

L l 1f p 
= I d p dq I 2 p X [ p + -----+ --] 

2 p X - - + - 2 2P+ X 

p 
·2P (1-x)[-P +---

+ - 2 

p2 + m2 
_1: __ 2 

2P+(l-x) 

·2P (x-y) [ P -q -
+ 

(
-> -> )2 2 pl _q.l + J1 

2P (x-y) 
+ 

+ 

+ 

1f ] 

2P+(l-X) 

+ 
l ( ] . 

2P (x-y) 
+ 

·2P+y[q_+.£ 
2 

q2 + m2 
..L I lf. __ ] 

+ -- (12) 

·2P (1-Y) [ -q 
+ 

2P + y 2 p+ y 

p_ 
+-

2 

.... 2 2 
q.l+m2 

2P (1-y) 
+ 

+ 

0 -1 
l ( ] l 

2P (1-y) 
+ 

Integrating over p _ and q _ it is easy to show that 
a nonzero contribution comes only from the region 
O<X< 1. 
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Finally, the required function has the form: 

GoK Go(pl'p2;qi,q2)B( PI +p2-qi-q2) = 

. 2 p2 +m2 {>2 + m2 

= ( -2171) I 2P+ X (1-X )[ M2- _:__I_ .L. 2 
- ] . 

X 1 - X 

·2P+ (x-y) [ M2-

m2+ q2 m 2+ p 2 ( p.L.- q.l ) 2+ 11 2 I .L. 2 .L. - -----]· -
y 1- X X- y 

-.2 2 
·2P+y(l-y) [M2 - ~!..~~I ___ q_[+m:] 1-I 

y 1 - y 

·8(x)8(1-x)8(y) 8(1-y)8(x-y)+ (x....-.y). (13) 

From eqs. (9), (7) and (13) we obtain for the quasipoten
tial the following expression 

V(x,y,P) =8(x)8(1-x) 
8(x-Y) 8(y) 8(1-y) 

+ 
+ 

m 2+q2 m 2+p-.2 (~ ->2)+ 2 
(X -y )[ M - _i___.l_ J_J:_ pj- q .L. t.L 

Y 1-X X-Y-

+(x_.y). 

4. Projective Properties of the Quasipotential 
for Ladder-Type Diagrams 

Consider the second-order diagrams 

and 

8 

(14) 

J 

' 

J 

' 

____.., 
Examining the functions G 0 K G 0 corresponding to 

these diagrams by the method given in the previous 
section one can easily show that only the regions 0 < x < 1 
and 0 < y < 1 contribute there. 

Indeed, introducing the following notation for momenta 

k 
p q 

p-k k-q 

P-q 
P-k 

P-q 

........--__.. 
the function Go K Go is written as follows: 

---....__...... 
G

0
K G 

0
(x,y,z,P) =Jd

4 k Jdp_dq_(2P )-
8 

· 

] 
-I 

·[ x(1-x)(x-z) z(1-Z)(z-y) y(l-y) 

if -I if -I if -I 
·(p -A+-) (P -p -A+-) (p -k -A+~· 

- I X - - 2 1 -X - - 3 X -z 

i -I i -I 
· ( k -A 

4 
+ -· _f-) ( P - k -A 5 + -'--c- ) 

- z - - 1-Z 
(15) 

( k A 
1i c )-I ( A 1 c )-I ( A i c )-I . _q- + -- q- +-- P-q- +- ' 

--6 z -7 - 81y -y y -

where A I-B are the terms independent of integration 
momenta, and 

X = _!_r_, 
p+ 

~. 
p+ 

k 
z = _i 

p+ 
y 
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Let x < 0, then poles in the first and second denomi
nators have the same direction of their contours, and 
from the third denominator we obtain the condition 
x > z ( z < 0 ) for the integral over p_ be no11zero. 
In this case the poles in the third, fourth and fifth 
denominators again have the same direction of their 
contours, and in order that the integral over k- differ 
from zero the condition z > Y ( y < 0 ) is taken. However, 
then the integral over q_ necessarily becomes zero. 
Thus, the region x < 0 gives no contribution. 

In a completely analogous way it can be proved that 
both for the diagram under consideration and for the 
crossed diagram the regions x > 1 , y < 0 , y > 1 also make 
no contribution. 

A proof of vanishing of contributions from the regions 
x<O , x > 1 , y < o will be given below for a l~dder type 
diagram by mathematical induction. 

Consider an arbitrary ladder diagram in the form 

k 
p q 

Gn k -q G n+I · 

P-p P-q 

Let Gn reduce to zero for x < 0 

Gn (x,z) =f Gn'_I(P ,x,p,z,k) · (16) 

·(k + B + .1!_)-I 
- I z 

(P -k +B
2

+J.L_)-I dp dk , 
1-Z - -

where B i do not depend on k- , z , p _ , x , and 
the prime means that in G ~-I times are not equating 
and this function contains all the coefficients of the latter 
denominators, noncontributing to the pole structure. 
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Then we shall prove that the function also 

G n+I (x, y, z) = f G ~ ( P , x, p, z, k) · 

(k B if )-I ( B if )-I . -q + + --- q + + --
- - 3 z-y - 4 y 

(17) 

i -l 
·(P -q +B + _f_)dp dk dq 

- - 5 1-Y -

becomes zero for x < 0 . 
Consider the first case, when 

fdp_G;_I(P ,x,p,z, k) for x < 0 

but then obviously, Gn+I .. o as well, for x < 0 . 
The second case, when 

fdp_G~-I(P,x,p,z,k) _, 0 for x < 0. 

In this case we take the z variable in a region such that 
the integral over k _ be zero as here this is a unique 
possibility to satisfy the initial assumption. 

There are two possible versions. The first one, when 
z<O, 1-z,>O . 

and then, in order that Gn+I _, 0 as the integral over 
k_ it should be supposed that 

z-Y>O, y<1. 
But hence it immediately follows that G n +I = 0 in 
integrating over q_ . 

The second version, when 
Z>0,1-z<O. 

Hence, in order that G n+I .;. 0 as the integral over 
k _ one should assume that 

z-y < 0, y > 1. 
However, in this case integrating over 
G n+ I to zero. 

Thus, for x < 0 from the assumption 
follows that Gn +I = 0 as well. 

q_ reduces 

that G n • 0 it 
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Analogously, it can be shown that also in the regions 
x > 1 , y < o , y > 1 arbitrary diagrams of the type 

.......--_.... 
do not contribute to 'G0 K G 0 

5. Conclusion 

. . . ~ ~ 

The very fact of a possibility to establish the projec
tive properties of the Green functions in the framework 
of the quasipotential approach, without using any additio
nal assumptions is rather interesting. We would like to 
emphasize that the projective properties of the Green 
functions are very important in numerous investigations 
of the parton model or in considerations of composite 
particles in the frame Pz -.."" , but they are only postula
ted there. 

This note presents an argument in favour of further 
developing the quasipotential approach to the study of 
composite particles, as this approach clearly reflects the 
basic properties of elementary systems both in the case 
when these really consist of partons and even if the parton_ 
language is simply a suitable guide for describing their 
behaviour. 

In conclusion the authors are very pleased to thank 
N.N.Bogolubov, R.N.Faustov, V.R.Garsevanishvili , 
S.V.Goloskokov, V.K.Mitryushkin, M.A.Smondyrev and 
A.N. Ta vkhelidze for useful discussions. 
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