


In our previous papers/1—4/ we studied the Lyapunov stabi~-
lity of particle-like solutioems, descrlbed by the complex
scalar field ¢#(®:R1x R3.¢l; x =(t,%) satisfying the natu-

ral boundary condition Hnl ¢(x) 0, and showed that the
x
direct consequence of yapunov “s theorem of stab111ty is their

instability and that they can have only conditional stability,
for example, Q-stability. Besides we showed that nodal
particle-like solutions (including pulsons) are even Q-un-
stable. In the present paper we shall establish the necessary
and sufficient conditions for the Q-stability of particle-
like solutions in scalar electrodynamics (see also ref.’®/).

Let the Lagrangian of the theory have the Lorentz-invariant
form;
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where uv-a A, - a A, 'is the electromagnetic field temsor
and G is an arbltrary nonlinear function of the invariants

s=¢*p, D=-Df p* D'y, q=77%;
i !k‘ s 5 2)
1, =41¢*D, ¢ ~DL¢*$), D, =d,-ieh,

where € is the interaction constant. Summation over repeated
indices is understood (unless ctherwise specified). Let the
corresponding field equations have the stationary regular
solutions
. > -igp t
¢0(x)=u(x)e y u*=|.l,. w =const;

o ' - il (3)
Au = (A5 ,0), Ag=AS(x).

We shall investigate the Lyapunov stability of the nonnodal
regular solutions (3} with the additional conditiom of charge
fixation (Q"stability/&ﬁ“aﬁ.

Let M denote the set of functions obtained from iéo.l°i
by means of the symmetry trausformations of the theory. en
by definition {¢(x),A,}¢M denote the perturbed solutions.



Now let

B0 =009 0@ auB £ A=A 4a,
3

f=fl‘-*“i£2v fl* *"fi 4 =1,2; a n-(ao,'é).
We introduce the metrics
3 2 - 2 9 -+ - >
b= LT HET 41V &7 16 + 82 482 L u %2 L322y 1%
where
o =~—8rad ag - —-—-(aa/at) bg =10t 2

for the characterization of the initial perturbations and
pa[fdsxﬂf1|2+|f Fr@)%e B  u2@ %y 2 2y*

where
'é’:-gradao’ —-%-(3?1’/5”, b’ =rota’,
ag= 2 -~('§2 /en), 2% -a -—grad( & /eu)

for the characterization of current perturbations.

Definition. The regular solutions l¢g, A u‘ are stable in
the Lyapunov sense with respect to the metrics £y p Lf for
each ¢> 0 there exists the number &(:)>0 such that from
Pp<8 it follows that p<¢ for any t>0.

Let us now establish the necessary and sufficient condi- -
tions for the @-stability of the nonnodal particle-like
solutions (3) by choosing the Lyapunov's functional in the
form

V=E-4,Q, (5

vhere E is the field energy and @ is the total charge, We
must find out in which case the functional (5) will satlsfy
all the conditions of the theorem of stability/%/ i.e., in
which case the stationary solutions (3} will realize 1ts
minimum. For this we must investigate the sign of the second
variation of the functional (5). The second variation of
Lyapunov™s functional can be written in the form

8%V =(€, .G € )+ e (uap ,cuag) « ef (ud’, (G ~5G )eud’ )+

+2e®wd, (G, =56 ) ud) e (g, T& )+ (6)



where (-.+) denotes the scalar product in Lg(Rs), the Hermi-
tian operator J has the form

~ q.
J = GS + 2SGSS +_SE..{_GD+65GQ —4SG})S +

+85%G  1-av[G,¥ +2G,, Vu(Vu Pl N

2’

—= _ 2
+ o3 (G ASqu +4s8 qu )+

o 4 e
+ d"v[—s_é':(cpp.—ZSqu Yo Vs~ G Vs)

ps
and G 2q 2
K = p"'SGq —-E-{Gpp - 238G pg+8 Gy

Now let us take into account the condition of charge fixa-
tion. In the linear approximation with respect to £ we get

e(uag, xuag)=(g ¢,) ®

where
B=-2div[s(w+ €AJ)(G , ~sG )- yul+

+ 20+ eAg)le—2qu + s((}ps -sG as )~ (9)

q 2
—:-é—(Gpp -3sGp, +25"G,, )L

From (8) using Schwartz's inequality we get
2 » , 2 —
e"(nag,kuap)z (g, £, )} «(u,«u) ! (10)

Therefore, from (&) and (i0) we have the estimate

2 . . -

5 V2(£ Gy € )+ ez(ua’,(Gp -G )ud’ )+

+2e%(ud, (G, -Gy )u_ﬁ)+(fl,ﬁfl)+;L.{(é",é")_,,(g'j')]; (1)
T

K¢, - 361 +8(8 €D (u,xu )

For the solutions (3) to be Q-stable it is sufficient
that 8% 0. From (11) 1t is clear that if G >0, x >0
(Gp-sGg)>0. then 8°V will be positive definite if the _
operator K has positive spectrum. Now for the spectrum of K
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to be positive it is mecessary that the operator J has not
more than one negative eigenvalue, because in the opposite
case (8, ¢ ) =0 can always be attained for (¢ ,J¢ )<o.

Let Alw) be the first eigenvalue of K. Then according
to the theorem I of our papers’®%/ )(p) 'is always negative.
Now let us find the critical frequency wg for which AMw,)=0
and which determines the boundary of the domain of Q-stabi-
lity @>wy if (8A/dw )2.0 (owing to the symmetry o--g it
is sufficient to consider >0 ). As

R 2 ' ’ .
Sgn ?1263 v =Sgi(w-w ) | (12)
U(wy) is the saddle point of V with the curve of descent
U(w) Thus for w = wg

) . ~
min 3V =min (¢; , K £,3=0
s pme i 1 _ (13)

. . du : , ;- .
and is achieved when §1=..El.l.‘5um,Hence u, is the eigen-funceci-
Py ;

on of K corresponding to the eigenvalue equal to zero. This
fact leads us to the following equation for the determina—

tion of wg .

dQ ’

T =%, =0 (14)
Thus for w>wq(u,.Ku, )> 0 or Qp,,(Qg, —(u,xu))> 0, whence
with the help of (14) we get the Tollowing inequality for

the determination of the domain of Q-stability .
Qp,, <0. (15)

Note that the zero-modes are excluded here according to the
definition of the metric 5. c
Thus we formulate the following theorem. : :
Theorem. Nonnodal regular solutions (3) in the model (nH
are WQ-stable and the domain of Q-stability is determined
by the inequality (15) if the following conditions hold:

(a) G, >0, « >0, (Gp -5G, )>0,
(b) (AA/dw)2.0.
(c) the operator J has only one negative eigenvalue.
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