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on Lyapunov Stabullty of Charged Scalar
Particle-Like Solutions

Lyapunov’s ‘direct method is applied to study the
stability of charged solitons (including pulsons),
described .by the complex scalar field, It is shown that
the.direct consequence of Lyapunov’s theorem of stability
is their instability. Some necessary and sufficient condi=-
tions for the Q-stability (stability with the additional
condition of charge ‘fixation) of nonnodal charged scalar
solitons are establlshed :

The |nvest|gat|on has been performed at the Laboratory
of Computing Technuques and Automation, JINR.
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INTRODUCTION

The constructlon of a self—con51stent un1f1ed f1e1d theory,
which could exp1a1n the ex1st1ng mass spectrum of elementary ;
part1c1es and, pred1ct the new ones, is .a long cherlshed de51re
of theorists, In .this.connection -the, 1dea, due, to E1nste1n,
of finding out the dynam1ca1 pr1nc1p1e wh1ch could allow us: to.

“control the distribution of the exc1ted states of strongly

1nteract1ng matter, which we observe as. e1ementary part1c1es,,
is very attracting. The unified field theory, which, should. in-
evitably be nonllnear, is one ‘of such dynam1ca1 pr1nc1p1es.

" According to this, concept all observable elementary'partlcles

and their interactions are manlfestatlons of some un1f1ed or

‘as. it-is called fundamental nonlinear field. The superlorlty

of  such theory would have been not’ only in determlnlng the . ...
mass spectrum of elementary partlcles but "alsoin errad1cat1ng
the divergencies that appear in the orthodox quantum field
theory.

In nonlinear f1e1d theory elementary part1cIes are descrlbed
by regular solut1ons to the field equations. Nonlinear f1e1d
equations. may have regular solutions at rest or moving with-
constant veloc1ty. Such solutions with field amplitude,. con51—
derably dlfferent from zero, are loca11zed in a f1n1te reglon
of space. The energy of such solutlons is finite. and they are
called "solitons" /1 17/ "lumps" 3.4/ ~ or particle-like solu-
tions. Regular localized solutions with distinct topological
properties are often called "kinks" /5/. As a matter of fact,
solitons, keeping in view their origin, are essent1a11y one-
dimensional (space) objects and, therefore,‘we shall’ use thej
name "particle-like solutions" (PLS) in our paper. oo

Definition 1. 'Threeedimensional regular solutions to non-
linear classical field equations are called part1c1e—11ke so-.
1ut10ns, if (a) ‘they have finite energy and ‘other phy31ca1 4
characteristics and (b) they are locallzed in a sma11 _region
of space at any instant’ of t1me. . o

Here under 1ocallzat10n we mean the follow1ng. Let us in-
troduce _the average rad1us r* i of the regular solution by

the formula _; .
,=fr-ch/j}dV
where ¢ stands for the energy den51ty of the f1e1d
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.Definition 2. Regular solutions to nonlinear:field equa-
tions are called localized in space if r*<$8 for any moment
of time. Here 8 is an arbitrary but finite constant (8§ :.0).

Thus, both the requirements of the deflnltlon I can be ful-
filled if
" (a) the regular solutions are sufficiently smooth and

(b) they are finite at the origin and tend to zero at’

spatial infinity sufficiently fast, .

Further, if we want to describe in a unified way stable
as well as unstable particles in the framework of nonlinear
field theory, we must require, in addition to the above-men=
tioned propertles of PLS, fulfilment of another one, namely,
their stab111ty in Lyapunov sense 24/

Note, that the requ1rement of stab111ty is. an additional
one, whereas the finiteness of phy51cal characterlst1cs and
localization of regular. solutions constitute .the necessary ™
and suff1c1ent conditions for them to be part1c1e-11ke.

‘As is mentloned above, the 1nvest1gat1on of the stability
of PLS is very 1mportant Firstly, the stab111ty requirement
of Such’ ‘solutions plays a vital role in nonlinear field theory
(NFT), namely, when we . look for NFT that allow the existence:
of 'stable PLS, which may be supposed to descrlbe stable ele-
mentary partlcles. Secondly, the criterion of stability rest-
ricts to some extent the freedom in the choice of the basic
field equations for- the constructlon of an adequate self—
consistent f1eld theory of elementary partlcles.

In the present paper we shall 1nvest1gate in. deta11 the -
,Lyapunov stab111ty of charged scalar PLS. The _purpose of this
paper is- to review some of our results on the Lyapunov stab1-
lity of charged scalar PLS. '

1. METHOD OF INVESTIGATION e

First of all we must ‘give the phy51ca1 def1n1t10n of the
stab111ty of the particle~like solutions. From 'this point of -
view one must take into account all p0551b1e perturbatlons
that an elementary particle cont1nuously experiences. Unfortu-

nately, such a formulation of the problem of stability leads R C

to tremendous mathematical ‘difficulties .if one wants to find
its solution. Therefore, we confine ourself with the traditio-
nal treatment of this problem in Lyapunov sense when the per-

turbation (arbitrary) is switched on at the 1n1t1a1 moment and-

then the time-evolution of the perturbed system is studied,
i.e., the stability of the dynamical system w1th respect to
1n1t1a1 perturbatlons is considered.

2

Lyapunov cons1dered dynamical systems in n -dlmen51onal
Euclidean space. E, described by the equations .

-

fﬁ.=XGth §=@1Jg"”x) o - (LD
dt :
defined in some domain D( 2 X5 2<H, t2> 0) “and having the

=1
equilibrium solution ¥ =0. As a measure of perturbatlon he
cons1dered the metric distance

p.(i’,t)=H§u=(i§1 x2)1/2 | . i (1.2)

. - A ." \ “
Definition 3. The equilibrium solution X =0 is called
stable = if for each ¢>0 and given tg .there exists a num-

“ber §>0 such that for the initial perturbatlon 10, satlsfylng
“the condition’ |lx0[|<8 the inequality th‘< ¢ holds for any

t >tg. In the opposite case equilibrium solution: =10
unstable, Moreover, if & does not depend upon tg, the stablf
lity is called to be uniform.
For the investigation of stab111ty Lyapunov used ‘continuous
and unique valued functlon V(xt) with certain properties.
(a) The function V(x t) is called to be positive. definite

in a certain domain D, if (i) VU)t) =0 and (ii) there. ex1sts

a function WE&) (W)= 0 and W(X) >O0for X€ D such that V(Xt)>W
(b) The function V(ﬁ,t) . is sald*to have infinitesimally
small higher limit, if for ||x}{ »0  V(x,t)+0 uniformly int.
In this case the following theorem (Lyapunov’s theorem)give
the answer to the question of stability of the equ111br1um so-

‘lution X =0.

Theorem. If the equatlons of motion are such that there’
ex1sts a positive definite function V(x t) such that dV/da—
=-V. <0, then the equilibrium solution % =0 ‘is stable.If V(Xt)
allows 1nf1n1te51ma11y small hlgher limit, then the stability
will be uniform in’ tg. ~
Lyapunov’s method can easily be generallzed to dlstrlbuted
systems because the latter can be considered to-be the limiti:
case of a dynamical system in E, for n -»e. Actually, the fie
equations can always be written 1n the form of a system of
first order d1fferent1al equations for a mu1t1-component fleL

function ¢ = ) Let the region R of the three-dlmen51onal

space in which the field Y is defined be finite. Then R ‘can

‘be divided into n small cells of volume AV.In every I_FhS
" cell one can define the average value of the fleld funetlon

T mew v



y M, In this case the equations for y® " will be of the
form (1.1) and for them Lyapunov’s method ¢an directly be
applied. Here the metric distance from the equ111br1um yW-g
can be defined as

n i =2 1/2
z M X L .
(1.22“=1 ;" I avy) , - .3

which in the limiting case when ns« gives ..

=(j>: S 12ant™ .

It is clear that in our case of dlstrlbuted systems we shall
have to consider Lyapunov’s functional instead of Lyapunov’s
function.

For our further investigation we shall use Lyapunov s
method generalized to two metrics, p, and p, for the descrip-
tion of initial and current perturbations, respectlvely. This
generalization is due to A.A.Movchan 76/

2. INSTABILITY OF CHARGED SCALAR PARTICLE =LIKE .
SOLUTIONS IN LYAPUNOV SENSE

Let us consider the particle-like solutlon descrlbed by
‘the’ complex scalar f1eld

¢, DR xRS S €1,
satisfying the natural boundary condltlon ‘

lxm ¢>(x)=0 x=(t, x)

x -» 00 ‘
Let the Lagrangian density of the theory have the Lorentz—
invariant form: . .

SE=“.;“F(s P ), A ('2' 1

F be1ng arb1trary nonllnear functlon of the invariants S =¢*eh,

p==03,¢*¢ » q=J JF J# = ——-[¢*0 ¢ ~d ¢> ¢ ). The field
~equations are wrlttenlas : “ L
9y (—xF J )¢+a (~F a"¢)—2u~* h ¢ -F ¢—0 (2.2)

Let the f1eld equatlons (2.2) have the statlonary regular s0~
lution
$o® =y @ e 5 yray, o=const o (2.3)

describing the charged PLS at rest, Let M denote the set of

: 4 '

where ||-|| and ||-]I°
: lev space W (R ), respectlvely, and §° =3 éf | 0. .

" ‘there exists a number &(¢) >0

~1lize even weak minimum of the functional V, i. e., 5%V

functions obtained from d0 by means of symmetry transforma—

.tions of the theory, i.e.,

“{‘f’o“T ¢

T _ being the representatlon of the continuous’ group of sym-
metry of the theory (excluding time transformation), then
by definition, the function ¢ (x)¢ M  describes the perturbed
solution, Let : - o

SR =B(x) e~ .

Follow1ng Movchan’®’ and Slobodkin’? we introduce the metrics
Po ‘and P, for -the- character1zat1on of the 1n1t1a1 perturbatron
g0 = ‘D(O x) ./,(x) and the current perturbatlon &= D(x) —l,/;(x)

‘respectlbely. Putting

£=£1+1§2, fvagi! 1”12 ’

we choose the metrics in the "form

b= 2!|l£°il+ll~f° 3 p= ot 3l IL
e

de51gnate the norms in L2(R ) and Sobo-

Def1n1tlon 4, The regular solution . ¢0 is- stable in: Lyapu—
nov sense with respect-to the metrics p,, p, if for each ¢>0
such, that from p [f°]<8 it
follows that .pl[£l<e  for any t> 0. .

Let us now consider a lemma’18/ of - variational. calculus _
that will be useful for our further investigations. Let-the .

funct10na1

Vigl= [ vig, @ ¢)a3
be defined in the class:of sectionally smooth. functlons o(t, x)
R! xR3 » RT, ¢(t =)}=0 and let it be invariant with respect
to the continuous symmetry group of the theory given by the
parameters a=la li. Let u; t, x) be the family of its ex—
tremal fields in which u(0 t, x) is the one under our con-
sideration. . : ,

Lerma. If there exist the constants ¢, not all equal to
zero,such that the linear combination ‘X ci(gu )a o ‘=0 on

1 ay

some boundaryless surface S separating in R3 a domain Q of
nonzero measure, then the extremal u(0;t, %) does not rea—
is sigr
changing in the neighbourhood of u(o, x).



Proof, Let the extremal u(0;x)= u, . gilve weak minimum
to the functional V. Consider the e -ne1ghbourhood of u,:

U=Uug+en.

As ug, gives weak m1n1mum to the functional V the ad301nt func—-

tional ’ ) ) ot

5%_ [(An2+2Byy” +Cn 2)d3%, @

where prime designates differentiation with respect to the
argument and A, B and C.stand for, the secondederlvatlves
of v, calculated at the p01nt uo,w1th respect to its arguments,
must be either pos1t1ve or equal to zero on all alowable
curves n/8/ , Hence any sectionally smooth functlon 7 which is
equal to zero on S and for which &2 V{yl=0, must consist of
the parts of the extremals of this funct1onal Besides that
on the surface S it must satisfy the Welerstrass-Erdmann
matching condltlon. Take the function
0 for ¥ Q
o gﬂ for x;f-nﬁzc( a0

‘According to the theorem of var1at1onal calculus, stating that = - -
the difference of two rnflnlteslmally close extremals sets the
second .variation .of .the functional equal to zero, we get £

#vip =0, . P ¢ 35

From (2,4) and (2 5), after integrations by parts, requiring
the .fulfilment of Weierstrass~Erdmann condltlon we get that
the: following condition must hold i

@) g0 =540 o (2.6)
But the condition (2.6) cannot be fulf1lled because
(170)5-0::0

and (pg)_ o = Vﬁ}# 0. R ‘ _ ',i

Hence 3 2y .is sign changing in the nelghbourhood of u
0

Sometimes the class of regular solutions

: ~ > =10 Lo A e o

o ® =5 e @ ey, @.7 N
which 1ncludes, in partlcular, the so—called pulsons/1ﬂ is con~
sidered.

Now, using the above lemma, we shall prove a couple of theo~
tems regarding the 1nstab111ty of the regular solutions, (2 7)
in Lyapunov sense,

6

‘charge fixation

Theorem I, The regular solutions (2 7) are unstable in
Lyapunov sense in any medel (2.1).

. Proof. As the field equations are invariant under time-
translatlon, the dynamical . system.under consxderat1on is

‘ autonomous. Accordlng to the general theorem’ of stab111ty/5/

the motion of the autonomous ‘dynamical system (2.1) is stable
with respect to the metrics Pos P , if and only if in some

. ,nelghbourhood of ¢0,there exists a- Lyapunov s- functlonal Vsl
. such that

© (a) it does not ancrease along the trajector1es of the

e - system; ; : - LT T
“(b) it is continuous with respect to the'metric pg and "
“¢c) it is positive definite with respect to the metric p.:
Thus, = if we suppose ¢()to be stable, ‘then there must

- exist ‘a positive definite functional: VIgl: for which - ¢y is
~the -extremal f1e1d Slnce the ‘model (2.1} is: 1nvar1ant under

3=translations X+ X +a , " 3 =-const, - then ¢(t; L+ a) is also
the "extremal ‘field: for the functlonal V. Hence actord1ng to’ th(

‘ahwelmma

B= c. V

must not bhe equal to zero on any surface, However, the:equa-

“otion d,¢ =0 (C=11,0,01) can be satisfied on some surface S

because sb is regular and . y(t, ) = 0. ‘Hence according to the:
lemma 62V is ‘sign chang1ng, which contradicts the stability
of ¢ o and proves the theorem.

-“From this theorem it follows “that only -conditional stabi-
lity of the regular solutions (2.3) and (2.7) can be achieved

“In general; from ithe physical point ‘of view; ‘several condi-

tions, such as conservations of charge, momentum, angular

"momentum, leptonlc charge, baryon1c charge,retc., can be im-~

posed on the initial perturbations. We choose the cond1t1on o
/1,183-16,23/

| alg) =L, T 00,6 -0, 4%0) - Qlgol=Qq. (2.8

‘Stab{llty under the condition (2.8)'will be called Qestablli

Theorem 2. Regular nodal solutions (2.7) are ()—unstable i
any model (2.1). P T

Proof. As ¥ (t,X)=0 on:the nbdal-surface,'fdr‘the extrema
fields ¢ . ela sallowed by the model (2.1), all the condition
of the 1emma are fulfilled. So the proof of -, ‘theorem 1 can
automatically be extended to thlS case ‘too; the ‘condition (2.

: belng satlsfled by ch0051ng



£ =€,=0, e M<<lgpll. L@
The condition (2.9) can readily be observed if we expand the
functional of charge Q up to the second- order in &

3. SUFFICIENT CONDITIONS FOR THE Q-STABILITY

'OF NONNODAL PARTICLE-LIKE SOLUTIONS '~

Now we shall investigate in detail.the Q-stability of non-
nodal regular solutions (2.3). For this purpose we need the
explicit form of the Lyapunov’s functional V. Therefore, let
us begin with the study of some of ‘the fundamental propertles
of Lyapunov’s functional,

- Our field equatlons ‘are 1nvar1ant under t1me 1nver51on
(which corresponds to the requirement of 1nver51b111ty of .
m1croprocesses) .Hence our, Lyapunov’s funct10na1 which, irres—
.pective of the perturbed motion, must be-positive definite in
the ne1ghbourhood of the stable solution ¢0, must also be,. 1n—
variant under time inversion, i.e.,

V[¢(t x)] = Vig(-t, X)] (3.,1)
However, the t1me—der1vat1ve of. V changes 1ts sign along the
.trajectory of the system under the,transformatron t+—t:

. -di— VIs(t,%)] »-f—-d-—V{gb(f-t.;)] - lvw(t,i)] 3.2)
Therefore, if for the d1rect motlon we havei%§—==v <0, 4_for

the reversed motlon we shall have- \/20. Hence; we won’t’ cont—
radietiLYapunov’s,theorem of stability if and only 1f Lo

V =0. (3.'3')

The condition (3.3) requires the Lyapunov’s functional V to be’

the integral of motion in our case. So let us now write: the va-
riational principle for the statlonary regular solutlons (2 3).
We get
58=58 fdtfd xﬁ j_f__% E
ti ¢.0‘ . _‘ » D

i

b Faraee e
t1 _9¢o = fa.(ﬁ-‘*‘j_‘__.:_'

¢*!-—H]

’ ‘!
-5 dt (@Qy —E) = (t,~t ;) 5(E —wQO)

RS (3 4)

where E stands for energy, S de51gnates the action function

and Q, is the total charge. Thus, we choose the Lyapunov’s
functional V in the form

V=E-0Q. (3.5)

Note, that this particular ch01ce of . Lyapunov s functio--
nal can also be Just1f1ed from the point of view of the method
of the chains of integrals of motion, due to Chetaev. As, it
will be clear afterwards, in our case, the comblnatlon (E oQ)
does not contain -any 51gn changlng term, llnear in: f, expli-
citly.

Further we must find out in which case the functional (3.5)

. w1ll satrsfy all. the conditions: of the-theorem of stab111ty,

i. e., in which case the statlonary state ¢ will realize its

~minimum. This problem is solved in variational calculus and

leads to- the investigation of the sign of .the second variation

'of Lyapunov’s functional.

The second variation of the. functlonal (3 5) can be wrltten

T as

2y -1 33 ;2 _9,2 ¢ - -
5 V\_gfd x{Fp£1+(Fp,2m SFpp SF_‘!

_%23313*_(‘ —2&)25F ) f Fp(‘V E'I)2+

- - 3 > 2 )
+ 2Fpp(V £y Vl/;)z +(Fp—qu)(V£2) +{F +

: 2
+2sl“ss+m2 ("-Fp,“'G',SFq -4SFsp+§S qu) + (3'6)

: 4.2
_ +20 S(Fpp*»l%sz P —&v 5 Fpq *

+ﬂ1v[(m2F p=2FsFy, ,,SJ?V sHEf+
: ..t . e » 2 gy . ;1‘—‘4‘ \,' R 2"
CatE - ‘?-F‘p":h7 *_)?qu t2TsFer vl VB Hep o

2 ‘ .{}'9



It can also be written as

Ve(ELF, £, ng )+ z (g g,>, G

where (.",,.),. de51gnates scalar product in L (R ), 1
f_h'_'=F -SF ~202s(F | ~25F +82F_ ) . (3.8)
and :the: Herm1t1an operators J (x=12) have the form L

“l'z-dw[p v +2F Vv(VV vn+

&

+dw[((,2p .,--2;» sF —Fp's)-Vs}+Fs,+2sts+ (3.9)

+ o (-F o+ 65F _4sF, + 852 F g )+ 20" s(Fpp +457F gq=4sF ),
Jo= div[(F _sF )V ].—:div[-l-e ‘s-F‘ql{ L Sl
2P ¢ z ' (3.10)

I ...' - 2 B 2 -’
+FS, @ ,va+Fq(cu S—D).

So for 82V to be pos1t1ve it is necessary that F >0and h>0.
Using the condition of charge fixation in linear approx1ma—
tion with respect to ¢ we get

EESRTI

(£, hu) = (&, €4, | Gl
where A c; '

- di - v -
g dxv[(Fpp Squ)z‘“S Vyl+ 2muin

o — A (3.12)
-(2F‘ " SF Sq-Fps)s —-&xzskFpp'-ii‘istl?pq“"+'és2iF’(vlq)>¥ . T
From (3.11) using Schwartz’-s inequ’al‘ity we. get . ; v
(éz, hé Y2 (8 &y) (~/: h~/:) . : (3.13)
As a result we can write- ST iy BRI RSt »
BV >, €04, £, RE D = WIE R MR ENT

10.

where . - P F S ST SO

kg, =T E veE e g L (3.15)

. Let us study the functional W:and find out. the conditions un-

der which it will be positive definite with respect to the
metric p which can be enlarged by 1nc1ud1ng Hfl][ _Note that
due to the field equatlons Jov =0, i.e., ¢ is the eigenfunc—

“tion of the operator Jy w1th eigenvalue equal to zero. There-

fore, according to Courant’s theorem about the positivity of
the first eigenfunction of the Hermitian differential opera-
tor of second order 8/ the spectrum of Jz' will not be nega-
tive because ¢y >0. The zero mode is excluded here accordlng
to-the definition of p because for {,=¢ &M plyl =

Now let us investigate the spectrum ofAK In thlS case the
situation is a bit complicated because K 1is an integro-
differential operator and, therefore, Courant’s theorem cannot
be used for it as a whole. However, Courant’s: theorem is-ap—

plicable; to. the operator J We shall wuse this fact. and the

geometrical properties of Lyapunov’s ‘functional-in our:further

. invest xgatxons .

It ‘is clear from (3.15) that for the spectrum of K fo be
positive it.1is necessary that J does not have more than one
negative eigenvalue, because in the opp051te case it is al-
ways possible to make the scalar product (g, ¢y) equal to
zero for (£, I 61)<0 Now let Alw) be the first eigenvalue
of K. Then, accordlng to theorem 1 A(O) (or A(0+58), & being
the 1nf1n1te51ma11y 'small constant) is always negatlve. Now,
let us find the critical frequency g for which AMwy)=0
and which determines the domain of Q ~stability ©w>a, Jif
(d/do) >0 (due to the symmetry @ - it is suffxclent t

:.cons1der w> 0.),

© Sgn min 6%V = Sgnlw - wy), ‘ v (3.16)
. p=¢€ : e T ;

therefore, ¥fw,) . is the saddle point of the functional v
with the curve of descent Y(w). If we move along the curve

‘we shall reach the p01nt mo “at which 52V =0. Therefore, for

@ =wq
mind? vV = min((f ,f({ ) =0 _ ' h : ‘(‘3,.17)
p=c p=c )
and is attained for ¢ ._(d(‘[,/da,)~ N So Klll d. e.,
RPN is the eigenfunction of K. correspondlng to the elgen—

value equal to:zero. The relation K¢ =0 along with the ‘equa

iR ',:: 211



tion T o¥ =0 and a bit of algebra leads to the following

equatlon for the determination of the critical frequency
(‘Dfo -/10,11/ . S

[

: -a—[wf(F —sF )sd3x] Qq,

- If w>w0 then '
(r,f/ Kn// )> 0. ‘

or o : R A

" Q (Q' (l// hsll)) >0 R ‘ ; e (3.19)

From (3. 18) and (3 19) we get the inequality for the determl-
nation of the domain of" Q-stablllty’12 13,15,22/

Q g, < 0. o T ' 4(3'20)
Note, once. again, that the zero modes of -the type fl—C d,¥

.are:excluded according to the definition of: the metrlc 2 Thus '

‘we come to the ‘following conclusion.

Theorem 3. Nonnodal regular solutions (2.3) ivn the modeln
(2 1) are Q-stable and the domain of Q-stability is deter=~

mined by, the 1nequa11ty (3 20) if the following conditions
’ hold

(a) (d/\/dw) > 0'
“(b) the operator 31 has only one negative, eigenvalue..
4, ONE EXAMPLE .

Let us see the following model (other examples can be found

in /14-16/)

F=p+s- -2aq1/2;‘ a=const > 0. 4.1

In this case for 1<n<3 and B2=(1-w?-2alw|)>0 there exist
regular spherically symmetric solutions (2.3) to the corres-‘
ponding field equations. Changing the variables

‘(‘/(n"l)) ([..2)

=18, VX =¢-B

we can easily establish that for «>0
SRR
(=1,

Qo {w) = const. (w+a) - B

12

0. - i (3a8)

So the condition (3.20) is fulfilled only for m<5/3. Let us

.take n=3/2. This case was studied i,n”z‘/, For this model the
"operator K - has the form : : S

L |
GRS (4.3)
1+a/w 4

where Py is the projection operator on ¥/!l¥ll. With the help

R ==A~20+ (1 -0? ~6aw) +

“of (4.2) the equation Ku=Au can be written in the fol-

lowing form:

‘(—.(\'—2v(x) +1=p)ou +vf’vu=Xu, _ o T (8.8)
~where”
-2 2 2 ~ -2 : :
w=4dawB <, velo +2) /B " (1+a/w), A=AB . .5)

Differentiating (4.4) with respect to w we get

s

=(v,u)? v _dew | L ’ ' (4.6)
do do - ; - : ' o
As g{" >0 and -Ji—) 0 for small a( ) >0. The last rela-
tion replaces the flrst condition: of theorem 3 because
sgn)\ ='Sgn x.

Now-let us show that the operator Jl has only one nega-—
tive: elgenvalue for o=0.-Consider the elgenvalue problem

(—A+1 2z,f)x_» €X ’ - ‘ (4 7)

Separatlng in (4.7) angular varlables
Xp, = Rp 0 ¥y, (0.0)° ’ '

one can verlfy that for E~1 R =(l,4/dr and ¢=0. Further, as

/1 .
(1) is monotonic ’ R ® does not have internal zeroes

and hence, according to Courant s theotem ¢=0 1is the minimal
elgenvalue for {= 1. Therefore ¢>0 only for §-state. Accord-
ing to Sturm’s theorem 719/ the number of 8 states with €<0’

‘is equal to the 1nternal zeroes of the solutlon to the -equa-

. tlon ’ »
-d%/a2et-20)y@=0 T (4.8)
with the ‘honndar'y" conditions y(0) = : and y°(0)=1. Numerical .
4calculat10ns show. that y(p has only one internal. zero for

rs 1032, Hence for small @ all the conditions of theorem 3

g



are fulfilled. The domain of Q-stability is given by

a2 172
qizas

21/2_; }
5 ) al.

—al<w<i(l+a : 4.9)

CONCLUSION

From our investigation of the Lyapunov-stability of the:
scalar particle-like solutions it follows that classical field
theoretic models of elementary particles with quantized charge
(topological charge) are perspective. In such models the con-
dition of charge fixation AQ =0 is automatically fulfilled -
and the stability of extended particles has absolute charac~
ter. It is due to the fact that the Hamiltonian H in such mo-
dels can be estimated from below through the topological charge

H> Const- |Q].

Therefore, in the cases when the lower bound of the Ham11ton1-
an 1is attained the corresponding PLS of the model are abso-
lutely stable because the Lyapunov’s functional V=fHd3x auto-.
matically satisfies all the requ1rements of Lyapunov s theorem
of stability.
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