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Ls Introductl on

In this paper we shall develop further the idea of
stochastic pseudofields 1,2
indicate their possible use in quantum field theory. We will

regular and generalized ones, and

show that a mathematical scheme of the probabilistic type
dealing with pseudofields ( P— fields for shortness) incorpo-
rates the main results of the funotional methods. The word
%pseudo® iniicates that we are using a complex-valued
pscudomeasure in defining average operation instead of a

genuine measure as in theory of probabilities 354
' 596

« This differs
our approach from that by Nelson and others developing

the so-called stochastic quantiization program which although
rigorously deals with the quantities of not direct physical in-
terest. Our scheme based on the use of pseudoprocesses and
pseudofields, seems to be vexy natural in the framework of
quantum mechaniocs but is formulated on the Physical level, 1l.e.,
it 18 so far formal, We believe, however, that 1t may be made
rigorous following the ideas which recently appearied 1in the

literature 758 .

sic definitions

Let as is usual in theory of probabllities 9Q mean a set
of elementary events W € 0 ana ﬁ(ﬂ) some (- algebra of

1ts subsets., Let further & be & real random variable,i.e.,

a mapping



£:0—->R
g(A)Eﬁ(Q) (2.1)

for all Borel subsets A of 1 o
W#e assume that a complex valued average operation Q s

( P- average), 1s defined on some random varlables

R:E->QRI{EleC
such that
P QAE +A9 = a QIZT+ Q1]
for ay complex numbers 2,4 and
2 QRUY=1.

The probability amplitude of an event A 1s given by

MiAt = Q{XaT 2.2

where %A 18 the 1ndicator of this event.

We shall write formally the p-average operatlon =s an
integral over the amplitude and its distribution corresponding to
given E

(2.3
QU E} = {{EIM) = {f@)k(a) = [faydmy(a)
= R R
where ‘F"Z 1s a composite function, and
4

(da) = M{§ela,da]} = dm (a)
r; £ (2.4)

'mz(a)= Mif<ca},

Similarly, when we have a function of several variables

M={(Es....5) (2.5)
then we may write
(2.6)
Qin) ={a dm, () = g.;(a“...,am)(;(d?.,g...,dan) ,
,‘R -R'". 1)+ 25m
where
rk (da‘J- --Jda”') = M{E»t E[a‘ﬂda']) s ’Eme[a’"’ ddm]} 2N
E, .,k )

By the charaoteristic function of a random variable
we mean the p=average
. (2.8)
QR{e™) = jeMim (a) .
R a
¥We oall the two random varilables E,"’) equal when they
are equivalent under the Q — operatlon sign, i.e.,

QRifeEt= Qifeni

for any bounded comtinuous funotion f .

(2.9)

We will say that the random pseudoprocess (p=process)
is given 1f to each tET & random variable E({) is given.
Similarly, we will talk about the p-fields over some sraoe [V
( of more than one dimension) when for emoh x € ™M the raniom



variadble 49(") is8 given .
If for some test fumotions B(x),..., R (x)€ K

the random variables $(y),..., P(¥.) are given such that

1 D@+ PY,) =t B(R) + P P@y)
2° i QU+ 4(8)} = QF4 (0}

when P ¢ in the space W and -F is an arbitrs-
ry bounded continuous funotion, then we say that the generalized

rgndom p=field 1s given.

As 1s known from the theory of distridbutions 1o we may

always perform the following operations on the generaligzed
p=fields:

(1) Agdition and multiplications by numbers

(L, + e, )= LBCo) +PRLY)
(11)Multiplication by & function

({4,%9) = ¢l ®) when {¢€W,

(111) Defferentiation

(1v) Shifting

41(¢)= ¢(¢h) B

@,(x) = p(x-k)

Any generalized p-field generates functionals on K by

means of taking its moments
= d a) = I"I .
Qfde)} fa méw; ()] (2.10)

Aocording to the linearity of generalized p-field and Q —~0pe—
ration we have the same property for ﬂ(‘?),

Nete, +p4)= o« N0) + EN,). (2.11)

For any generalized p-field we may write the decomposition

h &) = 4,(0) + 4 (9) | (2.12)

4’0(@) = n ((P)

48 not a rendom lirear functional on K and Ch(‘?) is a
random generalized p~field with vanishing average value.

The second moment of the generalized p-field is called
the oorrelation functional

K@, ¢) = Q{de)- b4} .

Clearly, it is a bilinear functional on K e+ In the same

(2.13)

way we may introduce higher moments as well,



Js_Gaussian generglized p-fieldg

For the characteristic functicnal ef the Gaussian generalized

The generalized p-field 4(4) 1s called Gaussian one p-fie1d we shall have from (3.1) and (3.3) the formula
when for any linearly independent functions ®,. .., Pa
we have _ . -k (3.4
o Li{vl= Q{expc.tk(w)}: [2ma detB)]: S'e,f,{;a._zaT" lda =
-& _ L
Ri{[#e), .., d)]}= [(217,\)*%&3,‘] {{@.,...,a.)exp{-4 (a\.a,ﬂ)}al“‘a R
R™ ’ _ A
, | = enp{-5-B]=exp{- £ k(®,0)}
where B, 1s a positive-definite symmetrio matrix containing
smell imaginary part (e€a’ for regularization amd A In a regular case when 4>(S,,)= &(x) makes sense as a
1s an imaginary number ; A=(} « We classify all the Gaussian random variable ( § - 1s the Dirac & — funotion located at
p-fields into two olasses according to the sign of x; Y>o the point XEM ) and M is the one—~dimensional space
the first class, Y<D ~ the second one, then we will say that a random p=proocess 1s given. AS an example,
If we put far {(m,...,a..):a,-a.‘ we will have from (3.1) we shall consider the Wiener p=process on a real line defined
for the correlatlon functional as follows
-) z#)eR' , z0)=0
e = (@) detB.] Ha acexp- L (Boa,a)1d™ =
Q{ J)#‘P“)} [("T) &t m]"R‘fn; L3 P{ 2)( Ay )} a and for 0‘i|$"' é-em. we have
(3.2)
= (-L)za’a“exp{——é_-(P,BmP)}, = A3, . .
= "2
p=o Q{'G[¢(t')) SRLS 4’(tm)} =[(21T/\)1£| (8,-2,) - - - (Ra- *’“-')] . (3.5)
From this we have obvioualy al 2 2
AL, ...,an)exp{- L[S + @) (A-Am-) 1) 4
I“F( P ) P{ u[tl + '_‘tl + + LM-*M-' }}da ’
(3.3) - R

A-am = " K((Pj)"&)”;n .



Hence, for s<t we will find from it

s, s

B, =
AB = s, +

’ (3.6)

and, using the general relation (3.3), we inter for the
correlation function

Ksit)= Q{46)-$8)} = ) mim (518 1)

and for the correlation functional we will get after some
simple calculations

oo

K(®4) =2 Sds .,:H @(s) b (&) mim(ert) =

%o t
=X [t 4)(ds p(s)s + X jAs ce(s)jcud,(t)t = (3.8)

[4

= A ([ Go-bedew-de=1dt |

where we denoted
s

l.a(s) = g‘(’(t)dt

(3.9
There are of course two classes of the Wiener p~processes

depending on the sign of Y « Both are needed for the oonstruc-—
tion of the relativistic p-processes which 1s useful in relativis-

10

11,12

tic quantum field theory « His role is analogous to that

played by the relevant Wiener process in Euclidean quantum

field theory 12014 |

4, Connection between the Gaugsian generalized p~fields and
the guantum fields

Let {e,,_(x)’fr be an orthogonal case in the Hilbert
space Lz(M) of square integrable functions om M . Let
be a generalized random scalar p-field then, according to the
formula (3.1), we have

Qif[¥e),. .. d(e]} = 1)
 [em ) det®,] Y $(0,.. anyexpf- £ @Ia,a)] %
ﬂR”\.

and extending the matrix B, beyond the n-th order we
get

(4.2)

-~

[f(@ - amexpi- 4 32 (B} [1da

’

fexpi- 2 (8)ayac] o

where the integration is carrled out, in fact, on the Hilbert

speoe 22 since the presence of the regularizirg term — 62—_61
-}

whioh is hidden in B ., We may consider the variables of



integration ax a3 the Fourler coefficients of some function

‘1(") with respect to the base {e,,,}f'

a =(q eu)= g-€.= SQ(X)QV,(X)dx . (4.3)
™M
Moreover, we may write for the matrix elements
@ = (&,8e) (4

where the operator B 1s defined by its aotion on the basic

elements

1 Qo |
Be, =J‘§n (8 )"‘ed' ) (4.5)

Thus, using the completeness relation of the base we will have
the formulae

= (B gjan= (4.39) (4.6)
JI =l

fexp{-25 d%(ﬁ')-.‘ad-an} Hoa. = sz(eb:)p{]—‘; (3,89)}dg 4D

f\f(a.,.-.,a’u)exp{—ﬁ%_(a kAol (ldan = (ag)

= (#l@e), .., @5en))exp{- £(q.B9)}d
L=(m) .

2(m)

Therefore we obtain finally for the p-average

[ f@e.,. -, qem)expi-2 %(Q)ﬁ“l)} dg

Rif[$e),. .., den)} = E®) (449
} [ expi-1(4,89)}4q
[2(m)
= S -F(ﬂ,‘e') ) ‘L‘em)t’g(dﬂl) ,
2(M) (4.10)

where rB(d‘l) dez;otes the pseudomeasure

da) = exp{ (‘I)BGI)}dQ«
B g‘(:-)xpi 25@BPldg

(4.11)

4 _ _,__ ol .
If we put —55 B = 5K-€ =75 (D ""1-+2(€)
then acoording to the well known connection between the
funotional and operator formulaetion of the quantum field theory,

we mgy write

[#(aes-..q-exexp(£qK)dq (412)
= <o|T’:c @e,...,a-en)lo>

L[ exp(34<1)d
LM
where a(X) is a free scalar neutral quantum field

@]—mz Jax)=0
(4.13)
[0 0),Aly]=~(Alx-g;m) |

i3



In this case we shall call the corresponding p-filed 4’(")
the free, neutral scalar random p~field. We have the following

connection between various averages

Q{‘F(‘?f‘u . )4’3“)} = <0|'T*:F(a.e( 5. L, a€x)]0) = 1)
[£@e.,..,q-elexp(59K4)dg
G I
gexp(iﬁ“%)d1
L2(M)

In partioular, we may write for the generating functional

of the T - functions

oI expliap)Sialloy _ R{exp((4p)SIY
(ol s[allo) QiS4

Jlel=
(4.15)

ferplz £qKq+iLadal+iqpldq
yewptz 1T T 2
(expis Lqia+il i1t

b

where the integration is ocarried out over the Hildert space
LZ(M4) s M, 1s the Minkowski space, The S-matrix 1a
replaced in the seoond part of the above formula 3y a functional

Si¢) = exp(i L‘.J‘ﬂ) (4.16)

i.84y the T product operation signis removed and the field
operator (L 4s replaced by the p ~field ¢ in the integration

functional LM[“7 .

14

According to the well-known formulas for the functionals 15
we obtain for J [p]

Tip) = N explilual-ifs]) el & pKp)=

(4.17)
_ ' expl §-pRp) oxp (15 kg Jexp( Lk KF),

—K =&
with N  determined by the condition

T[D]-‘-" (4.18)

As a simple example, we shall calculate the two-point
funotion in the case of vanishing interaction

e 8°T1R] .
T(M,X;_):(—-L)l Wz)) = <0|T 0.( 1)6(()(;_),0) =

(4.19)

{¢&0400}--gggam@ PG%FA&OKZD

. LP("I ~X2) 4
—_ —LA (K| Xz)_ (Zﬂfgmd?

One sees from this that at the coinciding points this p-average
does not make sense which indicates that 4>(X) is a generalized
random p-field for which a smearing with some smooth funotions

18 neoessary in order to make the multiplications of random
variables possitle.



The generalization tc the case of several independent gene—
ralized random p-—field Ch ye-- )Ch“_ is strightforward

T p]- OT Rl ZARISID_ Oep(i£% RS
(olSio0) Q{s}

—

(4.20)

N gexy{%éq‘b(qﬁiLan,__,%] +i 2::4‘&} da, -3, =
= y\]‘. exp (L LM[—i;SE—,- --,—i{%})exp(— %—Z’;BR ﬁ)—_-

_ expl £3B0R) exp(s LK Pk KK

o=t

The notlion of imlependence of the random varliables is

und erstood in the sense of the theory of prodabilities 16 while
the independence of quantum fields means , as usually, their
commutativity on space-like distances.

In the case of nmeven we may introduce the complex fields
as the combinations of the basic real ones. We shall demonstrate
this construction on the simplest case of the two flelds.

Let é% ¢=12 stand for ome of the fislds P, ,& 4,
Then we int roduoe the oomplex quantitles as follows

S=dE), H=FE-y)

E=Gl+L), =4 -iL)

and the notation
FE5.5.) = FIeG+3), 5 6-8)] - FIE8

_‘:5‘ ~& 7= =t ‘ 1 . .
it mtan] = Fla b ) sl -)] > Figo-isg]

d5, d5, = dgdg™*

We will get from the formula (4.20) at m=2

# (olT*exp(i a. F+ ufP) s[a,d’J)o) _
:]_[F' PJ - (0, S[a-;a.t”0> v h

- Qfexp(c4B+idfp)sfas) _
QUS[H4T)

- N'(exp{cqKdihiL, fadl+iqF+id plagaf

~1

=N-exp(iL, [-igri s51}exp(-ipK )=

7

(4.21)

(4.22)

(4.23)



= Nfexpéirk'ﬁ‘)exp(ig;‘Kg%O exp(i Lo-.[; K-l;,- ‘2,1;]) ,

A generalization to the case of several complex varlables 1is
strightforward. Thus we oompleted the considerations of fields
with integer spins. For the sake of completeness we shall consider
also a case of the Dirao spiln 1/2 field. In order to fixe the

notation we shall write formulae relevant for the free Dirao field.

Nomely we have for W(x) =and W(x) operators the conditions

(Lgrdp -m)¥(x) =0
P (iYPp+m)=0 T =46y (4024
{409, B]= -1 St-y)
where the 5‘— matrioes satisfy the oonditions
1r7'+y'3r=29r“ , 3”='?“=4 ,K=12,3
Ur)'*; af‘?‘b*r i

The simplest partioular realization of this algebra is given
by the formulae

(4.25)

(4.26)

A generating functlonal for the T — funotions of the Dirac

field is given by one of the equivalent expressions

{exp(eFDY +iLualtB) +i54 + Eo)de o

JA] =
[exp(:¥DY +iL fF)ds ¥

= r\]“ exp (i LgJ-éé%'La%])&‘P(‘fﬁsaj)
- Nexp(imsoy) onpl-i D Jowp (i, -547)

_ O T *exp(c¥m +17¥) S, Tlop)
C0: | S, & 10>

( lOF>'- the mathematical Ferml vacuum),

The notation used here is

D= C'ﬁ‘rar-"w‘ )

S(x) = (Lyf“ar.+ m)Ak)

§0) = ((7r3pr M) AT)

(4.27)

(4.28)

(4.29)

(4.30)

(4.01)

(4.32)



“)/’;‘)_ areantloommuting splnors , the derivatives over them are
both left and satisfy the oonditions

§ =
{Yfﬂg@"’)(ﬁ)}=5(x—3) s {f{,—@j;ﬂ(p)}:é(x_a))

(4.33)

Y
{5—'%;)";)_(7)?=O ) {ﬁ(})"’)(‘))}= 0.

The factor N is determined by the normalization ocondltion

JToo] =1. (4.34)

We introduce now the spinor p-fields 4’("/‘-0) and ;.F(x,w)
as random variables over the Minkowski space, XEM, , wWE Q.
They separately anticommute, and % (x) and T\:(ta) become
indepenient random variables when X—‘a is space-~like, Using
these fields one may express the T[")/ﬁ] generating functional

in the form of p-average over the pseudomeasure

(¢, ¢ ) = exP(i Fo4) d%ﬁ_ (4.3%)
s Texp (D4 ) o
Namely, we have the formula
(¢ +cGm) SHF)
TMA) = QF{QXP( (AN ) i (4.36)

Q{ St

from which the T - functions may be calculated.

We shall close this paper with a remark concerning the
synmetry principles and their form in the stochastic framework.
For i1nstance, the relativistic invarlance of a theory means, e.g.,

that for scalar p-fields , the random variables
¢(Lxl+a)),_.)¢(l.xm+o\) ana B, Pxa) (4.37)

have the same p—distributions for all LE(PI(TR) and al1 A€ M4-
It means that the varilables ¢(LX+&) and ¢(X) are stochas—
tically equivalent, Similar, conclusions, with usual complications
for multicomponent case, may be established for fields of higher
spins.

The author wishes to thank Prof.D.Il.Blokhintsev for his kind
hospitality during his stay at the Laboratory of Theoretical
Physios of JINR in Dubna.
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