> СООБЩЕНИЯ ОБЬЕАИНЕННОГО ИНСТИТУТА ЯАЕРНЫХ ИССАЕАОВАНИЙ
AYБHA
$\frac{420}{0-18}$ E2 - 8106

$$
g / x 11-74
$$

W.Garczyński

STOCHASTIC PSEUDOFIELDS
AND THE QUANTUM FIELD THEORY

ААБОРАТОРИП
ТЕОРЕТИЧЕСНОЙ ФИЗИНИ

W.Garczyński

STOCHASTIC PSEUDOFIELDS AND THE QUANTUM FIELD THEORY

* Permanent address: Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland.

In this paper we shall develop further the 1dea of stochastic pseudofields ${ }^{1,2}$ regular and generalized ones, and indicate their possible use in quantum field theory. We will show that a mathematioal scheme of the probabilistic type dealing nith pseudofields (p-fields for shortness) incorporates the main results of the funotional methods. The word "pseudo" indicates that we are using a complex-valued pseudomeasure in defining average operation instead of a genuine measure as in theory of probabilities 3,4. This differs our approach from that by Nelson and others 5,6 developing the so-dalled stochastio quantilzation program whioh although rigorously deals with the quantities of not direct physical interest. Our soheme based on the use of pseudoprocesses and pseudofields, seems to be veny natural in the framerork of quantum mechenios but is formulated on the physioal level, i.e., it is so far formal. We believe, however, that it may be made rigorous following the ideas which recently appearied in the literature ${ }^{7,8}$.

2. Basic definitions

Let as is usual in theory of probabilities 9Ω mean a set of elementary events $\omega \in \Omega$ and $\oiint(\Omega)$ some σ-algebra of its subsets. Let further ξ be a real random variable, 1.e., a mapping

$$
\begin{align*}
& \xi: \Omega \rightarrow \mathbb{R} \\
& \xi^{-1}(A) \in \mathcal{B}(\Omega) \tag{2.1}
\end{align*}
$$

for all Borel subsets A of \mathbb{R}.
We assume that a complex valued average operation Q,
(p-average), is defined on some random variables

$$
Q: \xi \rightarrow Q\{\xi\} \in \mathbb{C}
$$

such that

$$
1^{\circ} Q\{a \xi+b \eta\}=a Q\{\xi\}+b Q\{\eta\}
$$

for any complex numbers a, b and

$$
2^{\circ} \quad Q\{1\}=1
$$

The probability amplitude of an event A is given by

$$
\begin{equation*}
M\{A\}=Q\left\{\chi_{A}\right\} \tag{2.2}
\end{equation*}
$$

where χ_{A} is the indicator of this event.
We shall write formally the p-average operation as an
integral over the amplitude and its distribution corresponding to given ξ

$$
\begin{aligned}
& \qquad Q\{f \circ \xi\}=\int_{\Omega} f \circ \xi(\omega) M(d \omega)=\int_{\mathbb{R}} f(a) \mu_{\xi}(d a)=\int_{\mathbb{R}} f(a) d m_{\xi}(a), \\
& \text { where } f \circ \xi \quad \text { is a composite function, and }
\end{aligned}
$$

$$
\begin{gather*}
\mu_{\xi}(d a)=M\{\xi \in[a, d a]\}=d m_{\xi}(a) \tag{2.4}\\
m_{\xi}(a)=M\{\xi<a\} .
\end{gather*}
$$

Similarly, when we have a funotion of several variables

$$
\begin{equation*}
\eta=f\left(\xi_{1}, \ldots, \xi_{n}\right) \tag{2.5}
\end{equation*}
$$

then we maj write

$$
Q\{\eta\}=\int_{\mathbb{R}} a d m_{\eta}(a)=\int_{\mathbb{R}^{n}} f\left(a_{1}, \ldots, a_{n}\right) \Gamma_{\xi_{1}, \ldots, \xi_{n}}\left(d a_{1}, \ldots, d a_{n}\right),
$$

Where
$\mu_{\xi_{1}, \ldots, \xi_{n}}\left(d a_{1}, \ldots, d a_{n}\right)=M\left\{\xi_{1} \in\left[a_{1}, d a_{1}\right], \ldots, \xi_{n} \in\left[a_{n}, d a_{n}\right]\right\}$.
By the charsoteristic function of a random variable
we mean the p-average

$$
\begin{equation*}
Q\left\{e^{i \lambda \xi}\right\}=\int_{\mathbb{R}} e^{i \lambda a} d m_{\xi}(a) \tag{2,8}
\end{equation*}
$$

We oall the two random variables ξ, η equal when they are equivalent under the Q - operation sign, i.e.,

$$
\begin{equation*}
Q\{f \circ \xi\}=Q\{f \circ \eta\} \tag{2.9}
\end{equation*}
$$

for any bounded continuous funotion f.
We will say that the random pseudoprocess (p-process)
is given if to each $t \in T$ a random variable $\xi(t)$ is given. S1milarly, we will taik about the p-fields orer some spaoe M (of more than one dimension) when for eaoh $x \in M$ the random
variable $\phi(x)$ is given.
If for some test funotions $\varphi_{1}(x), \ldots, \varphi_{n}(x) \in K$
the random variables $\phi\left(\varphi_{1}\right), \ldots, \phi\left(\varphi_{n}\right)$ are given such that

$$
\begin{aligned}
& 1^{0} \phi\left(\alpha \varphi_{1}+\beta \varphi_{2}\right)=\alpha \phi\left(\varphi_{1}\right)+\beta \phi\left(\varphi_{2}\right) \\
& 2^{\circ} \lim _{k \rightarrow \infty} Q\left\{f \circ \phi\left(\varphi_{k}\right)\right\}=Q\{f \circ \phi(\varphi)\}
\end{aligned}
$$

when $\varphi_{k} \rightarrow \varphi$ in the space K and f is an arbitran ry bounded continuous function, then we say that the generalized random p-field is given.

As is known fram the theory of distributions ${ }^{10}$ we may always perform the following operations on the generalized p-sields:
(1) Addition and multiplications by numbers

$$
\left(\alpha \phi_{1}+\beta \phi_{2}, \varphi\right)=\alpha \phi_{1}(\varphi)+\beta \phi_{2}(\varphi),
$$

(1i) Multiplioation by a function

$$
(f \phi, \varphi)=\phi(f \cdot \varphi) \quad \text { when } \quad f \cdot \varphi \in K
$$

(iii) Defferentiation

$$
\left(\partial_{\mu} \phi, \varphi\right)=-\phi\left(\partial_{\varphi} \varphi\right)
$$

(iv) Shifting

$$
\begin{aligned}
\phi_{h}(\varphi) & =\phi\left(\varphi_{h}\right) \\
\varphi_{h}(x) & =\varphi(x-h)
\end{aligned}
$$

Any generalized p-field generates functionals on K by

means of taking its moments

$$
\begin{equation*}
Q\{\phi(\varphi)\}=\int_{\mathbb{R}} a \operatorname{dm}_{\phi(\varphi)}(a)=\Pi(\varphi) . \tag{2.10}
\end{equation*}
$$

Aocording to the linearity of generalized p-field and Q-operation we have the same property for $\Pi(\varphi)$,

$$
\begin{equation*}
\Pi\left(\alpha \varphi_{1}+\beta \varphi_{2}\right)=\alpha \Pi\left(\varphi_{1}\right)+\beta \Pi\left(\varphi_{2}\right) \tag{2.11}
\end{equation*}
$$

For any generalized p-field we may write the decomposition

$$
\phi(\varphi)=\phi_{0}(\varphi)+\phi_{1}(\varphi)
$$

where

$$
\phi_{0}(\varphi)=\Pi(\varphi)
$$

is not a randoll linear functional on K and $\phi_{1}(\varphi)$ is a random generalized p-field with vanishing average value.

The second moment of the generalized p-field is called the oorrelation functional

$$
K(\varphi, \psi)=Q\{\phi(\varphi) \cdot \phi(\psi)\}
$$

Clearly, it is a bilinear functional on K. In the same way we may introduce higher moments as well.

3. Gaussian generalized p-fields

The generalized p-field $\phi(\varphi)$ is called Gaussian one when for any linearly independent functions $\varphi_{i}, \ldots, \varphi_{n}$ we have
$Q\left\{f\left[\phi\left(\varphi_{1}\right), \ldots, \phi\left(\varphi_{n}\right)\right]\right\}=\left[(2 \pi \lambda)^{n} \operatorname{det} B_{n}\right]^{-1 / 2} \int_{R^{n}}^{n}\left(a_{1}, \ldots, a_{n}\right) \exp \left\{-\frac{1}{2 \lambda}\left(B_{m}^{-1} a, a\right)\right\} d^{n} a$, Where B_{m}^{-1} is a positive-definite symmetrio matrix containing small imaginary part $i \in a^{2}$ for regularization and λ 18 an imaginary number; $\lambda=i \gamma$. We alassify all the Gaussian p-fields into two alasses acoording to the sign of $\gamma ; \gamma>0$ the first class, $\quad Y<0$ - the second one.

If we put for $f\left(a_{1}, \ldots, a_{n}\right)=a_{j} a_{k}$ we will hare from (3.1) for the correlation functional
$Q\left\{\phi\left(\varphi_{j}\right) \phi\left(\varphi_{k}\right)\right\}=\left[(2 \pi \lambda)^{n} \operatorname{det} B_{n}\right]_{\mathbb{R}^{n}}^{-\frac{1}{2}} \int_{j} a_{k} \exp \left\{-\frac{1}{2 \lambda}\left(B_{n}^{-1} a, a\right)\right\} d^{n} a=$
$=(-i)^{2} \partial^{j} \partial^{k} \exp \left\{-\frac{\lambda}{2}\left(P, B_{n} P\right)\right\}_{p=0}=\lambda\left(B_{n}\right)_{j k}$.

From this we have obriously

$$
\begin{equation*}
\lambda B_{n}=\left\|K\left(\varphi_{j}, \varphi_{k}\right)\right\|_{1}^{n} \tag{3.3}
\end{equation*}
$$

For the oharacteristic functional of the Gaussian generalized p-ifeld we shall have from (3.1) and (3.3) the formula

$$
\begin{align*}
L\{\varphi\} & =Q\{\exp i \phi(\varphi)\}=\left[2 \pi \lambda \operatorname{det} B_{1}\right]^{-\frac{1}{2}} \cdot \int_{\mathbb{R}} \exp \left\{i a-\frac{a^{2}}{2 \lambda A_{1}}\right\} d a= \tag{3.4}\\
& =\exp \left\{-\frac{\lambda}{2} B_{1}\right\}=\exp \left\{-\frac{1}{2} K(\varphi, \varphi)\right\}
\end{align*}
$$

In a regular case when $\phi\left(\delta_{x}\right)=\phi(x) \quad$ makes sense as a randon veriable $\left(\delta_{x}\right.$ - is the Dirac δ - funotion located at the point $x \in M$) and M is the one-dimensional space then we will say that a randon p-prooess is given. As an example, we shall oonsider the Wiener pmprocess on a real line defined as follows

$$
\begin{aligned}
& z(t) \in \mathbb{R}^{\prime}, z(0)=0 \\
\text { and for } 0 \leqslant t_{1} \leqslant \cdots & \leqslant t_{m} \quad \text { we have }
\end{aligned}
$$

$Q\left\{f\left[\phi\left(t_{1}\right), \ldots, \phi\left(t_{n}\right)\right\}=\left[(2 \pi \lambda)^{n} t_{1}\left(t_{2}-t_{1}\right) \ldots\left(t_{n}-t_{n-1}\right)\right]^{-1 / 2}\right.$.
$\cdot \int_{\mathbb{R}^{\prime}} f\left(a_{1}, \ldots, a_{n}\right) \exp \left\{-\frac{1}{2 \lambda}\left[\frac{a_{1}^{2}}{t_{1}}+\frac{\left(a_{2}-a_{1}\right)^{2}}{t_{2}-t_{1}}+\cdots+\frac{\left(a_{n}-a_{n-1}\right)^{2}}{t_{n}-t_{n-1}}\right]\right\} d^{n} a$

Hence, for $s<t$ we will find from it

$$
\lambda B_{2}=\lambda\left\|\begin{array}{cc}
s, & s \tag{3.6}\\
s, & t
\end{array}\right\|
$$

and, using the general relation (3.3), we inter for the correlation function

$$
\begin{equation*}
K(s, t)=Q\{\phi(s) \cdot \phi(t)\}=\lambda \min (s, t) \tag{3.7}
\end{equation*}
$$

and for the correlation functional we will get after some simple calculations

$$
\begin{align*}
& K(\varphi, \psi)=\lambda \int_{0}^{\infty} d s \int_{0}^{\infty} d t \varphi(s) \psi(t) \min (s, t)= \\
& =\lambda \int_{0}^{\infty} d t \psi(t) \int_{0}^{t} d s \varphi(s) s+\lambda \int_{0}^{\infty} d s \varphi(s) \int_{0}^{s} d t \psi(t) t= \tag{3.8}\\
& =\lambda \int_{0}^{\infty}[\hat{\varphi}(t)-\hat{\varphi}(\infty)][\hat{\psi}(t)-\hat{\psi}(-)] d t
\end{align*}
$$

where we denoted

$$
\begin{equation*}
\hat{\varphi}(s)=\int_{0}^{s} \varphi(\tau) d \tau \tag{3.9}
\end{equation*}
$$

There are of course two classes of the wiener p-processes depending on the sign of γ. Both are needed for the oonstruotion of the relativistio p-processes mich is useful in relativis-
tic quantum field theory ${ }^{11,12 \text {. His role is analogous to that }}$ plajed by the relevant Wiener process in Euclidean quantum fleld theory 13,14 .

4. Connection between the Gaussian generalized p-ifields and the quantum flelds

Let $\left\{e_{n}(x)\right\}_{1}^{\infty}$ be an orthogonal case in the Hilbert space $L^{2}(M)$ of square integrable functions on M. Let be a generalized random scalar p-field then, according to the fortiva (3.1), we have

$$
\begin{gather*}
Q\left\{f\left[\phi\left(e_{1}\right), \ldots, \phi\left(e_{n}\right)\right]\right\}= \tag{4.1}\\
=\left[(2 \pi \lambda)^{n} \operatorname{det} B_{n}\right]_{\mathbb{R}^{n}}^{-\frac{1}{2}} \int_{1} f\left(a_{1}, \ldots, a_{n}\right) \exp \left\{-\frac{1}{2 \lambda}\left(B_{m}^{-1} a, a\right)\right\} d^{n} a
\end{gather*}
$$

and extending the matrix \mathcal{B}_{n} beyond the n-th order we get
$=\frac{\int f\left(a_{1}, \ldots, a_{n}\right) \exp \left\{-\frac{1}{2 \lambda} \sum_{j k=1}^{\infty}\left(B^{-1}\right)_{j k} a_{j} a_{k}\right\} \prod_{k=1}^{\infty} d a_{k}}{\int \exp \left\{-\frac{1}{2 \lambda} \sum_{j k=1}^{\infty}\left(B^{-1}\right)_{j k} a_{j} a_{k}\right\} \prod_{k=1}^{\infty} d a_{k}}$,

Where the integration is carried out, in fact, on the Eilbert space l^{2} since the presence of the regularizing term $-\epsilon \sum_{k=1}^{\infty} a_{k}^{2}$ whioh is hidden in B^{-1}. We may consider the variables of
integration a_{k} as the Fourier coefficients of some function $q(x)$ with respect to the base $\left\{e_{m}\right\}_{1}^{\infty}$

$$
\begin{equation*}
a_{k}=\left(q \cdot e_{k}\right) \equiv q \cdot e_{k}=\int_{M} q(x) e_{k}(x) d x \tag{4.3}
\end{equation*}
$$

Moreover, we may write for the matrix elements

$$
\begin{equation*}
\left(B^{-1}\right)_{j k}=\left(e_{j}, B^{-1} e_{k}\right) \tag{4.4}
\end{equation*}
$$

where the operator B^{-1} is defined by its aotion on the basic elements

$$
\begin{equation*}
B^{-1} e_{k}=\sum_{j=1}^{\infty}\left(B^{-1}\right)_{j k} e_{j} \tag{4.5}
\end{equation*}
$$

Thus, using the completeness relation of the base we will have the formulae

$$
\begin{gather*}
\sum_{j k=1}^{\infty}\left(B^{-1}\right)_{j k} a_{j} a_{k}=\left(q, B^{-1} q\right) \tag{4.6}\\
\int \exp \left\{-\frac{1}{2 \lambda} \sum_{j k=1}^{\infty}\left(B^{-1}\right)_{j k} a_{j} a_{k}\right\} \prod_{n=1}^{\infty} d a_{n}=\int_{L^{2}(M)} \exp \left\{-\frac{1}{2 \lambda}\left(q, B^{-1} q\right)\right\} d q \tag{4.7}\\
\int f\left(a_{1}, \ldots, a_{n}\right) \exp \left\{-\frac{1}{2 \lambda} \sum_{j k=1}^{\infty}\left(B^{-1}\right)_{j k} a_{j} a_{k}\right\} \prod_{n=1}^{\infty} d a_{n}= \tag{4.8}\\
=\int f\left[\left(q, e_{1}\right), \ldots,\left(q, e_{n}\right)\right] \exp \left\{-\frac{1}{2 \lambda}\left(q, B^{-1} q\right)\right\} d q
\end{gather*}
$$

$$
\begin{align*}
& Q\left\{f\left[\phi\left(e_{1}\right), \ldots, \phi\left(e_{m}\right)\right]\right\}=\frac{\int_{L^{2}(M)} f\left(q \cdot e_{1}, \ldots, q \cdot e_{m}\right) \exp \left\{-\frac{1}{2 \lambda}\left(q, B^{-1} q\right)\right\} d q}{\int_{L^{2}(M)} \exp \left\{-\frac{1}{2 \lambda}\left(q, B^{-1} q\right)\right\} d q} \tag{4.9}\\
& =\int_{L^{2}(M)} f\left(q \cdot e_{1}, \ldots, q \cdot e_{n}\right) \mu_{B}(d q) \tag{4.10}
\end{align*}
$$

Where $\mu_{B}(d q)$ denotes the pseudomeasure

$$
\begin{equation*}
\mu_{B}(d q)=\frac{\exp \left\{-\frac{1}{2 \lambda}\left(q, B^{-1} q\right)\right\} d q}{\int_{L^{2}(M)} \exp \left\{-\frac{1}{2 \lambda}\left(q, B^{-1} q\right)\right\} d q} \tag{4.11}
\end{equation*}
$$

If we put $-\frac{1}{2 \lambda} \vec{B}^{-1}=\frac{i}{2} K-\epsilon=\frac{i}{2}\left(\square-m^{2}+2 i \epsilon\right)$ then according to the well known connection between the functional and operator formulation of the quantum field theory, we may write

$$
\begin{equation*}
\int_{L^{2}(M)} f\left(q \cdot e_{4}, \ldots, q \cdot e_{n}\right) \exp \left(\frac{i}{2} q K q\right) d q \tag{4.12}
\end{equation*}
$$

$$
\int_{L^{2}(M)}^{2(M)} \exp \left(\frac{i}{2} q K q\right) d q \quad\langle 0| T^{*} f\left(a \cdot e_{1}, \ldots, a \cdot e_{m}\right)|0\rangle
$$ where $a(x)$ is a free scalar neutral quantum field

$$
\begin{align*}
& \left(\square-m^{2}\right) a(x)=0 \\
& {[a(x), a(y)]=-i \Delta(x-y ; m)} \tag{4.13}
\end{align*}
$$

In this case we shall call the corresponaing pmilied $\phi(x)$ the free, neutral scaler random p-ifeld. We have the following connection between various averages

$$
\begin{equation*}
Q\left\{f\left(\phi \cdot e_{1}, \ldots, \phi \cdot e_{n}\right)\right\}=\langle 0| T^{*} f\left(a \cdot e_{1}, \ldots, a \cdot e_{n}\right)|0\rangle= \tag{4.14}
\end{equation*}
$$

$$
=\frac{\int_{L^{2}(M)} f\left(q \cdot e_{1}, \ldots, q \cdot e_{n}\right) \exp \left(\frac{i}{2} q K q\right) d q}{\int_{L^{2}(M)} \exp \left(\frac{i}{2} q K q\right) d q}
$$

In partioular, we may write for the generating functional of the τ-functions
$J[p]=\frac{\langle 0| T^{*} \exp (i a \cdot p) S[a]|0\rangle}{\langle 0| S[a]|0\rangle}=\frac{Q\{\exp (i \phi \cdot p) S[\phi]\}}{Q\{S[\phi]\}}=$

$$
\begin{equation*}
=\frac{\int \exp \left\{\frac{i}{2} q K q+i L_{\operatorname{int}}[q]+i q p\right\} d q}{\int \exp \left\{\frac{i}{2} q K q+i L_{\text {int }}[q]\right\} d q} \tag{4.15}
\end{equation*}
$$

Where the integration is oarried out over the Hilbert space $L^{2}\left(M_{4}\right)$, M_{A} is the Minkowski space, The S-matrix is replaced in the seoond part of the above formula by a functional

$$
\begin{equation*}
S[\phi]=\exp \left(i L_{\text {int }}[\phi]\right) \tag{4.16}
\end{equation*}
$$

i.e., the T^{*}-produot operation sign is removed and the fiela operator a is replaced by the p-field ϕ in the integration functional $L_{\text {ime }}[a]$.

According to the well-known formulas for the functionals 15 we obtain for $J[p]$

$$
\begin{gather*}
J[p]=N^{-1} \cdot \exp \left(i L_{i n t}\left[-i \frac{\delta}{\delta p}\right]\right) \exp \left(-\frac{i}{2} p K_{p}^{-1}\right)= \tag{4.17}\\
=N^{-1} \cdot \exp \left(-\frac{i}{2} p K_{p}^{-1}\right) \exp \left(\frac{i}{2} \frac{\delta}{\delta p} K \frac{\delta}{\delta p}\right) \exp \left(i L_{i n t}\left[-K_{p}^{-1}\right]\right), \\
-K^{-1}=\Delta^{c}
\end{gather*}
$$

with N determined by the condition

$$
\begin{equation*}
J[0]=1 \tag{4.18}
\end{equation*}
$$

As a simple example, we shall oaloulate the two-point funotion in the oase of vanishing interaction

$$
\begin{align*}
& \tau\left(x_{1}, x_{2}\right)=\left.(-i)^{2} \frac{\delta^{2} J[p]}{\delta p\left(x_{1}\right) \delta p\left(x_{2}\right)}\right|_{p=0}=\langle 0| T^{*} a\left(x_{1}\right) a\left(x_{2}\right)|0\rangle= \tag{4.19}\\
& Q\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\}=-\left.\frac{\delta^{2}}{\delta p\left(x_{1}\right) \delta p\left(x_{2}\right)} \exp \left(\frac{i}{2} p \Delta^{c} p\right)\right|_{p=0}= \\
& =-i \Delta^{c}\left(x_{1}-x_{2}\right)=-\frac{i}{(2 \pi)^{4}} \int \frac{e^{i p\left(x_{1}-x_{2}\right)}}{x^{2}-p^{2}-i \epsilon} d^{4} p
\end{align*}
$$

One sees from this that at the coinciding points this p-average does not make sense which indiates that $\phi(x)$ is a generalized random p-ifeld for which a smearing with some smooth funotions $1 s$ neossary in order to make the multiplications of random variables possible.

The generalization to the case of several independent generealized random p-field $\phi_{1}, \ldots, \phi_{n} \quad$ is strightforward

$$
\begin{aligned}
& \left.J p_{1}, \ldots, p_{n}\right]=\frac{\langle 0| T^{*} \exp \left(i \sum_{\alpha=1}^{n} a_{\alpha} \cdot p_{\alpha}\right) S|0\rangle}{\langle 0| S|0\rangle}=\frac{Q\left\{\exp \left(i \sum_{\alpha=1}^{n} q_{\alpha} \cdot p_{\alpha}\right) S\right\}}{Q\{S\}}= \\
& =N^{-1} \cdot \int \exp \left(\frac{i}{2} \sum_{\alpha=1}^{n} q_{\alpha} K q_{\alpha}+i L_{i n k}\left[q_{2}, \ldots, q_{n}\right]+i \sum_{\alpha=1}^{n} q_{\alpha} p_{\alpha}\right\} d q_{1} \cdots d q_{m}= \\
& =N^{-1} \cdot \exp \left(i L_{m t^{\prime}}\left[-i \frac{\delta}{\delta p_{1}}, \ldots,-i \frac{\delta}{\delta p_{m}}\right]\right) \exp \left(-\frac{i}{2} \sum_{\alpha=1}^{n} p_{\alpha} K^{-1} p_{\alpha}\right)=
\end{aligned}
$$

$$
=N^{-1} \cdot \exp \left(-\frac{i}{2} \sum_{\alpha=1}^{n} P_{\alpha} \bar{K}_{P_{\alpha}}^{-1}\right) \exp \left(\frac{i}{2} \sum_{\alpha=1}^{n} \frac{\delta}{\delta \delta_{\alpha}} K_{\delta P_{\alpha}}^{\delta}\right) \exp \left(i L_{\text {inf }}\left[-K_{P_{1}}^{-1}, \ldots,-K_{P_{n}}^{-1}\right) .\right.
$$

The notion of independence of the random variables is understood in the sense of the theory of probabilities 16 while the independence of quantum fields means, as usually, their commutativity on space-like distances.

In the case of n-oven we may introduce the complex fields as the combinations of the basic real ones. We shall demonstrate this construction on the simplest case of the two fields.

Let $\xi_{i} i=1,2$ stand for one of the fields $p_{i}, a_{i}, \phi_{i}, q_{i}$. Then we int roduoe the complex quantities as follows

$$
\begin{align*}
& \xi_{1}=\frac{1}{\sqrt{2}}\left(\xi+\xi^{*}\right), \quad \xi_{2}=\frac{-i}{\sqrt{2}}\left(\xi-\xi^{*}\right) \\
& \xi=\frac{1}{\sqrt{2}}\left(\xi_{1}+i \xi_{2}\right), \quad \xi^{*}=\frac{1}{\sqrt{2}}\left(\xi_{1}-i \xi_{2}\right) \\
& \frac{\delta}{\delta \xi_{1}}=\frac{1}{\sqrt{2}}\left(\frac{\delta}{\delta \xi}+\frac{\delta}{\delta \xi^{*}}\right), \frac{\delta}{\delta \xi_{2}}=\frac{i}{\sqrt{2}}\left(\frac{\delta}{\delta \xi}-\frac{\delta}{\delta \xi^{*}}\right) \tag{4.21}
\end{align*}
$$

and the notation

$$
\begin{gathered}
F\left[\xi_{1}, \xi_{2}\right]=F\left[\frac{1}{\sqrt{2}}\left(\xi+\xi^{*}\right),-\frac{i}{\sqrt{2}}\left(\xi-\xi^{*}\right)\right] \rightarrow F\left[\xi, \xi^{*}\right] \\
\left.F\left[-i \frac{\delta}{\delta \xi_{1}},-i \frac{\delta}{\delta \xi_{2}}\right]=F\left[\frac{-i}{\sqrt{2}}\left(\frac{\delta}{\delta \xi}+\frac{\delta}{\delta \xi^{*}}\right), \frac{1}{\sqrt{2}}\left(\frac{\delta}{\delta \xi}-\frac{\delta}{\delta \xi^{*}}\right)\right] \rightarrow F\left[-i \frac{\delta}{\delta \xi^{*}}\right)-i \frac{\delta}{\delta \xi}\right] \\
d \xi_{1} d \xi_{2}=c d \xi d \xi^{*} .
\end{gathered}
$$

We will get from the formula (4.20) at $n=2$

$$
\begin{align*}
& J\left[p, \vec{p}^{*}\right]=\frac{\langle 0| T^{*} \exp \left(i a \cdot \vec{p}^{*}+i a^{+} \cdot p\right) S\left[a, a^{+}\right]|0\rangle}{\langle 0| S\left[a, a^{+}\right]|0\rangle}= \\
& =\frac{Q\left\{\exp \left(i \phi,{ }^{*}+i \phi^{*} p\right) S\left[\phi, \phi^{*}\right]\right\}}{Q\left\{s\left[\phi, \phi^{*}\right]\right\}}= \tag{4.23}\\
& =N^{-1} \int \exp \left\{i q K q^{*}+i L_{i m}[q, \not q]+i q \cdot{ }^{*}+i q \cdot \mid \cdot p\right\} d q d q^{*} \\
& \left.=N^{-1} \cdot \exp \left(i L_{i u n t}\left[-i \frac{\delta}{p^{p}}\right)^{-}-i \frac{\delta}{\delta p}\right]\right) \cdot \exp \left(-i p K_{p}^{-1} \vec{p}^{*}\right)=
\end{align*}
$$

$$
=N^{-1} \cdot \exp \left(-i p \bar{K}_{p}^{*}\right) \exp \left(i \frac{\delta}{\delta p} K_{\delta_{p}^{\prime \prime}}^{\delta}\right) \exp \left(i L_{\text {int }}\left[-K_{p}^{-1}-K_{p}^{-1}\right]\right)
$$

A generalization to the case of several complex variables is strightforward. Thus we oompleted the considerations of fields with integer sping. For the sake of completeness we shall consider also a case of the Dirao spin $1 / 2$ field. In order to fixe the notation we shall write formulae relevant for the free Dirao field. Hamely we have for $\Psi(x)$ and $\bar{\psi}(x)$ operators the conditions

$$
\begin{align*}
& \left(i \gamma^{\prime} \partial_{\mu}-m\right) \Psi(x)=0 \\
& \bar{\Psi}(x)\left(i \gamma^{\mu} \partial_{\mu}+m\right)=0, \overline{\Psi(x)}=\psi^{+}(x) \gamma^{0} \tag{4.24}
\end{align*}
$$

$$
\{\psi(x), \bar{\psi}(y)\}=-i S(x-y)
$$

where the γ - matrioes satisiy the oonditions

$$
\begin{gather*}
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}, g^{\omega}=-g^{k k}=1, k=1,2,3 \tag{4.25}\\
\left(\gamma^{\mu}\right)^{+}=g^{\mu \mu} \gamma^{\mu} .
\end{gather*}
$$

The simplest partioular realization of this algebra is given by the formalae

$$
\begin{array}{ll}
\gamma^{0}=\left(\begin{array}{lll}
1 & 1 & \\
& & -1
\end{array}\right), \quad \gamma^{1}=\left(\begin{array}{cc}
-1 & 1 \\
-1
\end{array}\right) \\
\gamma^{2}=\left(\begin{array}{lll}
& & i^{-i} \\
-i & &
\end{array}\right)
\end{array}
$$

A generating functional for the T-functions of the Dirac field is given by one of the equivalent expressions

$$
\begin{align*}
& J[\eta, \bar{\eta}]=\frac{\int \exp \left(i \bar{\psi} D+i L_{i n t}[\psi, \Psi]+i \bar{\eta} \psi+i \bar{\psi}\right) d \psi d \bar{\psi}}{\int \exp \left(i \psi D \psi+i L_{i n t}[\psi, \Psi]\right) d \psi d \psi}= \\
& =N^{-1} \cdot \exp \left(i L_{i n t}\left[-i \frac{\delta}{\delta \eta}, i \frac{\delta}{\delta \eta}\right]\right) \exp \left(-i \bar{\eta} s^{c} \eta\right) \tag{4.28}\\
& =N^{-1} \cdot \exp \left(-i \bar{\eta} s^{c} \eta\right) \exp \left(-i \frac{\delta}{\delta \eta} D \frac{\delta}{\delta \eta}\right) \exp \left(i L_{L}\left[-s_{\eta}^{i},-\bar{\eta} S^{c}\right]\right) \tag{4.29}\\
& =\frac{\left\langle O_{F}\right| T^{*} \exp (i \bar{\psi} \eta+i \bar{\eta} \psi) S[\psi, \bar{\psi}]\left|O_{F}\right\rangle}{\left\langle O_{F}\right| S[\Psi, \bar{\Psi}]\left|O_{F}\right\rangle} \\
& \text { (}\left|O_{F}\right\rangle \text { - the mathematical Fermi Tacuum). } \\
& \text { The notation used here is } \\
& D=i \gamma^{r} \partial_{\mu}-m \quad, \tag{4,31}\\
& S(x)=\left(i \gamma^{\mu} \partial_{\mu}+m\right) \Delta(x), \\
& S^{c}(x)=\left(i \gamma^{r} \partial_{\mu}+m\right) \Delta^{c}(x),
\end{align*}
$$

$\eta, \bar{\eta}$ areantioomuting spinors, the derivatives over them are both left and satisfy the oonditions

$$
\begin{array}{ll}
\left\{\frac{\delta}{\delta \eta(x)}, \eta(y)\right\}=\delta(x-y) & ,\left\{\frac{\delta}{\delta \bar{\eta}(x)}, \bar{\eta}(y)\right\}=\delta(x-y) \tag{4.33}\\
\left\{\frac{\delta}{\delta \eta(x)}, \bar{\eta}(y)\right\}=0 & ,\left\{\frac{\delta}{\delta \bar{\eta}(x)}, \eta(y)\right\}=0 .
\end{array}
$$

The factor N is determined by the normalization oondition

$$
\begin{equation*}
J[0,0]=1 . \tag{4.34}
\end{equation*}
$$

We introduoe now the spinor p-ifelds $\psi(x, \omega)$ and $\psi(x, \omega)$ as random variables over the Minkowski space, $x \in M_{4}, \omega \in \Omega$. They separately anticommute, and $\psi(x)$ and $\bar{\psi}(y)$ become independent random variables when $x-y$ is space-like. Using these fields one may express the $J[y, \bar{\eta}]$ generating functional in the form of p-arerage over the pseudomeasure

$$
\begin{equation*}
\mu_{D}(d \psi, d \overline{ })=\frac{\exp (i \Psi D \psi) d \psi d \psi}{\int \exp (i \Psi D \psi) d \psi d \bar{\psi}} \tag{4.35}
\end{equation*}
$$

Hamely, we have the fo mula

$$
\begin{equation*}
J[\eta, \bar{\eta}]=\frac{Q_{F}\{\exp (i \bar{\eta} \psi+i \bar{\psi} \eta) S[\psi, \Psi]\}}{Q_{F}\{S[\psi, \Psi]\}} \tag{4.36}
\end{equation*}
$$

from which the τ-functions may be calculated.
We shall close this paper with a remark oonceraing the symmetry principles and their form in the stochastio framework. For instance, the relativistic invariance of a theory means, e.g., that for scalar p-fields, the random variables

$$
\begin{equation*}
\phi\left(L x_{1}+a\right), \ldots, \phi\left(L x_{n}+a\right) \text { and } \phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right) \tag{4.37}
\end{equation*}
$$

have the same p-distributions for all $L \in \mathcal{P}_{+}^{\uparrow}(\mathbb{R})$ and all $a \in M_{4}$. It means that the variables $\phi(L x+a)$ and $\phi(x)$ are stochastically equivalent. Similar, conclusions, with usual complications for multicomponent case, may be established for fields of higher spins.

The author wishes to thank Prof.D.I. Blokhlntsev for h1s kind hospitality during his stay at the Laboratory of Theoretical Physios of JINR in Dubna.

1. W.Garczyóski, Stochastic Approach to Quantum Mechanics and to Quantum Field The ory, Acta Phys. Austriaca, Suppl. VI., 501 (1969).
2. L. V. Prokhorov, Stochastic Processes in Pseudoenclidean Space and Quantur Meohanios, Preprint of the Imperial College, London, 1969.
3. W.Garczyński, Quantum Stoohastic Processes and the Feynman Path Integral for a Single Spinless Particle, Reports on Math. Phys., 4, 21 (1973).
4. R.P.Feyman and A.R.Hibbs. Quantum Mechanios and Path Integrals, New-York,1963, Квантовая механика и интегралы по траекториям, М., "Мир", I968.
5. E.Nelson, Derivation of the Schrödinger Equation From Newtonian Mechanics, Phys.Rev., 150, 1079 (1966).
6. F.Guerra, On the Connection Between Euclideanmarkov Field Theory and Stochastio Quantization, Prooeedings of the Souola Internazionale di Fisica, Enrico Fermi, Varenna (1973).
7. C.De Witt-Morette, Fejmmen's Path Integral. Definition Without Liniting Procedure. Commun.Math. Phys., 28, 47 (1972).
8. C.De Witt-Morette, Feynman Path Integrals I.Iinear and Affine Techniques. II. The Feymman-Green Function. Preprint of the Texas University at Austin, 1974.
9. F. B. Dyakin, Markovskije processy, (in Russian), Gosizdat Fiz.-mat. lit., Moscow, 1963.
10.I.M.Gelfand and N.Ja.Vilenkin. Generalized Functions, vol. 4 (in Russian), Gosizdat, Moscow, 1961.
10. W.Garczyński, Relativistic Pseudoprocesses for Single Spinless Particle, Comanications of the JINR, E2-7787, Dubna, 1974.
11. W. Garczsidski, The τ-functions of a Scalar Pield in Terms of the Relativistio Wiener Pseudoprocesses, Communications of the JINR, E2-7788, Dubna, 1974.
12. J.Ginibre, Application of Wiener Integral in Euclidean Quantum Field Theory, Lecture on the IV-th Finter School of Theoretioal Physies in Karpaoz, 1967, Poland. Published in Aota Universitatis Wratislaviensis, N. 88, V.I, 134 (1968).
13. K.Symanik, Euclidean Quantum Field Theory. Leoture on the International school of Physics, Enrico Feril", Varenna, 1968. Published in Local Quantura Theory, p.153, ed.by R.Jost, Aoad. Press 1969.
14. J.Rzewaski, Field Theory II, Polish Scientific Publishers, Warsaw, 1970.
15. J.Doob, Stochastic Prooesses, Hew York - London, 1953. Вероятностнне процессн, ИІ. М., І956.

Received by Publishing Department on July 16, 1974.

