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1.. Introduction 

At present it is becoming clear that the number N of gravitinos 

does not specify the kind of extended supergravity completely. Even 

in the simplest case,N~1,we are sware o~, at least, three super

gravities. Two ·N=2 versions are already known. For higher N one may 

expect even greater diversity. The versions differ by the content of 

auxiliary fields. Correspondingly, differences occur in the inter

actions with matter fields, in the mechanism of spontaneous symmetry 

breaking (when auxiliary fields get nonzero vacuum expectations); 

also, in some versions important additional local symmetries appear, 

etc. In view of all that it seems instructive to study the simplest 

case,N=1, in detail. In the first part of the present talk we Shall 

discuss Na1 supergravity in the linearized limit, the structure of 

currents-- sources in it and the free equations of motion. These 

quite elementary arguments are very useful in a preliminary sort out 

of the various possible sets of auxiliary fields. 

In the second, main part of the talk the intrinsic geometries 

of the different N=1 theories and their action principle in super

space will be discussed. We shall show that each version has its 

own, inherent complex geometry in which the basic postulates and 

equations of the theory become natural and clear. 

A special attention will be paid to the new version of N=1 

supergravity with locallwf (1) symmetry/1 , 21. It reveals some unique 

geometric properties and poses new questions. 

The content of the second part of the talk is as follows.First, 

a framework*) for the description 

introduced. A complex superspace 

of the various N•1 models is 

"'"'~ ••) ~ is considered with 

*)It has already been used for both minimal/3,4/ and non

minimal/5•6; N•1 supergravitiea. 
••) ...... 1:: 

~ ' means a complex superspace with 11 vector and k 
spinor coordinates. 
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C ¥,z subcoordinate transformations leaving invariant the chiral 
fT) 4 4 ('¥,¥ spac~. The physical real superspace "'- 1 is embedded in as 

a byporauri'aco apecUiad by an axial ( 'Je "') and a spinor ( 7t t<, 'ii. 1-) 
superfields. The Einstein. supergravity is described by a one-para
meter (h} family of supergroups, preserving a certain relation 

(. .,. and "'~.z between the Berezinians (superdeterminants) of the t. 

coordinate transformations. This relation becomes particularly simple 
If' v,z for two values of n . For n = -"/, the ~ supervolume is preserv-

e.,¥ ed and this is the case of' minimal supergravi ty. For 1'1 • 0 the 
aupervolume is preserved. This case exhibits a n1.DII.ber of new 
features. P1rst, in the Wess-Zumino gauge there is a local tT(1) 
invariance. Second, a peculiar geometric invariant emerges. It is 
the Berezinian of the change of variables from left to right.;.handed 

D~~~ parametrization of ~ which in this and only this case transforms 
as a (dimensionless) scalar superfield. It corresponds to an in-

' variant subset of 8+8 fields. The latter can, and moreover, have to 
be constrained in order to write down an action. Third, unlike all 
other cases of Na1 supergravity here the action is not the invariant 

ID~,4 volume ~ ( the latter just vanishes (ct. /6b, 7/) when the whole 
8+8 subset ia eliminated). The action is now given by a new type of 
invariant/7 I involving the V ( 1.) part or the vielboins. The con
straint reducing the number of fields from 20+20 to 12+12 can be 
solved explicitly in terms· of fields in the WZ gauge. The resulting 
theory is exactly the one of Ref. /1/. We can easily solve this 
constraint in terms of superfields at the linearized level reproduc
ing the result of Ref •. /8/. However, finding the full nonlinear 
superf18ld solution is still an open problem with possible implicat
ions for extended supergravity. Iote also that another, weaker 
constraint leads to a theory with 16+16 fields ( 1:!(1) supergravity 
interacting with 4+4 matter fields in a specific way). This version 
is at present under investigation and will be discussed only briefly 
in this talk. 
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An analyoie ~ the V(i.) supergravity was already made in 

Ref. /7/ in the framework of the real f."~t"' geometry supplemented by 

appropriate algebraic constraints. Wben translated into this language 

our results are consistent with those of Ref. /7/. 

2. Linearized Supermultiplets of Fields and Currents 

It is well known that Einstein gravity can be considered as the 

,~" 
theory of a ~etr1c tensor field n generated by the s,ymmetric 

energy~omentum tensor @~n of all fields including the gravitation
/9/ 

al one• 
S "''l.'"-S f}-l...,J<ts t "'\."" 'D 'D ... .,._ <t ....... . (1) 

The operator in the l.h.s. of the equation is degenerate (owing to 

gauge invariance). Por consistency of the 

,.... _ e ''"'-- o tensor must be conserved, · Q,., 

theory the energy-momentum 

This means that as a 

Poincare group representation e~~ contains spins 2 and 0 (the 

latter corresponds to the trace e-~~ ), i.e, just the spins of the 

1nteracting graviton/9/. In the case of conformal gravity ( pure 

spin 2 ) the source of k. ._, is the conserved tensor fJ tttl'\.. with 

vanishing trace 

The theories of supergravity can be treated analogously. There 

the energy-momentum tensor 8m, and the spin-vector current of 

supersymmetry J,J.. enter the same supermultiplet/10• 111. The latt

er is the source of the supergravity multiplet/121. It is very im

portant that this current multiplet is not unique. Its different 

versions lead to different H•1 supergravities. As we shall see, 

the reason iB the reducibility of the current multiplet with respect 

to the super8,y.Mmetry group. We recall that instead of spin in super

~try one considers superspin taking integer and half-integer 

values too. An irreducible 
,, 1 

spins Y+ 2 ,Y,Y,Y- / 2 

representation with superspin Y contains 

and a superfield with an external 

3 



Lorentz index corresponding to spin J contains supers pins j-+ 'l/z. , 
~ 1 ~ 1 ~-"/~ 113, 14( Therefore, the simplest representation 'includ

ing spin 2 has superspin 3/2• The superspin 3/2 current multiplet 
includes the conserved t~- current J ~ besides l7 ,.....,. I!W.d J'pt, J.. 

Spin Current Conservation Law 
2 &,... "e ... IQ,., &-"'""' 0 e-'" ... :0 

(3/ )2 J. ..... ... - ~ J"'...o 2 lj),..} ...... 0 (!"",. I' 

~~ "' . .., ... J,,._o 
Such a current multiplet generates the multiplet of fields of 

conformal eupergravi ty containing the vierbein E 4 * • the gravi tino 
~j--";,. and the gauge vector A"' 1151. This field multiplet des

cribes superspin 3;2 in the interaction. The multiplets of fields 
and currents can be placed in a real axial superfield h. ""'(}<.,B;i-) 
I!W.d an axial eupercurrent VJM. (X 1tJ-,i) , respectively-111 • 121. The 
latter obeys the conservation law 

('-,;Jtl' ~I' v"' "' 0 (2) 
which singles out superspin 3/2• 

In conformal supergravity the order of the equations of motion 
is too high. We are rather interested in Einstein supergravity with 
the usual order of the equations (second for bosans, first for 
fennions). There the dimension of the coupling constant :II! ~ 

is C..lt\ 

( 'k = C = i) and the superconf'ormal invariance is broken, so, in 
particular, B ~ M ::/:. 0 • There are various ways to break down the 
~etry. In ordinary minimal supergravity it is done as follows. 
The supercurrent V.,.. ( )t' 1 8 1 & ) has external spin 1 and 0, and, 

3 1 1 correspondingly, superspins Y = 12 , 1, 1, 12 , 12 , o, o. Consider 
the reducible current submultiplet with superspins Y = 312 , 0, o. 
The superapins Y = 0,0 contain spins (1/ 2 )2 , (0)4 which can be - tt.-... ... /l ''" carried by G"""~ r J f' J ft M 1 • u,._ J s ( now the latter don't 
vanish). The two remaining spin 0 currents generate the auxiliary 



fields S and P The axial field A.,._ ceases to be a gauge 

onet f),...,J~; 0 finally, the multiplet of minimalli·1 super-

"' "' "' gravity consists of the gauge fields ~"-' , ,.. ,_ and the auxiliary 

fields A,. 1 S 1 P The equation of motion is/12/ 

( q,.., lf-• H'{.n tt."') h'1 ~ ~ V.., (3) 

'(. .. "' ~ r,.,!L~ [~".?E:..l 0') 
The operator in the l.h.s. ot Eq.(3) is proportional to the square 

root of the projectors for superspins 3/2 , 0, ol121. It is 

degenerate, so the r.h~e. must be conserved: 

[2l,_~~1'""- 4p,.,(lf;.~) ... ]V":o C4> 
Eq.(4) means that Vw. contains superspins Y • 3/2 ,0 10. The general 

algorithm for finding supercurrents obeying Eq. (4) is given in 

Ref./16/ and also Ref./17/. 

This scenario is not unique. Instead of superspins 0,0 one 

can add superspin 112 to the superspin 3/2 of conformal super

gravity. Consider first the superspin 112 which is contained in the • ., V"' 
superfield V with Q,., .. 0 (this is just the esse of the new 

minimal version of supergravity). With the help of the projection 
operators/t4/ one can Tind out that the spine 1,(1/ 2 )2 , 0 1n the 

superspin 112 are distributed as follows: «9~ is spin o, 
~ .,!(' J '; is ( 1 I 2 )

2 ; spin 1 is carried by a conserved anti

~etric tensor generating a gauge antieymmetric auxiliary field 
4 ,., ("notoph"/tS/). Notice that all spins 0 are already used, 

so the axial current has to be conserved, '"d,.., J ';- = 0 • The 

multiplet of fields now consists of the 
... "' Q.-) 'f' .,( and the auxiliary gauge fields 

physical gauge fields 

A""", a:"'"" • The linearized 
equation of motion is /B/ 

[ t .... t·1 k.-= '£ v.,.. (5) 

The operator in the l.h.s. or Eq.(5) is proportional to the square 

roOt of the sum of projectors for the superspin 3/2 and one of the 

superspins 112 • The conaenation laws for the r~h· a. now are 

5 



.. -~ 1"'1 v 2) v ... C' 2) v .. : . .... = 0. (6) 
It ie important to realize that Eq.(5) is just the linearized equat
ion of motion. The full nonlinear superfield. theory invol vee b.oth 
an axial and a spinor superfields (see below). 

If the superspin 3/2 is combined with the superspin 112 from 
fd, v~ the spin 0 will be ca=ied by 'd .. J ~ ; the spins ( 1/2· )2, 

-~ ...... by 6"',.. r· ·d ~ and the trace of energy-momentum tensor must. vanish., 
tJhf,. ::s. 0 • It is not hard to write down the linearized 

equations of motion for this case: 
('l .... :b"<fl .. ~ ... _ .tr1 .... ~-.J) k"' = ~v ... (7) 

and to find out the field content. The local 1r; -invariance of the 
previous eSse ia now replaced by local dilatations.This fo;mulation 
does not include the unrestricted Einstein group of coordinate 
transformations and, apparently, it cannot be generalized for the 
interacting case. 

Pinally, there exists nonminimal Na1 supergravity/5/. We shall 
only notice that the current multiplet contains superspins 312 • 
(1/2)2, (0)4. 

Here we end the brief description of the linearized limit of_ 
N•1 supergravity. The most natural way out of this approximation ·is 
to use superspace and its geometry. 

). Complex ·superspace 

Let us first recall the geometric framework for nonminimal 
supergravity/5/ applied in Ref. /6/ in the spirit of Ref./3/• 
Consider a complex superspace 

If' Y,<i ~ f 7t l = f )I ..., " t< ;p ,!. } fl. z::: I ' I "'L ) )L ' .. where X, are 4 complex vector coordinates and 
4 complex spinor ones. The conjugated coordinates will carry 
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an index R 

t~R.}= [l<;'~(l<;')i 1 ~f=~,r)'i, lf:'slif~~J1 }. (9) 

To distinguish these two parametrizations of C 'f,'f we call them 

left and right-handed. 

Now we introduce a gauge group in f'1t''f. We choose 1 t to be 

the group of analytic transformations of the coordinates which leave 

the chiral subspace 

c~,l: fJ,} :-{x:", o/'3 (10) 

invariant. In other words, the group has a "triangular" structure 

'iixt': ;.M(XL1 fh) 

r,../'= ;;.,.r~L,,,J (11) 

fr/•: yf. (XL1 6., 'fl ), 

where )."" and (\ f'4t. are chiral superfunctions - parameters and 

. .f r is a general one. 

The next step is to introduce the real superspace 

i. "'4 = { l} = { x"', ff t<, 9 I<) (12) 

as a bypersurface in (' t,lt , e.g, , 

lC"'• Rtx."', 17 r=~~ 
1 

&A=&,.,. 
'X .. (x 191i) = I.., x; 1 1 <n> 

-I - -I" -I' 
·w·c~,9,e)= 'f~-et 1 7<J·<~,~,9>~ 'fL-e,.. 

Here the coordinates of t:'t,lf /f'1,"i are made arbitrary functions 

of the coordinates or E 4t,'t • The Buperfun"'ctions 'J( ~ r;e ~ 'If r 
define the hypersurface and simultaneously determine the (curved) 

geometry of ~ "t,lf • The group (4) induces the following trans

formations 

X1 '"-x"'+ 1:[ ,\'"(x.,9.>+~ ... c~ •. 9.)] 
e't:', &-~"+;1~"(1.,!~<) (14.a) 

11 ~= -gJ +AI- (t.,"h) 
\" '1e "'~ r;e'w. {x~,9~,~~)- 7e ... (~,9,9) - ~[~"'<r.,s.) -1"Y~«,9J l 
, , 1 _ 1 f1 _ tv- 'f) ,,.1 a) (14.b) 
o'J(.~'= ~f"(x1 1 e 1 e)-'J{ (r 1919):f ,t,.,tJR, •· -ro 1., • , 
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with X/"= X"' t o1{"'(~ 111,9) , f}~f<: &~"' 
ri = ef.+uf. (Y., ,, oJ (14.c) 

(and their conjugates) being now functions of x,~. iii' rather than 
independent coordinates .. In what follows we shall refer to ~L (~It) 
of Eq .. (14 .. c~ as left (or right)-handed parametrizations of' ~ ~V .. 

The transformations (14) correspond to conformal supergravity .. 
Restricting them appropriately one can obtain the transformation 
group of Einstein supergravity .. Owing to the triangular structure of 

rH (''Z the group (4) the Berezinians of both the ~ 1 and trans-
formations have multiplicative property .. So we can single out sub
groupe by imposing a natural restriction 

r /W.c~::JJ ~"H= r~c;;:)r" (15) 

or, inf'ini tesimally, Y"\ "') -' (;;;::. "'~·-("?> .. +i) ~.~I'= (11+>-) - .. - ro&" · ,..1 r x. L ( 16) 

Each value of rL corresponds to a nonminimal ~ormulation of' super
gravity with 20+20 fields/51 .. There are only two exceptions .. 

At " = -v ... Eq.(15) takes the form 

Be'l(~~ ) = 1., (17) 
-a}~ cIt-, 2. • i .. e, the transformations preserve the supervolume of' In thiB 

case the parameters f ~'.,~A are not restricted and with their 
help the spinor superf'ields :1< "', "ie ~ can be gauged away (just 
as in conformal supergravity). Thus one recovers the minimal 
formulation with 12+12 fields .. It has been described in detail earli
erfJ,4/ and we are not going to discuss it here. 

The second exceptional value, h =- 0 , corresponds to the 
preservation of the total supervolume of f: ~,c.t .. At 11.=. o Eq .. ( 15) 
reduces to 

B~~~): 1.. l"lli!" 
Respectively, the supervolume element d4x~.J~({~ is invariant .. 

(18) 
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This value of n is connected with the new minimal version of 

supergravity as will be explained below. 

4. Field Content and Transformations 

The field content of each of the above-described formulations 

and the meaning of the field transformations are revealed in the 

Wesa-Zumino gauge. We shall do it here with the intention to show . 

how the local U( 1) group emerges in the case k.-=-0 

The parameters ;% .,.., J ~ f"" 1 f ~ have the following decomposi-

All parameters in the r.h.s. of Eq.(19) are functions of XL 

From Eqs.(14),(19) one finds that '/("' can be gauged into 

by means of fixing the parameters b~f~, (h11 Jn., in Eq.(19). 

Note that tl h1 in (49) remains unrestricted and it serves as 

the parameter of general coordinate transformations. Further, ~~ 
transforms as follows 

"b'X.~"· E~'-i~"-tof'[- 4!:!.i.Z.a - .1!1-.ii, +~~a"']+ 
3ht1 ~1\i'f Z,(l~H) 

to•[ .Rev~''- we.~"']+ "i.;,c~f"-Pef"~ii'TJ~'+ 
' - r-1 + ~l'q', •t'f (- i;-1-_, ~"'("?"'"E)")+ e>@t 6'-J(v -+ 

)lo ~..,+1 ( 

+ 9' 11-v p<vrJ + ... (21) 
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where the dots denote field-dependent terms. Now one sees that for 
n I 0 

1
- "'z 1- <IJ one can gauge '1( f' i:nto/5/ 

' 'X" ( K16,'i J = fJf'i't !,'" + '§'et< 8 +9'if. (V+~w-)~t'-t-8-'-e'pf' (22 > 
by means .or fixing all parameters except ( f' ()C.} (local super-
~etry) and tv (Vf') (>C) (local Lorentz). The cdmponents in 
Eq. (20) ,:(22) correspond to the nonminimal set of fields. 

5. Poouliaritiee of the h = Q Case: V(/.) Local Group and 
Existence of an Invariant 

It is remarkable th,at for lf'=:.o. the paramet.er: l"h.tic) 
<ot local rs- , or . . V.(:J.) ,trane.:rormati~•> drop• o11t o:r .Eq. (21 >. eo 
1 t cannot be fixeq and, '}(I"' becomes 

' . ' ' .. -. I - ' AI' . ~--- t' (2)) '}(~"(,,11 i)•.D-I:'iA+-qi'Uffl'+f'et<B +;6-~Bf.(V+i-rt}' foe (3. 

In conlp.ri·a.en. ;tl{i th 'Eq. (22) an· addi tiona! 

AM appears. At the same time V 1-t 
transformations, eo the total number of 

real- pseud.oscalar fi:eld 

undergoes now gradient 

components is again 20+20*~ 
So, in. the ·:ramily of nonminimal sets of fields there is one and 

only ·one allowing for local U (1) transformations. This ie not 
yet the set for the new minimal version of' N=1 supergravity, as we 
still have 20+20 fields instead of 12+12. Bowever, it turns out that 
8+8 field~ of .this set form a subset closed under supersymmetry 
transformations. This can be shown by the following clear.geometric-

{ t,< al re~soning. As was stressed ,above, for 11=.0 the super-
volume is preserved. Consequently, both d1~ and d 1~1. = (d' ilt)t 

i i () Jfo.L J'"/l are nva:r: an~. On the real hypersurface 13 " c- and ~ 

*>wote that fpr J1.e -12. the parame,ter a(x) drops ·out but ... 
tQttta: (~) rema~ns ~-d the g,auge can· still be fix~d as in Eq.(22) 

although thus restricting the g~neral coordinate transformationr/51. 
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are connected by the change of variables(see Eq .. (14 .. c)) i!L,.1!...,~ : 

Jlt .. e.vtf'il:!!) a.'"t .. 6eJI.f'"~~.Et) .~.r~ )-d1't (24) t.t L \.._ t')~ \~*' ''\?i!~t, It 

Therefore the quantity 

T/(Y./',9). Bol~!_)~ &tt(i!)- &eh-i~~. (25) 

is invariant under the transformations (11),(15) for and only 

:::d n = 0 The exp(l;.: +~~;;: ~Kf4:;~ be e

0
asily calcul-

~(~; ): ·{)ell ~~v1l: o/' 't!v~,. · -~ =-
'?J,_ X . o "'8[ + -::;v1l 

tkC (fh""'+i? ... X"'} 
. U:t ( f*~ +b.~ '/Zv) ,(26) 

whero/4/ 1 
A f. "-~A -'?Jt- ?<"';( 'l.~<~'kf ...... 'd., 

so 

V( _ M(f.. "'+i'J. ;e .. } J.d C f/' + dv'l("} 
~~o,e)- J.t:t(f?f+'Af.l<~)· t:Ut(6,"'-t'3.-](.j (27) 

Clearly, U U t. J. , therefore U :dl.><p (iu.) • The real super-

f'ield U {~1 8.1 9) fs the carrier of the invariant 8+8 subset .. It is 

a new quantity not yet encountered either in minimal or nonminimal 

supergravity .. Its roots are essentially in the complex structure of' 

C''"' and it cannot be explained in the :framework of real super

space geometry.. It is neither a torsion nor a curvature component, 

nor anything else known in real aupergeometry .. 

6 .. Conetraints on the Prepotentials 

Since U is an invariant object it can be used to write down 

constraints.. In f'act, one must do th.at if one wishes 

an action .. Indeed, as was mentioned above, the field 

in Eq. (23) (as well as A"' in Eq. (20)) transforms 

11 
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field for V ( 1.) • However, its dimension is Clft-2. •) so it 
cannot have a normal kinetic term of the type Fl""\M F ~"" . The only 
w~ it can enter a Lagrangian is to be coupled to a divergenceless 
(i.e, constrained) axial vector field. This is, indeed, the case 
realized in the new minimal version of Ref./1,2/. The corresponding 
constraint is 

(28) 
The solution to 1 t is easily found in terms of components in the 
WZ gauge (20),(23): 

Ao - A?e"' . ..., o I § r. e 0 Jl~: 0 } \)CrQ. ~ - 1 ,., <'- I ~ r~ ''d.,. 'Y f" 

'O""(A"'-e .. "'VA)= O. 

Eq. (29.b) means that 

(29.a) 

(29.b) 

A ... - fl. A"' v~: z ..... lc~ r,l.._a"q } tl "e ~- •U>:: (30) 

so the "notoph"/lS/ if«.( of Ref. /1 ,2/(together with its addition-
al invariSnce btlt::t;:.: "4t:: b-t-~l b~e) appears as a solution to 
the constraint. 

1. Invariant Integrals and Action Principle 
The constraint (28) enables us to write down an 

f. ~,v 
action. To this 

• Let 1?. "'' be 
end we first need an invariant integral for 

M parametrized by i!L (or their conjugates 7! J:' ) defined in 
Eq.(14.c) instead of • Then, according to the geometric 
meaning of our gauge group (11),(18) the following integrals 

IL= fd&;_zL rp.c?cLJ:fd'z ~r~~·)cfc~) 
I R = s d'~,. cfR.(Z!oft) = fd'~ &ell c:t:) ~(~) 01) 

) 1 ..;.. 1"1"'/' * [ 1(1" = [ (jl"'] =Chi but all components of A have 
~ to include a factor /)( [ZJ 0 (io since they vanish in the flat limit. I 
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are invariant. Here fC'i!:) is a real scalar superfield, and 

~LC~"}=-~g(~-.)f~+~). Further, as a consequence of the constraint (28) 

. . e.e c~...E.·J = &eJ! I'E!:) .. 
· '!. ~ r '-<a 2- •fz 

a[tkC(Sn'"'+i'J.,']('"'}. dd(['.."'-~'J"'Jl~}] :E. (32) 
tf.t.t ( .,,.,. + M-1< ~) de<: ( S -1' +C. v7C") 

therefore 

1 L = Ill "' ~ A.~l! E · ~ (r) · 03) 
Note that the density ., .,. 
for the curved ,.._ 

E is in fact the Berezinian of vielbeil'is 

with local V{.t.) in the tangent space (see 

Sect.B). If we choose fJ(»Jai in Eq.(31) the integrals will vanish 

and so will the integral in Eq.(JJ), !.~.,the invariant volume of 

IR ~~· (the b b d same p enomenon was o serve in Ref ./7 I, see also 
Ref./6b/) •. So,tbe supervolume of R..lft'f is not an adequate action 
for 11 .:z. o unlike all cases with It j.. 0 

nontrivial dimensionless scalar auperfield ~ 
If we had some 

constructed out of 
the prepotentials we could put it in Eq.(33) and try this as an 
acti.on; however, the only such object is -CT (27) and it is 1 ;in our 
case .. 

Fortunately, the unique properties of the superspace in this 
case provide another way of constructing an action.. Suppoae that 

~ in Eq .. (33) is not a scalar but transforms as follows~ 

(34) 

where 

I 
"'f(,Z are some left and right-handed ~ (chiral) parameters .. Then 

~) d'r E · t/> = r d'x,d1 e, J.lft. · L 6 .. , o,) + h.('_==- o 
because L (£) is independont or ':1<- ( 'f£) Such type of 

invariant was proposed in Ref .. /7/ .. In our approach the super-
field cj> can be constructed in terms of prepotentials: 

13 



It transforms according to Eq.(34) with 
.:l,., ~,.. 

L ( !C-.,11-.J ~ ~ - 'UfJ,l' 04 • > 
being the variation of the Clit 2 volume element. In fact, F is 
a part of the vielbeins Ftl.."" I £ r (see below). 

Now we are prepared to write down the action for the new 
minimal version. Putting Eqs.(32),(35) into the invariant integral 
one finds 

06) 
which should be considered together with the constraint (28).Insert
ing the component field solution (29),(30) to this constraint into 
the action (36) one obtains exactly the action of Ref./1/. 

A major question in the present formulation is how to solve 
the constraint (28) in terms of superfields. It is easily done in 
the linearized limit 

- \ -' 'X"'= fJr"'i +~J...,' 'X"'=~ J. ", 7t r~;r 1..,.. 
The solution is (up to gauge freedom) 

t.."= 1 IJ,..,.r.2}r J.."' 07) 

and the linearized action (36), is in agreement with Ref./8/ (see 
also Eq.(5)). In the nonlinear case the answer is not yet known. 
It seems likely that the local Lorentz gauge ( in )( - space) has 
to be fixed (such a possibility in the theory of relativity is 
known/9/). After that the anti symmetric part of the vierbein .e 4 )"' 
will play the role of the tensor a_ .,)t • Then a single vector 
prepotential will describe all the fields of the model and the un
constrained variation of the action (36) will produce the vector 



equation of motion the linear approximation to which is Eq.(15). 

In any case, it is important to investigate this point because it 

might help to solve the analogous problem in N=2 aupergravity. 
6 _, 

There/ I the superfields r}l ,.,I '}( t'
1 

'Jl ("' are also constrained, 

the volume also vanishes as a consequence o~ the constraints. The 

linearized solution is known/19/ but it is not cleS'r how to general-

ize it to the nonlinear case. 

8. Differential .Geometry in 

In order to cOmpare the results of the present approach with 

has to develop the di,fferential geometry those of Ref. /7/ one 
11> o/,o/ 

formalism for u;.. ~ It is a straightforward procedure ( see 

Ref./4/). Notice that it can be done ~ imposing the constr

aint {28) (the latter is needed only for the action). 

The derivative 

(38) 

of a scalar superfield transforms covariantly under the group (11), 

(15) (infinitesimally): 

'b(VJ.~) = -(V .. f~)v"4 t :t(vr)v .. 4> -(v< .. )'
1)vl'+. o9> 

The second term in Eq.(36) is an induced Lorentz transformation in 

the tangent superspace, while the first one is an induced Weyl one. 

In fact, the analysis of the component structure suggests that only 

the U (:i) part of the induced Weyl tangent group is essential. The 

dilatation part can be compensated for by introducing a factor F 
into the definition of the spinor covariant derivative of a scalar

weightless superfield 

(40) 

with the transformation law (see Eqs.(16),(34')) 

(41) 

15 



Introducing 

v"' e" F 

Lorentz and tl(~) connections (the latter is 

) and defining 

just 

D~~. =- ~ ~ ~" t l>.c.,"i>~ 1:. 
one finds expressions ~or 

variables f'rom r ~ to 

all vielbeins 

r/'' or 

E"M~M (42) 

E.,.. M • Further, changing 

=h"' z:."'" one ~inds 
le~t or right-handed vielbeins .f.A M('ZAf'll) • Their Berezinians, 
according to Eq.(18), transform as scalars, so they can be. put equal 
to some function of the scalar lJr (27) thus obtaining equations 
for the factors {: 

1 
"f (40). 

The particular choice 

8¥1 (ll4
) = 

leads to the form of F.:: F given in Eq.(35). Further, 
&n(E AM} calculated with the above value of F is indeed equal 

to E-J from Eq.(J2). 

The last step is to calculate the invariant tensors (torsion 
components) using the covariant derivatives already defined. Our 
results agree with those of Ref./7/ but we ought to point out the 
following. The quantity t-T (27) is an invariant of the theory 
although there is no room for it among the torsion components. 
However, its 

e.g .. , TrJ. 4 • 

covariant derivatives do appear as torsion components, 
is expressed 1n terms or 7>ot. V , T a~.• r 

in terms of '])]) U ,etc. So, the constraint (28) yields the 
vanishing of all those torsion components. In the framework of real 
superspace geometry 

the constraint 

is not present. There, however, there is 

which is equivalent to 

])d. v" 15:t u = 0 {43) 

in our language. Eq. (43) implies V • canst which is essential-
ly the same as Eq.(28). This explains the agreement between the 
two approaches. 

16 



9. A Weaker Constraint :ror the Case n. = 0 
Here we would like to discuss brie:!ly a weaker constraint on 

the superfield ~ • In thie case we find a superanalogue of a 

"notoph"/18/ (s.uperspin 0 on-shell and 112 off-shell) which inter

sots with U (1.) supergravi ty • 

Consider the integral 

It= SJ12, li1F= Sti'? ~~~~)-t..F 
taken over R 1ft¥ in the left-handed parametrization. According 

to Eq.(J4) 

'fJ.= fd.'t, (L+R.) = fd'~ .R 
because L does not depend on 3f, . Purther, going to the 

right-banded parametrization, we find 

r-It= Jd'r-R·U·I2cfd"x.Jl~Cf~t..v)e 
because now R. does not depend on 'f ~ . So, I 1 will be 

invariant if 

(44) 

which is covariant constraint (the l.h.s. of Eq.(43) transforms as 

a scalar with a chiral weight) ~ than Eq.(28). Notice that the 

quantity I 1 is not real since V is not 1 now. Purthermore, 

we can write down another nontrivial complex invariant 

I...::. f d'l. f (7J}. 
where f (V} is some function of the scalar lT 

The constraint (44J has been solved in the WZ gauge and only 

linearly. The fields A 1 ~oi.. (23) now remain unconstrained, 

. 8:;.0) Wo. 
1 
'Va become divergenceles: and ~J... is expressed 

in terms of ~,.. o( again. In other words, under the weaker 

17 



constraint (43) the 

plet ( A 1 ~ o1. 1 ~ ._ 

euperfield U describes a superapin 112 multi-

)•l, Inserting this linearized solution into 

the action S 1 c ~ 1: 1 , one finds a sum of the action of 
Ref ./1 ,2/ and an action for .the 

The second action $.,_ = f._ I~ 
superspin 112 matter multiplet. 

produces the superspin 112 kinetic 

terms once again thus allowing to regulate their sign (or eliminate 

them completely). This alternative version is now under investigat

ion. Details will be reported elsewhere. 

10. Concluding Remarks 

We have seen that the usage of the adequate complex geometry 

makes transparent the meaning of the basic facta in all ~a1 super

gravity models. Apparently, the results obtained can be generalized 

to the N•2 case and the existence of an B·2 version with local I7(1) 
s.ymmetry is plausible. Is there also a version with local t7(2) 
~etry? Will this remarkable mechanism of auxiliary fields appear

ing as gauge ones work for higher-N, e.g.,WaS? 

There exists an opinion 11,7, 201 that in the component field 

approach anomalies will break down the local U ( t) symmetry of the 

new version. However, then super8,y.mmetry will be broken too. Couldn't 

the quantization be performed in a manifestly supersymmetric way 

thus avoiding this difficulty? Even with the most sceptical attitude 

towards these possibilities they are worth a very careful investigat-
ion, 

••••• 
It ie a pleasure for the authors to thank E.A. Ivanov for valu

able remarks, and L. Litov for discussions. 

*) Remarkably, on-shell this multiplet of fields describes 

superspin 0. The divergencelesa vector u;~ is the field strength 

of a notoph 1181 (spin 0 on-oholl, spin 1 o~f-aholl), 
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