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In our previous papersll-4/ we studied the Lyapunov stabi­
lity of particle-like solutions, described by 'the complex 
scalar field ¢(x):Rlx R3~¢1; x a(t,x) satisfying the natu-

ral boundary condition lim ¢ ( x) ~ 0, and showed that the 

d · f 11 I~~ · h f b ·1· . h . 
~rect consequence o Lyapunov s t eorem o sta 1 1ty 15 t e1r 

instability and 'that they can have only conditional stability, 
for example, Q-stability. Besides we showed that nodal 

particle-like solutions (including pulsons) are even Q-uo­
stable. In the present paper we shall establish the necessary 
and sufficient conditions for the Q-stability of particle­
like solutions in scalar electrodynamics (see also ref. Is/). 

Let the Lagrangian of the theory have the Lorentz-invariant 
form; 

f =-J..,Q(s,p,q)- _lp Fv (I) 
2 · . 4 "v 

where· Fp.v -all A,-av All is the electromagnetic field tensor 
and G is an arbitrary nonlinear function of the invariants 

s = ¢*¢. p =-D,t ¢* rJ' ¢ , 

J = .L{¢*D ¢ _,D* ¢*¢] 
~ 2 ~ ~ . 

(2) 

where e is the interaction constant. Summation over repeated 
indices is understood (unless otherwise specified). Let the 
corresponding field equations have the stationary regular 
solutions 

-+ -iw t 
¢

0 
(x) = u ( x) e u *= u, w =const; 

(3) 

We shall investigate the Lyapunov stability of the nonnodal 
regular solutions (3) with the additional condition of charge 
fixation ( Q -stability 12,6-!1•'). 

Let M denote the set of functions obtained from l ¢0 ,:A 0 I 
by means of the synnnetry transformations of the theory. then 
by definition I¢( x) ,A"li'I:M denote the perturbed solutions. 
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Now let 
-icot 4 ¢(x) ~<I> (x). e , <l>(x) = u( x) + f(x); 

(4) 

We introduce the metrics 
3 •. 2 4 2 2 4 2 """"2 2 2 42 * Po = ( r d X II t I + I v <71 + I (I + e 0 + b 0 + u (ao +a ) I]. 

where 
~ 1 ~ 
"o ~-grad ao -· c" (a a/at), ba == rot a: 

for the characterization of the initial perturbations and 
p~(fd 3xll ~\1 2+1(112+(e') 2 +(b') 2 + u2 (<t 2+a'2)1Jl>, 

where 
~. t a~·; e ~-grada,; - c< a a 1), 

ao•"'J-(~/eu), a·~i 
2 

-grad( ¢2 I eu) 

for the characterization of current perturbations. 
Definition. The regular solutions l¢0,A 0 I are stable in 

the Lyapunov sense with respect to the mefrics p
0

,p if for 
each f> 0 there exists the number ~(( )> 0 such that from 
Po<O it follows that p<( for any t> 0. 

Let us now establish the necessary and sufficient condi­
tions .for the Q-stability of the nonnodal particle-like 
solutions (3) by choosing the Lyapunov~s functional in the 
form 

V~E-wO. (5) 

where E is the field energy and Q is the total charge. We 
must find out in which case the functional (5) will satisfy 
all the conditions of the theorem of stability/51, i.e .. , in 
which case the stationary solutions (3) will realize its 
minimum. For this we must investigate the sign of the second 
variation of the functional (5). The second variation of 
Lyapunov~s functional can be written in the form 

1 ... ... ... .... 
, --i(e',e') +(b',t')l, 

h 

(6) 



where (•,•) deuotes the scalar product in L
2

(R 3 ), the Hermi­

tian operator J has the form 

J=G8 +2sG 88 +~[-G +6sG -4sG + 
52 P Q ps 

+8 s
2
Gqs ]-<liv[GPV + 2GPP Vu(vu V)l+ 

z<i' 
+-

3
(G -4sG +4s2Gqq )+ 

S PP . pq 

q • • 
+<liv[-{G -2sG )•Vs-G Vs] 

82 PP qq p s 

and ~ 2 
K = GP -sGq -

8 
(Gpp - 2sG pq + s Gqq)· 

(7) 

Now let us take into account the condition of charge fixa­

tion. In the linear approximation with respect to t we get 

e(ua0, ,ua 0) = (g,f 1), 

where 

+ 2u(uJ+ eAQ)!Gp-2sGq + s(Gps -sG qs )-

q 2 
-,-g(Gpp -3sGpq +2s Gqq )I. 

From (8) using Schwartz's inequality we 2et 

2( ' ' c 2 -1 e ua0 ,,ua 0):,.(g,,
1

) •(u,,u) , 

Therefore, from (6) and (10) we have the estimate 

2 • • 2 .... -+ 

li V.:. ((1 .Gp( 1)+ e (ua',(G -sG )ua')+ 
p q 

(8) 

(9) 

( 10) 

For the solutions (3) to be Q-stable it is sufficient 

that 8 2V~ o. From (II) it is clear that if G p>O, K > 0 

(Gp-sGq)>,O. then 1i2V will be positive definite if the 

operator K has positive spectrum. Now for the spectrum of K 
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.to be positive it is necessary that the operator J has not 
more than one negative eigenvalue, because in the opposite 
case (g, (

1 ) =0 can always be attained fpr (( 
1
.J.; )<0. 

Let A(cu) be the first eigenvalue of K. Then adcording 
to the theorem I of our papers/2.~/ 'A(O) is always negative. 
Now let us find the critical frequency w 0 for which A(w 0 ) =0 
and which determines the J:)oundary of the domain of Q-stabi­
lity w>w

0 
if (d.\/dw);,.O (owing to the symmetry <u~-w it 

is suffic1ent to consider w> 0 ) . As 

Sgn min 8 
2v - Sgn( w - 0 

p =f 0 (12) 

u(w0 ) is the saddle point of V with the curve of descent 
u(w). Thus for w =w 0 

min8 2 V=min c.; 1 ,Kf 1 )=0 
p:t=.( p=t: (13) 

and is achieved when ~ 1 =~· ·;:: u . Hence uw is the eigen-functi-" dw w 
on of K corresponding to the eigenvalue equal to zero. This 
fact leads us to the following equation for the determina­
tion of wo 

dQ 
ct;;; = 0 0"' •0. (14) 

Thus for w>w 0 (u0 ,Ku )> 0 or QOw(QOw-(u,Ku))> O, whence 
with the help of (14J we get the following inequality for 
the determination of the domain of Q-stability 

( 15) 
Note that the zero-modes are excluded here according to the 
definition of the metric p. 

Thus we formulate the following theorem. 
Theorem. Nonnodal regular solutions (3) in the model (I) 

are Q-stable and the domain of Q-stability is determined 
by the inequality (15) if the following conditions hold: 
(a) GP > 0, K > 0, (Gp -sGq )> O, 

(b) (dA/dw)>-.0. 

(c) the operator J has only one negative eigenvalue. 
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