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On Lyapunov Stability of Charged Scalar 
Particle-Like Solutions 

Lyapunov's direct method ~s applied to study the 
stability of charged solitons (including pulsons), 
described by the complex scalar field. It is shown that 
the.direct consequence of Lyapunov's theorem of stability 
is their instability. Some necessary and sufficient condi­
tions for the Q-stability (stability with the additional 
condition of charge fixation) of nonnodal charged scalar 
solitons are established. 
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INTRODUCTION 

The const:ruction of a self-cons.i(ltent unified 'fi~ld' theory, 
which could explain the exi~ting m~ss spectrum ot' ,~feni~nt~ry 
particles and p~edirit the new ones, is a long cherished: desire 
of theorists. In this connection the, 'idea, due, .to Einste-in, 
of finding out the dynamical principle which could ~llow us to 
control the .distribution of the excite~ states of strongly 
interacting ·matter~ which we observe as,. elementary particles • 
is very attracting. The unified field theory', which. should in­
evitably be nonlinear, is one of such dynamical principles. · 
According to this concept all observable elementary particles 
and. their interactions are manifestations of some unified, or 
as it is called fundamental nonlinear field. The superiority 
of such theory would have been not' only in determining the 
mass spectrum of elementary particles. but also in erradicating· 
the divergencies that appear in the orthodox quantum field 
theory. . . 

Innonlinear field theory elementary particles are described 
by regular solutions to the field equations. Nonlinear field 
equations may have regular solutions at rest or moving with;· 
constant velocity. Such solutions with field amplitude, consi­
derably different r'rom zero, are localized in a finite region 
of space •. The energy of such solutions is finite, and~ they are 
called "solitons" 1 1. 11 1, "lumps" /.3,4/ or particle-like solu­
tions. Regular localized solutions with distinct topological 
properties are often called "kinks" 151 • As a matter- of fact, 
solitons, keeping in view their origin, are essentially one­
dimensional (space) objects and, therefore, we shall. use the 
name "particle-like solutions" (PLS) in our paper. 

DeHnition 1·. T):lree.:..dimension~l regular solutions to non­
linear classical field equations are called particle-like so­
lutiqns, if (a) they have finite_energy and 'other physical" 
char'acteristics and (b) they are ·localized in a .small region 
of space at any instant of time. . .. 

. Here under loc~lizati6n we mean the following: Let us in­
troduce th'e avetage radius r* ' of the regular solution by,. 
the p,irnt1·1~ · -. · .·., ·. . . 

r*=Jr·cdV/ JcdV, 
where c stands for the energy density of the field. 
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Definition z; Regular solution~ to nonlinear·field equa­
tions are called localized in space if r*<o for any moment 
of time. Here o is an arbitrary but finite constant (o > 0). 

Thus, both the requirements of the pefinition I can be ful­
filled if . 

(a) the regular solutions are sufficiently smooth and 
(b) they are finite at the origin and tend to zero at 

spatial infinity sufficiently fast. 
Further, if we want to deBcribe in a unified way stable 

as well as unstable particles in the framework of nonlinear 
field 'the~ry, we must reqoire, in addition to the above-men­
tioned properties of PLS, fulfilment of another. one, namely, 
their stability in Lyapunov sense 1241 • 

Note, that the requirement of stability is.an additional 
one·, whereas the finiteness· of physical characteristics and 
locarl.zai:ionof regularsolutions constitute the necess~ry' 
and sufficient ~onditions for them to be particle-like. 

·As is mentioned above, the investigation of the stability 
of PLS is 'very'important. Firstly, the stability requirement 
of such solutions plays a vital role in nonlinear field theory 
(NFT), namely~ when we,l~ok for NFT that allow the existence 
of' stable PLS, which may be supposed to describe stable ele­
mentary particl~s. Secon~ly~ the crite~io~ of ~tability rest­
ricts to some extent the freedom in the choice of the basic 
field equation~ fo~ the· ~onstruction of im adequate· self.:.. 
consistent field theory of elementary particles. . . 

In the present paper we shall investiga,te in detail the· 
Lyapunov stability of charged scalar PLS •. The purpose of this 
paper is to review so~e of our results on the 'Lyapunov stabi­
lity of charged scalar PLS. 

I • METHOD OF INVESTIGATION. 

First of all we must ~ive the physical definition of:the 
stability of the particle-like solutions. From this point of· . 
view one must take into account all possible perturbations 
that an elementa'ry particle continuously experiences. Unfortu­
nately, such a formulation of the problem of stability leads 
to tremendous mathematical difficulties if one wants to find 
its solution; Therefore, we confine ourseif with the traditio­
nal treatment of this problem i~ Lyapunov sense when. the per­
turbation (arbitrary) is,switched on at the initial moment and. 
then the time-evolution of the perturbed system is studi-ed. 
i.e., the stability of the dynamical system with respect to 
initial perturbations is considered. 
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Lyapunov considered dynamical systems in n -dimensional 
Euclidean space. En• described by the equations 

dit -+ -+ ) (II) --=X(x,t); Xz(X 1,x 2, .•. ,X • 
dt n 

n 
defined in some ·domain D ( ::£ x ~ < H, t ~ 0) and having the 

i= 1 1 
' 

equilibrium solution it-= 0. As a measure of perturbation he 
considered the metric distance . ' 

-+ -+ n 
p(x, t) ==II x[[ = ( ::£ x2 ) 112 

i= 1 i 
(I. 2) 

Definition 3. The equilibrium solution x = 0 is call~d 
stable if for each £ >0 and given to there exists a num­
ber 8 > 0 such that for the initial perturbation x 0 , satisfyin~ 

• the condition II it oll < o, the inequality llxll < £ holds for any 
t > t 0 • In the opposite case equilibrium solution x = 0 ·· is 
unstable. Horeover, if o does not depend upon t 0 , the stabi­
lity is called to be uniform. 

For the investigation of stability Lyapunov usedcontinuou! 
and unique valued funct;:ion V(x,t) with certain properties. 

(a) The function V(~t) is called to be,positive definite 
in a certain domain D, if (i) V(O, t) =0 and (ii) there exists 
a function W(x) (W(O) =0 and W(x) >Ofor x~ D such that V(x,t)>WI 

(b) The function V(x, t) is said to have infinitesimally 
small higher limit, if for ll~ll -+ 0 V(;_, t)-+0 uniformly in L 

In this case the following theorem (Lyapunov' s theorem) give 
the answer to the question of stability of the equilibrium so· 
lution X=O. 

Theorem. If the equations of motion are such that there 
exists a positive definite function V(x, t) such that dV/dt= 
= V < 0, then the equilibrium solution x = 0 . is stable. If V(x,t) 
allows infinitesimally small higher limit, then the stability 
will be uniform in to· 

Lyapunov's method can easily be generalized to distributed 
systems because the latter can be considered toe be the limiti1 
case of a dynamical system in En for n-+ oo, Actually, the fie: 
equations can always be written in the form of a sys.tem of 
first order differential equations for a multi-component fielc 

function t/J = (j1
} • Let the region R of the three-dimensional· 

space in which ~he field t/1 is defined be finite. Then R can 
be divided into n small cells of volume 6. V. In every i :-th 
cell one can define the average value of the field function 



!fr(i)·. In· this case the equations for r/1(1) will be of the 
form (1.1) and for them Lyapunov's method tan directly be 
applied. Here the metric distance from the equilibrium !fr(i)=O 
can be defined as 

< i i tv/1> I 
2 

A vi ) 
112 

j= 1 i = 1 J 

which in the limiting case when n _."" gives . 

= ( ! f lr/1 . I 2 dV) 1'2 • . 

( 1.3) 

p f=1 J ; 
It is clear that in our case of distributed systems we shall 
have to consider Lyapunov' s functional instead of Lyapunov' s 
function. 

For our further investigation we shall use Lyapunov's 
method generalized to two metrics, p 0 and p, for the descrip­
tion of initial and current perturbations, respectively. This 
generalization is due to A.A.Movchan 161 • 

2. INSTABILITY OF CHARGED SCALAR PARTICLE-LIKE 
SOLUTIONS IN LYAPUNOV SENSE 

Let us consider the particle-like solutiondescribed by 
the complex scalar field 

... 1 .3 1 ¢(t,x)!R xR .... (:, 

satisfying the natural boundary condition 

lim ¢(x) = 0; X= (t,i). 
lxl -.oo • 

Let the Lagrangian density of the theory have the Lorentz~ 
invariant form: 

£, _l..F(s,p, q). 
2 

(2.1) 

F being arbitrary nonlinear function of the invariants s =¢ * ¢, 
P=-a ¢*all¢, q =J!JfL; J = .L[¢*aL¢-a ¢*¢].The field 
equatfons are written1 as P. __ 2 _ I _ P. 

a P. <-iF q J P- ) ¢ + aIL <- F P a P- ¢ > -2iF q J P-aP.¢ - F s ¢ = o . . (2. 2) 

Let the field equations (2.2) have the stati~nary regular so­
lution 

¢
0

(x) =!fr(~)e-iwt; !f! *=r/1, w =const (2.3) 

d~scribing the charged PLS at rest. Let M denote the set of 
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functions obtained from ¢ 0 by ·means 'of symmeti·y trans forma­
. tions of the theory, L e. , 

M=I¢~.:.Tg¢ 0 1, 

T being the representation of. the continuous group of sym­
me~ry of the theory (excluding time transformation), then 
by definition, the function ¢ (x) r1: M describes the perturbed 
solution. Let 

• -iwt 
¢(x) ... lf>(x) e : 

Following Movchan 161 and· Slobodkin 171 we introduce the metrics 
p 0 and p for the characterization of the initial perturbation 
'go =li>(O,it) -!fr(x) l'!-nd the current perturbation .;.,lf>(x) -'tfr(x), 
respectibely. Putting 

e = .; 1 + i.; 2 • e~ ... e 1 • i= 1. 2 • 

we choose the metrics in the 
2 • 

P 
0 

= ~ I II e; II + [1.;~ II s I : 
i: 1 

form 
2 

p "' inf ~- ll e ll. 
!fr~Mi= 1 i 

where 11·11 and 11·11 8 designat~ th'e IJOrms in L 2(R 3 ) and Sobo­
·lev.~pace w_i<R3 ),respectively, ~nd .;~=at ei I t .. o •. 

Definition 4. The regular solution. ¢ 0 is stable ,in;-Lyapu­
nov sense with respect- to the metrics p 0 , p, if for each c>O 
-there exists a number 8(£) > 0 such, that from p [.;9 1<8 it 
follows that p[.;l<£ for any t> 0. 

Let us ,now consider a 1emma1l!>/ of-. variational .calculus 
that will be useful for our .further inves~igations. Let· the . 
functional 

V[¢1= fv(¢, a/L¢)d:-ax . 

be defined in the class of sectionally smooth functions ¢ {t, x)~ 
Rl xR·3 ... Rn, ¢{t, oc)-=0 and let it be invariant with respect 
to the continuous symmetry group of the theory given by the 
parameters a-la 1 1. Let u(a; t, it) be the family of its ex-
tremal fields in which u(O;t, x) . is the one under our con-
sideration. · 

Lemma. If there exist the constants c 1, not all equal to 

zero, such that the linear combination -~ c (~) 0-. =0 on 
i i aai ax 

some boundaryless surface S separating in R3 a domain n of 
nonzero measure,· then the extremal u(O; t, x) does not rea-
lize even weak minimum of the functional V, i.e.,82V is sigr 
changing in the neighbourhood of u(O, x). 
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Proof. Let the extremal u(O; x) = u 0 . gi:ve weak m1n1mum 
to the functional V. Consider the £ -rieighbo11rhood of u

0
: 

U=Uo+EJ]. 

As u 0 gives weak minimum to the f~n~tional V, the adjoint func­
tional 

2 ·. . . ; a V:f(A 11 2+2Bqq'+C7J'2)u3x, (~.4) 

where prime designates differentiation with respect to the 
argument and A, B and C stand for. tlte second ~e"rivatives 
of ~.c~lculated at the point u0 ,with:res.p~~ to its arguments, 
must be either positive or equal to zero on all alowable 
curves 1JI81 • Hence any seci:ionaliy smooth function q, which is 
equal to zero on S and for which a2 V{q]~O, must consi'st of 
the parts of the extremals of this functional. Besides that 
on the surf.ace S it must satisfy the Weierstrass-Erdmann 
matching condition. Take the function 

1 
0 for x G- U, 

11 "' ... · · au ~ 
0 f3 for X rfr 0, {3 = ~ C I (--)a., 0 

. . . . • . I • qa 1 . . • 
Accord1ng to the theorem of var1at1onal calculus, stat1ng that 
the difference of two infinitesimally close extremals sets the 
second variation of.the functional equal to zero, we get 

o2VI1J 0 l == o. (2.5) 

From (2,4) and (2.5), after integrations by parts, requiring 
the fulfilment of Weierstrass-Erdmann condition we get that 
the· following condition must hold 

(q'o>s-o =(7J')s+o (2.6) 

But the con~ition (2.6) cannot be fulfilled because 

(n' ) = 0 
''0 s-O 

..... 
and (q ~ ) 

8 
+ 0 = 'II {3 ,f 0 . 

Hence a 2 V is sign changing in the neighbourhood of u 
0

. 

Sometimes the class of regular solutions 

. · ... . -iO(t) * 
¢ 0 (x) ~ 1/J (t, x ) • e ; 1/1 = t/1 , (2. 7) 

which includes, in particular, the so-called pulsons 111, is con-
sidered. · . ·· · · 

Now, using the above lemma, we .shall prove' a couple of .thea­
terns regarding the in~tability of the regular solutions, (2.7) 
in Lyapunov sense. · · 
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Theorem I. The regular solutions (2.7) are unstable in 
Lyapunov sense in any model (2.1). 

Proof. As the field equations are invariant under time­
translation, . t;he dynamical sYstem under coris'ideratio~· is ·. ·. 
autonomous. According to the general theorem· of stability /6/ 

the motion of the autonomous dynamical system (2.1) is stable 
with respect to the. metrics p 0 , p , if and only if. in some 
neighbourhood of¢(} there .exists a Lyapunov' s fu!lctional .. :V[¢], 
such that 

(a) it does not .increase along the trajectories of the 
system; · · · · · ' 

(b) it is c'ontinuous· with respect to the:inetric Po arid 
(c) it is positive definite with respect to the· inetric' p·. · 
Thus, if we suppose .p

0
to be stable, then there must 

exist a positive definite functional V[¢} · for which ¢ 0 1s 
the extremal field. Since the model (2.1) is'invariant under 
3-translations x ... x +a , a =canst, then ¢(t; x + a) is also 
the· extremal field for· the functional V. Hence according to thE 
above lemma 

....... 
f3=C·'Vl/J 

must not be equal to zero on any surface. However, the equa­
tion ifx!/1 = 0 (C"" 11, 0, Ol) can be satisfied on some surface S 
because t/1 is regular and 1/J(t, ... } = 0. Hence according to the 
lemma· a2 V is sign changing, which contradicts the stability 
of ¢ 0 and proves the theorem. . . 

From this theorem it follows that only·conditional stabi­
lity of the regular solutions (2.3) and (2.7) can be achieved 
In general; from the physical point of view; several condi­
tions,.such as conservations of charge, momentum, angular 

'momentum, leptonic charge, baryonic charge,' etc'., can be im~ 
posed on the initial perturbations. We choose tlie'condition o 

:charge fixation It, 13·16. 231 

: Q[ .pJ ~ ~ f da~(F P -sF <i'><¢*at ¢ - a·/<P*cf>) = q[ ;p 01 E! ·Q 0 • <2. 8 

Stability under the 'condition (2.8) will be called Q-stabili 

Theorem 2. Regular nodal solutions (2.7) are Q-unstable i 
any model (2.1). ·)· , .. 

.... . f1 l " ••·· :__,.,.__ :. .:-· -'· ; .. 

Proof. As 1/1 (t, x) .. 0 on the nodal surface, for the extrema 
fields ¢ 0 • e 1" ,allowed by the model (2. I), all the condition 
of the lemma are fulfilled. So the proof of . theorem l can 
automatically be extended to this case too;' the condition (2. 
being satisfied by choosing 



. . .. 
e1 =e 2 =o. He 1 11 « l!t2ll· (2.9) 

The condition (2.9) can readily be observed if we expand'the 
functional of charge Q up to the second order in .; •. 

3. SUFFICIENT _CONDITIONS FOR ·THE Q ...;STABILITY 
OF NONNODAL PARTICLE-LIKE SOLUTIONS 

Now we shall investigate in detail-the Q -stability of non­
nodal regular solutions ·(2.3). For this purpose .. we _need the 
explicit form of the Lyapunov's functional V.,Therefore~ let 
us be_gin with the study of some of the fundamental properties 
of Lyapunov~ s functional. · .. · . · . · 

Our field· equations are invariant under . time inve.rsion 
(which corresponds t~ the requir~ment of inversibil.ity of 
microprocesses) •. Hence our Lyapunov' s functional, which, irres­

,pective of the perturbed motion, must be-positive definite in 
the neighbourhood of the stabr'e solution ¢ 0 , must also be, in­
variant under time inversion, i.e., 

.... .... 
V[cp(t, :x.)]·= V[</>(-t, x)J. q . .t) 

However, -the tillle-derivative of. V chan~es its sign along the 
. trajectory of the system under the transformation t_.-t: 

d r ... d ... d [.·· .... 
1
· 

-Vt¢(t,x)] ----V{¢(-t,x)]=--V ¢(t,x). 
dt . dt . dt . . . 

(3 .2) 

Therefore, if for the direct motion we have dV = V . .:S 0, for . ·. dt 
the reversed motion we shall have V > o: Hence; we won't· corit­
radicf Lyapunov' s .tbeorem of stability if and only if .. 

v '-"' 0. (3.3) 

The condition (3.3) requires the Lyapunov's functional V to be' 
the integral of motion in our case~ So let us now writ'e. the va­
riational principle for the stationary regular solution~ (2.3). 
We get 

oS .. o ?dtfd 3xU a~ cforo + a~ ~0* 1-Hl 
t
1 

· iJ¢o .... · -~~ · ·· 

· . t2 . · a£ · · · af . · • 
. =of dtf~x{-iw-. ¢ +iw-. ¢~ -H1 

tt #o o iJ¢*· . , ... "':I 

8 
:~. 

1)'. 1:. 
i,l ., 
~c 

:j 

t2 
=of dt(wQ 0 -E) =(tct 2)o(E -wGJ, 
. t 1 

(3.4) 

wh~re E stands for energy, S designates the action· function 
and Q 0 is the total charge_. Thus,. we choose the Lyapunov' s 
functional V in the form 

·V=E -wQ. (3.5) 
Note, that this particular choice of. Lyapunov' s functio­

nal _can also be justified from the point of view of the method 
of the chains of integrals of motion, due to Chetaev. As, 'it 
will be. cJear afterwards, in our case, the combinat~on (E-wQ) 
does not contain ·any sign changing term, linear in (, expli-
citly. . ·' ' · 

Further we must find out in which case the functional (3.5}· 
will satisfy all. the conditions• of the-theorem of st.ability, 
i.e~', in which case the stationary state ¢o will realize its 
minimum. This problem is solved in variational.calculus and 
leads to. the investigation of the· sign of.the second variation 

'of· L'yapunov• s functional. 
The second variation of the.functional (3.5) can be written 

as 

o2v,=.!..fd3 xfF ~ 12 +(F -2w2sF -sFq-
2 P P PP . 

. ' . . . 

- 2w2 s 3 Fqq -2w2 sF pq). i i+ F /V .;1)2 + 

.... .... 2 .... 2 
+ 2F PP ( V .; 

1 
• V t/J) + (F P .:. sF q ) ( V.; 2 ) + l F 5 + 

+2sF + w2 (-F +6sF -4sF + Ss
2 F ) + 

ss p . q sp sq 
(3.6) 

+2£t) 4 s(F +4s2F )-&u 4 s 2 F +· .PP . qq . pq 

. 2 2 . .... 2 
+lliv[(Cd F -'2w sF -F.., -)-vsH~ 1 + PP . .pq . _..s . : 

. +IF - w2 F - (~ t/J )'2F + 2w 2 s·F + div[l VsF. He! ... 
~ p .· q . .q . -2 . q .. ~. 

"t!,9 



It can also be written as 
• • • • 2 ~ 

02 V=((l,F {;1)+({;2,h{;2)+ ~ ({;1' J1 {; 1 ), 
.. . P, , , _ . , . , 1so 1 

(3. 7) 

where ( ••,) . designates scalar product in L 
2

(R 3 ),-

.h=F -·sF -2w2s(F -2sF +s2F ) (3,8) 
. p q . pp pq qq 

and the Hermitian ·operators j i (i = 1,2) have the form - · 
'. ' _. ....... - ' .... . .... _. 

J =:_ div[ F v + 2F . '\1 rjJ ( V rjJ '\1 )J + 
. 1 · · · · P PP · J' 

+ div(((,,2F- -2w2 sF -F )· Vs}+F +2sF
66

+ pp pq ps s (3. 9) 

+ (o2 (-F 
11

,+ 6sFq -4sFps + 8s 2 F q-s )+2w 4 s(FPP +4s2 F qq-4sF pq), 

- .. -+ ' 1 .... 
J. =-div[(F -:sF )V}-divl-V S·F l+ 

2 p q' 2. q (3.10) 

+ F s :_ m2 F P +FIt (w2 s -p). 

So for o2 V to be positive it is necessary that F
11

>0andh>O. 
Using the condition of charge fixation in linear approxima­
tion with respect to {; we get 

·fl ... 

({;2,hu) =(g,,;-1 ), (3. 11) 

where 

goc-div[(F -sF )2ws Vr/J]+ 2wu{F -
pp pq p 

{3. 12) 

- (2F +sF -F ) s _c,)2s(FPP~3sFP '+.2s2F )t. q sq ps q qq 

From (3. ll) using Schwartz's inequ.ali ty we ge~ j ~ 

• • 2 1 
(~2· 11 ~2)~(g,.;1) .(rp,hrp)- . (3. 13) 

! As a result we can write '··'• .,j .• f 

2 • • ' - - • 
0 V;::.. (.~1' FP {;f)+ (§2 ,,J.z{; 2) +:<.;1,. K{; 1} == W[ {; 1 '{;),, . . 

(3. 14) 

'10 

where ' 

~ A -1 
K {; 1 =Jt ~1 + g(g, {; 1) .(1/J, h!,&) (3.15) 

Let us study the functional W,and find out the conditions un­
der which it will be positive definite with r~spect to the 
metric p which can be enlaq~ed by including 11{; 1 11 • Note that 
due to the field equat;_ions J 2 !,& = 0, i.e., !,& is the ~igenfunc­
tion of the operator J2 with eigenvalue equal to zero. ~here­
fore, according to Courant's theorem about the positivity of 
the first eigenfunction of the Hermitia~ differential opera­
.tor of second order' 191 the spectrum of ,J 2 will not be· nega­
tive because !,& >0. The zero mode is excluded here according 
to-the definition of p be.cause for {; 2 =1,& ~-M p(•/J]= 0. · · -. 

Now let us investigate the spectrum of K. In this case the 
situation is a bit complicated because K is an integra­
differential operator and, therefore, CDurant's theorem cannot 
be used for .it as :a· whole. However, Courant's theorem is ·.ap­
.plicable. to the operator J 1 . He shall use this fact and the 
geometrical properties of Lyapunov's functional in our-further 
investigations, 

It is clear fiom (3.15) that for the' spectrum of K to. be 
positive it. is necessary that j 1- does not h~ve mo~e than one. 
negative eigenvalue, because in the opposite case it is al­
ways possibleAto make the scalar product (g,f1 ) equal to 
zer2 for <.; 1 , J 1 .;1 ) < 0. Now let A.(w) be the first eigenvalue 
of K. Then, according to theorem I A.(O) (or A.(O+o )~ o_ being 
the infinitesimally 'sma11 constant) is always negative. Now, 
let us find the critical frequency m 0 for which A.(w 0 )= 0 
.and which determines the domain of Q -stability w> w{) . if 
(d\/dw) ~ .Q (due to the symmetry w->-w it is suffiCient t 

. consider w > 0 ) • As. 

Sgn min o2 V = Sgn(m- Wo ), 
p=E 

(3.16) 

therefore, !,&(m0 ) . is the saddle point of the functional V 
with the curve of descent !,&_(m). If we move along the curve 
've shall reach the point w 0 at which o2V = 0. Therefore, for 
w =0o 

mino 2 V = min <.;
1

, K {; 
1

) = 0 (L 17) 
p=E p=c 

and is attained for .; =(drp/ dw )= rp • So K!,& = 0, i.e;, 
!,& m is the eigenfunction of K. c~rresponding tom the eigen-
value equal to zero. The relation K!,& =0 along 'vith the equa 
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tion J 2 .p =0 and a bit of algebra leads to the following · 
equation for the determination of the critical freque'ncy 
(u' /.10,11/ 

0 

~[wf(F -sF )sd 3x] = Q aw= 0. 
.. dw • .P q 

(3.18). 

If w>w 0 then 

. <.p w ' 'K .p w) > o 
or 

Q Ow(Q Ow- (t/J' ht/J )) > 0 · (3.19) 

From (3.18) and {3.19) we get the inequality for the determi­
nation of the domai.n of Q -stability 1 12,13,15,22/ 

Q ow< 0. (3.20) 

Note;. once again, that the zero modes of the type ,;1 = C
1 

() 
1 

t/J 
. are excluded according· to the definition of • the metric· p. Thus 

we ·come to the following conclusion. 

. Theorem 3. Nonnodal regular solutions (2.3) in the model .. 
(2. I) are Q -stable and the domain of Q -stability is deter­
mined by the inequality (3.20) if the following conditions 
hold: · 

" 
(a) (dA/dw)?: 0; 

(b) the.operator Jl has only one, negative. eigenvalue •. 

4 ~ ONE EXAMPLE . 

Let us see the following model (other examples can be found 
in /14·16/ ) 

·sn F == p + s - -- _ 2aq 112 . 
n • a"" const > 0. (4. I) 

In this case for 1 <n<3 and {32.,. (1-w2-2a lwl )>0 there exist 
regular spherically symmetric solutions (2.3) t'o the corres­
ponding field equations. Changing the variables 

X= r {3, v(x) "".p. f3 -(1/(n-1)) (4. 2) 

we can easily establish that for w > 0 
-3+ _2 __ . 

Q (w) = const.(w+a) ·fJ (n-1) 
0 

. '12 

So the condition (3.20) is fulfilled only for n < 5/3. Let us' 
take n-3/2. This case was studied in/2/. For this model the 
~Jperator K has the forin 

K =-.".-2"•+(1- 2 6a ) 4(w+2a)2 
y l<J - uJ + ----

1 +a/w 
Pr;,, (4.3) 

where Py is· the projec1ion operator on t/J/!I.PII· With the help 
'of (4.2) the equation Ku=Au can be written in the fol-
lowing forin: 

(-!\ - 2v{x) + 1-1d • u +vi\ u ,.:\ u, (4.4) 

where 

-2 2 2 - -2 
J1 =4awf3 , l'=(w+2a) /(3 (l+a/w), ,\:,\{3 • (4.5) 

Differentiating (4.4) with respect to w we get 

dA 2 dv dp 
-=(v,u) -----. (4.6) 
dw dw dw 

As ~>0 and ~> 0 
&o dw 

d:\ for small a (-a;;;-)> 0. The last rela-

tion replaces the first condition of theorem 3 because 
sgn,\ = sgn X • 

Now let us show that the operator J 1 has only one nega­
tive eigenvalue for uJ=O. Consider the eigenvalue problem· 

\-t. + 1 -2t/I)x= fX· (4. 7) 

Separating in (4.7) angular variables 

x Ck = R£ {r) Y £k (0, a) . 

one can verify that for ~ =1 R1=dlfr/dr and f=0. Further, as 
tjJ(r) is monotonic /tSl R1 (r) does not have internal zeroes 
and hence, .according to Courant's theotem €=0 is the. minimal 
eigenvalue for C-= l. Therefore f > 0 only for S -state. Accord­
ing to Sturm's theorem 1 191 the number of S states with c< 0 

, is equal to the internal zeroes of the. sohition to the' equa-
tion · .· 

(-d2j dr2 + 1- 21/J )y{r) = 0 (4.8) 

with the boundary conditi~ns 'y(O) == 0 and y'(O) ,;.1. Numerical 
calculations show that y(~ has only orie internal. zero for 

·~ r ·.;; 1:32. Hence for small ci all i::he conditions of . theorem 3 
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are fulfilled. The domain of Q-stability is given by 

1 +a 2 112 2 112 
I[ ] - a l < w < 1 (1 +a ) - a l • 

2 
(4. 9) 

CONCLUSION 

From our investigation of the Lyapunov-stability of the 
scalar particle-like solutions it follows that classical field 
theoretic models of elementary particles with quantized charge 
(topological charge) are perspective. In such models the con­
dition of charge fixation /1Q '"'0 is automatically fulfilled 
and the stability of extended particles has absolute charac~ ' 
ter. It is due to the fact that the· Hamiltonian H in such mo-, 
dels can be estimated from below through the topological charge 

H~ Const·IGI. 
Therefore, in the cases when the lower bound of the Hamiltoni­
an is attained the corresponding PLS of the model are abso­
lutely stable because the Lyapunov' s functional V= JHd3x auto­
matically satisfies all the requirements of Lyapunov's theorem 
of stability. 
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