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1. Introduction 

A structural analogy between the classical statistical 

mechanics and the quantum mechanics as well as the quantum field 

theory 1 suggests that the probabilistic concepts on wtich 

the statistical methods are based, may be transferred to the 

quantum domain after some modificaU.ons 2 • These are drastic 

in fact since they include an analytic continuation of real 

parameters of the,e.g., Wiener processes occuring in statistical 

mechanics, to the purely imaginary ones relevant for quantum 

mechanics. For this reason we called those objects the quantum 

Wiener processes or, shortly, pseudoprocesses J • Many results 

of a theory of probabilities could formally .be transposed on the 

quantum oase by the above procedure. The results on the so-called 

Euolidean quantum field theory and their rigorous extension 

to the Minkowski quantum field theory 4 indicate that the idea 

of an analytic continuation~ sound enough and deserves 

further exploration. 

In this paper we shall tray to employ the idea of the 

central limit theorem of a theory of probabilities 5 in the 

context of the relativL~tic pseudoprocesses in terms of which 

the Minkowski quantum field theory may be written. It permits 

us to write down the main objects of a theory as the limits of 

some approximate expressions which, first, could be simpler for 

numerical calculations and, second, could possibly give a closer 

3 



fits o" the exr>erimcntal facts than the limtt·ing ex,ressions. 

If the latter would be time one would get a very natural reali-

:·,f! tion of the correspondence principle - ne11 expresst ons coinci­

<ie vrith the old or,es after sooe limit has been taken. We shall 

consider it as a working hypothesis which should be checked. 

For the sake of simplicity, we consider here the simplest case 

of single, scalar interacting field. The considerations are 

mainly heuristic. 

2 • .J2a~Q .. _fO!:!!)Ul@&_ anQ.~fini tiQ,.!Hl 

Let us consider a scalar, neutral self-interacting field 

with a Lagrangian 

LJ~l = ~d: L~tt6cJJ = J['J.
1

] (2.1) 

A generating functional for the ""t'"- functions has the form 

-sTpJ = N\:~x.p(L LJ-L/pJ) exp(- ~ pKp) (2. 2) 

-~ -~ 

= N~ exp(i..J[-2i./u:J) exp(.- ~ p(U +tL) p] exp(t T-rlm.(t.<·Ht)-
_, (2.J) 

- f ~/M K jlv..=O 
Here the constant N is determined by the normalization condition 

-1 
and ~ 

Jto] = 1 
stands for a causal Green's function 

-1 c 
K=-~ ) 

u = 0- )(.?.' 
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ii 

(2.4) 

(2.5) 

t 

In a course of derivation of the formula (2.J) the following 

identities have been used 6 

and 

e.xp(i. J[-(/p-YJ) = exp(i J[-2~fu~exp[-ttL·(/j.Y]1 1A=o 

f · r)2] _,) exr-2 u.:(_rp exp(-tpKp = 

= exp(-~p(K+tt)p)exp[~ T-r&lt.<-+ttf-1 Tr&I<'J 

Now, using the "proper time" representations 7-lO 

( K + u.);,x =- ~ Ft exp(- t)t't)[ exp f (o +t.t)J~,x 
and -1 -1 

T,...lm. (K +u.) - T.,-lm.l-< = 

-
= ~ 1t exY'(- >-t

1

t)fd~[ exp~t(D+~)- exp1t oJz,z 
0 

where >. = i.i. 
'M. ' 

we see that a basic role is played here by the function 

.f(tj~,x) = [ exp~(O+u)]d,x 

which in addition depends functionally on U.~). 

It solves th~ following Ca~chy 1 s problem 

{at-~ [od +u.C1)]}fCt;~,x)=O 

tvm. f(i)~,x) = o(y-x) 
t -l-0 d 
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(2.6) 

(2. 7) 

(2.8~ 

(2.9) 

(2.10) 

(2.11) 



which is a special case of a general Cauchy's problem 

{as+ dt' a,.- i ~ff~;~dr-d~ + c }tp(s,~)==O 

l..Vm tp(s,d) == r (~) . 
Stt 

( 2.12) 

Its solution may be written in a form analogous to the Feynrnan-

Kac formula 
t 

<.p~,j) = Q{.f .. x(tjs,i)exp}f["t,X("t:iSr~)]t:h: l , (2.1)\ 

where the pseudoprocess x(t.;s,~) solves the following 

integral stochastic equations 
t t .,) 

Xf'"("tjs1 ~) = ~r- + ~~tJr.,X("t:.iS,)lJoh:-+ Jsrt(1: 1 X("t:;S,~)]d-zlt) (2.14) 

r- :::-0,-1,2, ~. 
The basic pseudoprocesses Zt'"(t) are independent Wiener 

pseudoprocesses characterized by the requirements 

Qtzr(-t)!==O) Qtzr-Ct)z.it>}=-Ar-br"t 
(2.15) 

Ar-=A1n > ~~~o=-~~1=-~22.=--~~~"'"1 
We follow here cl~sely the notation of our previous paper 
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to which we refer the reader for furthef" details concerning 

the relativistic pseudoprocesses. 

Putting in the equations (2.14) olt'"=O> r"r>J=~r" 
one obtains 

x(t)s,~) = ~ +Z(-t)-z(s) = ~ +Ztt-s) . 
(2.16) 

, 
Here Z (t) stands for another Wiener pseudoprocess which for 

the sake of convenience will be labelleli by z(i) without 

prime. It gives for the function 'f(&,~) the result 
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;o 

'f(s,~) ==1Y(t-s,a) , 

where the function 1J(t,f) is 

1)(t,}) = Q{{L~+Z(iJ]ex'fSf[~ +z(-r)]ch j . 
It satisfies the conditions following from (2.12) 

{-at-~ [ oa + u.~J]}v(t,:f) =O 

,Y(o,~)==~(l) , 
where we put 

u.(~)= ~ C()) 

Comparing these conditions with those for f(t;~,x) 
one infers that it may be written as follows 

t 
f(tj ~~)'.) = Q{ 6(~- X-+ ~(t)] f?l,(pt) U.(1 +Z(1:))ch 1 

0 

(2.17 

(2.18) 

(2.19) 

(;'. 20) 

(2.?1) 

This is a convenient formula which we are going to exploit 

further. First of all, we shall express the :r[p] gener~tine 

functional in terms of this function, Using the fonnulae (2.J), 

(2,8) and (2.9) we may write 

JlrJ: ~. exp(i.J(-2ikJ)exl't~fA[1L]~)B[u.)lu.=:~2,22) 

where we denoted 
1 - 2. 

A[lLi ~,x] = (K +t.l~,x =- ~ ~dtexp (- ¥t) ~(t.>d,x) 

~[t.l] = exp{ ~ r~ 0Kf(- ~:lt) Jol~f(t~~,z) 1 .. 
The new constant is again deteiwincd qy the normaliznti0n 

condition (2.4), 
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(2. 24) 



Next our task consists of finding an approximate expres­

sion for the function .{(t;~,x) which in turn will yield 

an approximate value for A(U.j~,x] , "f>(u.J and the "'J"(p] 
functional. To do this we shall utilize the known central 

limit theorems of a theory of probabilities, modified suitably 

to our case. 

) , ~imi t ~h~.2I'~!!!...i.Q!:_~Ud_2I!_!:.Q~§~_L 

According to our principle stated in the Introduction, we 

modify the genuine limit theorems by an analytic continuation 

in the parameters of random variables involved. For instance, 

one of the limit theorems, suitable for our needs will be 

modified as follows: 

Let ~r-~ l ~j'2.J · · · be a sequence of the independent 

rando~ variables, having the same distributions, such that 

Q{srd=O J 
t == o, ~,2,3 
i. = 'I, 2., •.. 

Q{s,..L J~i J =-A' $r>l sli 

.Ar- = >.9r,. · 
Let us denote a partial sums 

S ~c-r +···-+r k r - 5r1 "r-
and a pseudoprocess 

5M. (-c)= {I 2: ~k 
k ~(rt: 
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(J.l) 

(3,2) 

(J.J) 

(3.4) 

l 

I 
\ 

J 

then the distributions of functionals depending on $~(~) 
will weakly converge to the distributions of the Wiener pseudo­

process z(_-c) when /)'\.. ~ Oo) 

F[~ ~(~K] ~-+f[ zc~)] 
It means that the average values of both the sides coincide 

in the limit. 

In order to apply these considerations to our case 

we divide first a time interval [o,t] into pieces using 

the points 

and write 

""C"" -= k .1.. '11. 
k .. 0, 1 ) ... ,I 1'L 

(J.5) 

(J. 6) 

.((~;;p) = ~-Q[I{~-X+Z(~)]eX~~ ~:t.t(~+;t(kt)Jt t·7
) 

Now, we make the replacements 

Z(kt:) ~~~-~+···-+c;k) 
and get finallT 

where 

.P(t;d~x) = ~ {"'"lt.>q,x),. t "'-....,_ 

.f~(i;~,x) = Q{ o[~-x+fi (~1+. ··+tJl 

· €1)(rt?.~(.Lb + Vi(~1-+ ···+Fie)]~} ~ 
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(3,8) 

(J.9) 

(J.lO) 



Therefore, we obtain for the gererating functional 

Jlp J := ~ "J"_[p] 
,.,... -~o-

(J.ll) 

with approximate generating functional 

J:_[p J = eo-w;f. e,..r (i J[-2ii_])e«rt ~ rA!I(Jr) "B_[u]lu=o' 
(3.12) 

where - (J.lJ) ~[u;d,x]=- ~ I~~rf-)t~)-t_(ij~,x) , 

and 

:B,,,_[L4]= ex~-i)1~rt>z~1) r~~f,J"tiz,z)). 
11 

(3.14) 

This is the result which was advocated in the Introduction. 
Clearly, there are, probably, many possibilities of constructing 

different approximation schemes for ~[p] • We have just 

proposed a very natural one from the probabilistic standpoint. 

Another application of the limit theorem, concerning the 

structure of the transition amplitude of a pseudoprocess, may 

be found in 11 • 
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In order to illustrate how the modified limittheorem 

works we shall apply it to the simplest case of the Feynman 

propagator. We hava a formulae 

Ac( _ . 1) _ (..!...)4( ol1 exp[~p(x-~)] _ 
£.J. X d'.k - 2n J f ~2.-y:>Z-C€ -

= ~ pt (tid·><) efi(r[t(~ -E)) 
0 

where the transition amplitude (t)~JX) is given by 

(t) ~)x )=- i. (2.'TT H)~~~ i~t)~J 

== c2.~~.)4r~r e;xp{ ~ ~t + r(x-~)]J 

= Q{~r~-x+z(t)J] . 
According to the prescription (J.S) we may write 

Q{br~-x +z(·t:JJ] = ~~-Q{~r ~- x+~ C$1+ ··· +g,J]J 

and therefore 

,a'(x-'1)><1) .= ~ 6,c (!c.-'1) )f.'2) 
Q ~-+- - (J 

II 

(A.l) 

(A.2) 

(.A. J) 

(A.4~ 

(A.5) 

(.1.6) 

(A.7) 



where we denoted 

.6:_(x-;rj~2) = 

== ~ ~Q{S[~-x+~~r+ ·· ·+f~)J] enJt~- €)] (A. B) 

0 

In order to perform the average operation ~ we use the 

Fourier representation of the & - function, independence of 

the variables ~~ and equality of their distributions we have 

Q{ o[d-X+~ (t,+ ... +t,,.)]~ = 

= (:i
11 
)~oi E?A<f[Lz (d-x)J( Q{ exr[-t ~ (z·~)]J)~. 

Furthermore, because of the independence of ~r components 

we have 

. Q{e~Xy{-l~ c~-~JJ} = ~Qf~r[-i~ ~rr- 2rfr-]J 

(A.9) 

(A.lO) 

Hence we arrived at a product of the characteristic functions 

of the variables ~t" • They may be found if we recall the 

distribution amplitudes of ~r 

-" /_Xa\ 
M{~rEA1 = (-21r.~~~f1olxe,<p\2>-r-J. (A.ll) 

From this we easily compute that 

J ( -~( ( Z) (. a. ) (A 12) 
Ql.~fc-l.ttfr)J=(-ZTTA;) Jdxe-xpci~x+~ =~rc~Ar . --

12 

, 
"r 

,) 

l 

and finally 

Q{ ~r(-t.~ ~-~)]1 = ~¥>(~!. z.z) 
(A.lJ) 

The ref ore, we obtain the result 
(A.l4) 

Q{oL~·x-di (~,+. -·+~m)J}= (2~J'~o~exr{tz~-x)+~z2] 
which does not show any dependence on h- • Performing the 

integration over t as it is indicated in the formula (A.8) 

we get 

.:1~(x-d;.7t.2) ::.dc(x-d)~'l). (A.l5) 

Hence, the convergence is immediate in this case. 
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