


1. INTRODUCTION

In the last vears formulae of quantum chromodynamics (QCD)
for the one-gluon exchange amplitude are widely used for cal-
culations of different processes at short distances. So, for
example, in refi’/! an effective potential of the quarkonium
i3 calculated as the Fourier transform of this amplitude. How-
ever, in this case considerable technical difficulties appear
when the expression for the effective ("rumning") coupling
constant a4(@%)is used in the one-loop approximation. The use
of formulae in the two-loop and three-loop approximations and,
especially, the formulae which take into account the quark
masses would lead to greater difficulties.

Moreover, the formulae for the effective constant obtained
in QCD are singular at @%- 0. As a result, in the calculation
of the effective potential as the Fourier transform of the
QCD Born amplitude it is necessary to resort to the regulari-
zation of the expressions for a(Qg) at small Q7.

However, we can approach to tne mentioned range of prob-
lems from a different peoint of view, Namely, we may pose the
task of finding in the momentum space a simple enough expres-
sion regular at Q2 .0for the effective potential, that be-
haves at high Q2 as the QCD one~gluon exchange amplitude.

This Egsk in the one~lcop approximations has been solved
in ref.”® where it is established that a Fourier transform
of the Coulomb-like potential

Vo = -g2/r, g% const ' (1)

in the relat1v1st1c configurational representation (its coor“

dinates I’ are conjugate to rapidities but not to momenta) /

has the form
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Here y =cosh }1+@Q /2m2) is the rapidity, m is the effective
quark mass. From (2) it follows that the behaviour of the po-

tential at large @® coincides in an asymptotic regiom with the
Q@2 -behaviour of the QCD one”gluon exchange amplitude

Vo@®) = -



as(Q2) 1

Ta®) = .
Qe Q% .1nQ 2/A2

(3

The aim of the present paper is to construct such a simple
regular at Q2.0 expression for the effective coupling con~
stant aé(Qz) that the amplitude

Q%) - E_s.é.gfl. @)

coincides at @%. » with eq. g3) and differs from eq. (3) by
no more than 107 at moderate Q. For as(Qe) in eq. (3) we will
use two— and three-loop formulae and other presently known
expressions and its generalizations. The denominators of for-
mulae (3), (4) coincide with each other, therefore, we will
compare the expressions for a-s(Qz) and EB(QS) with each
other. In other words we want to find the function ES(QE) that
approximates all known formulae for as(Qe) listed in the
first section. In the second section the obtained expression
for the effective amplitude is continued into the cross—chan-
nel and is compared with presently known continuations.

2. THE FORMULAE FOR THE QCD EFFECTIVE COUPLING CONSTANT

By now a number of formulae for the effective coupling con~
stant aB(Q?‘) Eﬁz(Qz)/Ing is obtained. So, in the first pa-
pers on QCD’ the widely known expression for ag, in the one-
loop approximation

e (8%) - “su’) S 5)
¢ 1+ Boe, w®) mQ2/u" By -InQ?/A%

has been found. There ,80=11—2/3-Nr, N, is the number of quark
flavors, p2 is a subtraction point, A is a scale parameter
of QCD, e

The constant aa(Qg) has been calculated in ref. in the
two-loop approximation and in ref .78/ in the three-loop appro-
ximation (MS scheme):

+ InL,
a, @%) = L. _ ﬁ; =+ : < (81 1oL + B4 By - BE),
BD.L ﬁO.L BO.L (6)
2,,2 38 _ 2857 5033 524, ®
L=1nQ /A y Bl=102" _é'_N‘r Bz__z_"_' "'"_I‘g"’Nf + 54Nf .



The first term corresponds to the contribution of one-loop

diagrams; the second term, to the contribution of two-loop

diagrams; and the third term, to the contribution of three-
loop diagrams. A detailed analysis of the formulae (5}, (6)
is performed in ref. .

In the derivation of the formulae (5), (6) the quarks are
considered as massless ones. However, in the attainable ener-
gy range it is necessary to take into account quark masses.
This was carried out in ref.’® in the one-loop approximationm.
The formula for ag is complicated but it cam be approximately
represented in the form

2
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where 1 =1, & 8,C,.ce, mj is the mass of a quark with the i-th
flavor. 7y

In ref. the masses of heavy quarks are taken into account
in the two-loop approximation. The author obtained the follow-
ing approximate formula:

aq(1®) , ,
g e ag ) (o - Zaw -1t Ba, W x
k]
xlall+a,(w?) -[Q-Mx—-és—é?—(.]’(x) ~Tnl,
where
5 : .
/J’(t) =iE4I1(t/95 ). Yi=m12/p.2, X ='Q2/#2, (9)
1
1,(D =8- [dx.(1~0x -1+ x(1-DtT. : (10)
1] .

However, the comparison of QCD predictions with the recent
experimental data’®shows that the scale parameter Ayg is of
an order of 50 MeV/ 1. In this connection it may be expedient
to take into account the contribution of the light quarks also.
1f we will follow reasonings of ref./¥ and will take into ac-

count the masses of all the quarks, then, as it is easy to show,
we will arrive at the new formila .
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The basic difference of the formula {11) from (8) consists
in that K& in (11) is the sum over all quark flavours of
the functions I, (t/y;), where y1=mi2/u2, while Jt} in (8) is
the sum over the b and ¢ quarks only. Therefore the formulae
differ from each other by numerical factors alsao.

3. THE EFFECTIVE POTENTIAL OF THE ONE-GLUON EXCHANGE
AND A STMPLE REGULAR AT Q®..0 PARAMETRIZATION .
- OF THE RURNING COUPLING CONSTANT

Above listed formulae for the running coupling constant
as(Qz) (5)-(11) are correct for such values of @% when the
condition of weak coupling '4rr-a,s(Q2)<<1 is hold. As a result,
an extension of the formulae {(5)~(11) on a range of small Q%
is illegal. It cannot be performed because of techmical rea-
sons also: the formulae (5)}~(11) are singular at Q%.0. To use,
nevertheless, the formulae for ag(Qg) at small Q% regulari-
zation of the formulae is necesgsary. For this 2purlrmsea in the
problem of quarkonium the substitution In@QZ2/A > In(g+Q2/A%) |
{>1 is used because it leads to a linear confining potenti-
al at large r/V, '

On the other hand, the simple Coulomb-like potential (]}
gives the expression (2) in the momentum space that represents
at large @2 the Q%-behaviour of the QCD one-gluon exchange
amplitude (3).

The difference between the asymptotics of the expressions
(2} and (3) is that the other unknown parameter, the quark
mass m, enters into eq.(9) instead of the scale parameter A,

As is known/1%/ the magnitude of the scale parameter A is
insignificant, if the one~loop approximation (5) is chosen
for the "running" coupling constant as(Qz) and calculations
are restricted to the first order in (nQ%/A%) =1,

Namely, any change in the scale parameter A in describing
structure function moments, as is known’ 1% » is equivalent in
a nonleading order to a shift of coefficients of higher cor-
rections proportional to the one-loop ancmalous dimensions.
Thus attempts to extract the value of A from experimental
data with only the leading order formulae in QCD have no mean-
ing.

4



Analogously, in the first approximation in (In@ 23y~! the
formula (2) coincides with the formula (3) with as(Qg) taken
in any form among (5)-(7), (11) and correction terms of order
(Ir&3Y-" | n>1 give the smaller comntribution in the coupl-
ing constant. Indeed,

1 1

Q%A% 10Q%/m%+ lam /A%

(12)
2 2
_ 1 . 1 _= 1 a- InmZ/A )
1InQ& m? lom 2/ A nQ?%/m? mQ?%/m®
1y ———
nQ®/m#

The coincidence of formulae (2), (3) at asymptotic values of
Q® allows us to introduce the following approximation of the
effective coupling constant

a2 - & 2y = 13
aﬂ( ) %s @* ¥ «sinhy 2m 2 {13
At Q%4 o
2 2 2
..__.!__.._9.._.41, y.,lnE--=1n-—q~—,
sinhy  2m?® m? A
so that &,(Q% »g%/(n@%/A%.0n the other hand at Q%0

2
ES(Q2)=52 y . _ 9 +el11-¢%,
sinhy y2.2m?

i.e., the expression (13) is regular at Qf . 0.

To compare Es(Qz) (13) with the formula (5), we will pro-
ceed as follows: Let us fix the boundaries Q%. 022 of the in-
terval of changing Q%:Q%< @2<Q%; then divide the interval
[Q%,Qg] into 10 equal parts (in the log scale). Let us
denote the obtained points by sz , §J=1.2,..,11. Further, let
us fix the value of the scale parameter A and find by the
formula (5) values of as(Qz) at the points Q’?. Let us denote
ay=ag {Qf-) . p

Now we can use the program vpUMILI" "% and find such values
of the parameters m and g2 in (13) that the ES(QS) passes
through the points ay the most accurate way. It turns out
that a good agreement between the formulae (5) and (13} can be
achieved if one parameter g2 will be considered as a free one
and the quark mass m will be fixed in the interval 100-50CMeV.
As a measure of the deviation of a_s(Q 2) from a.s(Qz) we use
the quantity



Lag@h - a,@%
€= max | - . . ‘ (14)
aZga?c @i o (@Y +d, (@)

In table 1 the values of ¢ and g® are represented for A =50,
100, 150 and 200 MeV and m =100, 200, 300, 400 and 300 MeV at
N, =3 and N;~4. The following interval of changing €% Qf=
=5 GeV?%, Q%gIOOO GeV 2 has been choose. The results of com~
parison of &'B(QE) with the formulae for « (@ 2y in the two-
and three-loop approximations (see (6)) are represented in
tables 2,3 (figs.1-3).

Comparing dfs(QQ) (13) with the formula (7) we used values
of the parameters such as in ref. t u?=96GeV , q K 2. 2
m, = 1.5 MeV, m =0.4 GeV, muzmd=m‘5/20. The results are ré-
presented in table 4 (fig.4). To compare & (@2) with the for-
mula (11) we put as in Tef. ¥ u? =10 GeV 2and the follow-
ing values: 100.a (u?) =a=1.2, 1.5, 1.8, 2.0, 2.8 are sub~-
sequently taken, Values of the quark masses are taken such as
in comparing with the formula (7). In both the cases we have

chosen Q2= 20 GeV2 The results of analysis are represented in
tables 5,6 (fig.5).

From tables 1-6 it follows that the formula (13) for & @%
well approximates the expressions for as(Qe) obtained in the
massless quarks case in the one-, two—, and three-loop appro-
simations and in the case of massive quarks in the one- and
two-loop approximations.

It is interesting that in the ome~locp approximation for
as(Qz) the asymptotics of the wave function of a spherical sym-
metric state of a two-particle system does not depend on the
scale parameterA, Really,in the single—time formulation of
two-particle problem 14/an equation for the wave function (see,
for example, ref! ™) after integrating over angles (see
ref!! /) takes the form

2mooshxp (M -—2mwshxp ). 'sinhxp - ply P) = a5

-2 oy -
={2m) fdxk'-V(xp,xk )-Smhxk'¢(xk),
where x and x, are constituent rapidities. If as an effec~-
tive potential we shall take the QCD one-gluon exchange am-

plitude in the one-loop approximation (10) then the kernel of
eq.{15) will acquire the form: :

i



in |22 sinn |
~ I E Xk
V(Xp,xk)=1n e —;—W—,
+ - 00
1n| 20 o X2 T Xk | P
A 2

i.e., it does not depend on A.As a result, the solution of
eq.{15) does not depend on A. In the two- and three-loop ap-—
proximations the kernels of eq. (15) contain the A-depen-
dences.

The potential chosen in the form of the amplitude (3) with
the coupling constant in any approximation can be represented
according to (12) in the form

vQ?) =T@?)-v,@ 2y, (1- @am®/A v+ W ), (16)

where the potential V, is given by the formula (2). For eq.
(15) with the potential (2} an exact solution is known and so~
lutions of eq.(15) with the potential {16) can be obtained
within perturbation theory.

The /solution of eq. (15) with the potential (2) was found
in ref./V? by the transition from the momentum space to the

relativistic configurational representation 1.8/

¢, 0 = [df - £@.0 ¢ 0,
1-~irm

where the functions &(B, ) = (p“nlu/m)_ , Dy (1,7}F]) rea-
lize unitary infinite-dimensional representations of the Lo-
rentz group’ '3.The solution has the form

¢SO'(6 = C,' e ~rmX o r

where € is an i-periodical constant and the parameter x,
is introduced by the parametrization M =2mcoSy,.

4. THE CROSSING TRANSFORMATICN FOR THE EFFECTIVE
COUPLING CONSTANT

The approximation of the effective coupling constant by
the expression (13) allows us to approach to the problem of
the chromodynamic description of processes in the time-like
transfer momentum range in a new way.



As an expansion parameter in perturbative calculations

the quantities as(lel), {as(Qz)] , Rea S(QE) and the expres-
sion .
NS TSR AR (17)
8o In|Q%|/AR '

(in the one~loop ap})roximation) and other combinations were
suggested (see ref.”'% and references therein). The formula

for a_(@ 2) (13) can be also continued into the cross—-channel.
At the crossing transformation we have: y ,y+im sinhy -—sinhy/ 20/
therefore

2
_g® Q

&‘_s(ez) — (18)

(y+in).sinhy . 2m?

As a result, as an expansion parameters the quantities

. 2 2
lg@f - —E . 181 - (19)
V¥ % 2 sinhy 2m
g%y e

(20)

r

Red (@ %
(v 2+#%) .sinhy 2m ?

-

and a%so @y (1@%)) can be used. The behaviour of &'s(fQZ'I) ,
fa  (@%) and Re&‘s(Qz) as functions of Q%] is depicted in
fig.6 (curves 1,2,3, respectively). The quark mass value m
was taken to be 200 MeV, the value of the constant g2 =0.928
was obtained by comparing the formula {13) with the formula
(5) at A =100 MeV. In this figure the behaviour of e, {lQ 21,
la (Q 2)‘1 » Rea (@ %) in the one-loop approximation (see eq.
(5)) and the expression {17) is also depicted (the curves
4,5,6,7). In all the cases the value of the parameter A was
taken to be equal to 100 MeV.

The best parameter of the perturbative expansion 1s the
modulo one. From fig.6 it follows that it is the parameter (20).

The authors are grateful to V.N.Kapshay, V.V.Sanadze,
A.V.Sidorov and I.L.Solovtsov for useful discussions.
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Fig.1. The dependence of the effective
coupling constant on GB: 1) the QCD for-
mula for a (Qa) (5) in the one-loop appro-

tols ximation at A =100 MeV, Ny =4; 2) the For-
4 mula for Tz (Q%) (13) at m =100 MeV
g2=10.120; 3) the formula for &, ((;Ié } (13)
3 at m = 300 MeV,g2< 0.088; 4) the formula
002} % (@%) (13) at m =500 MeV, & =0.072.
1,2 The best approx1mat10n of a (Q ) among
depicted ones is curve 2 (that practical-
1y coincides with curve 1).
0011 12
z
5 10 0 o’ W
, GeV 1000
Fig.2. The behaviour of the effective
coupling constant on@%®: 1) the QCD for-
mula for a (Qz) {6) in the two-loop ap-
ols prox1mat10n at A =100 MeV,N; = 4; 2) the
002 formula for @, (Q ) (13) at m = 100 MeV,
A g% . 0,098; 3) the formula for_(Q2)
3 (13) at m= 300 MeV, g2- 0.072; Aa) the
formula for a (Q®) (13) at m= 500 MeV,
2 g2 = 0.058, The best approxlmatmn of
! as(CF) among depicted ones is curve 2.
0014
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Fig.3. The dependence of ds
the effective coupling
constant onGf: 1) the
QCD formula for a @) (&) 004
in the three—loop appro- i
ximation at A =100 MeV,
N =4; 2) the formula for
(d") (13) at m=100 MeV,
gaf 0.222; 3) the for-
mula for @ (Q ) (13) at
m =300 Mev,g =0.163;
4) the formula for i, (Q )
(13) at m =500 MeV, g
0.134. The best appro-
ximation of a (Q ) ameong
depicted ones is curve 2.

ao3|

ao2L

003

&~ wng—

Q02

001

-_".l‘_ A Fi A ' 'l

20 50
Q) Gev?

.16

L
100 G%Gev* 1000

Fig.4. The dependence of the
effective coupling constant
on@Q?: 1) the QCD formula for
2, (Q%) (7); 2) the formula for
a (@) (13) atm=100 MeV,g® =
="0. 197; 3) the formula for
Q% (13) at m = 300 MeV,

g§ 0.152; 4) the formula for
@®) (13) at m=500 MeV,
The best approxima-

100 200, 500 1000tion of a,(Q®%) among depicted

ones 1is curve 4,
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Fig.5.The dependence of the
effective coupling constant
on Q%: 1) the QCD formula
for a (@%) (11) at :
a=a{u9100=1.8; 2) the
formula for &“S(Qz)(l?:) at
m =100 MeV,g?=0.120; 3)the
formula for a,(@%) (13) at
m =300 MeV, g2 =0.092;

4) the formula for & (@%)
(13), at m= 500 MeV, 52 =

= 0.078. The best appro-
ximation of aB(Qz) among
depicted ones is curve 2.

Fig.6. The behaviour of the effective con-—
stant on |@® | in the time-like transfer-
momentum region: 1) the formula for Es(|Q e
where @_ (/@) is given by the expression
(13); 2) the formula for|& (@%| (19);

3) the formula for Red (@%° (20); 4) the
QCD formula for a, (@), where a (@2) is
given by the expression (5); 5) the QCD
formula for Ifas(Qz)Lﬁ) the QCD formula for
Reas(QE);-T) the QCD formula (17).
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Table 1

The results of comparison of the formulae (13) and (5)

& 50 100 150 200
9% £ g% £ 9* | € g* |«
100 | 0.096] 2.51 | 0.111| 0.0004| ©0.123 | 2.02 | 0.132 |3.83
200 | 0.080| 5.95| 0.093| 3.61 | 0.103 1.72] 0.111 | 0.006
T [300 [ 0.070| 8.65| 0.082| 6.46 | 0.091 | 4.67 | 0.098 |3.05
X400 | 0.063{ 11,05 | 0.074] $.00 | 0.082]7.31] 0.0089|5.77
500 | 0.057 | t3.32 | 0.06711.40 | 0.075 | 9.81] 0.081 | 8.36
100 | 0.103 | 2.51 | 0.120| 0.0004| 0.133 | 2.02 | 0.143 |3.83
200 | 0,086 5.95| 0.100) 3.61 | 0.111|1.72 | 0.120 | 0.006
w (300 | 0,075| 8,65 | 0.088| 6.46 | 0.098{4.67 0.106 |3.05
:é* 400 | 0.0681 11.05 | 0.079] 9.00 | 0.088| 7.31| 0.096 |5.77
500 | 0.061]43.32 | 0.072{11.40 | 0.081] 9.81| 0.088 |8.36
Table 2
The results of comparison of the formula (13) with
the formula (6) in the two-loop approximation
s 50 100 150 200
q* £ 77 € g7 £ g 12
100 | 0,078 | 4,22 | 0.089| 2,20 | ©0.097| 0.54 | 0.104| 0.97
200 | 0.065 | 7.53 | 0.074 | 6.66 | 0.081] 4.1 | 0.087| 2.69
Y ]300 | 0.057 [10.13 | 0.065] 8.37 | o0.011]| 6.92 | 0.077| 5.57
N (400 | 0.051 [12.42 | 0.059(10.78 | 0.064 | 9.42 | 0.069| 8.15
500 | 0.046 {14.59 | 0.053 (13,06 | 0.058{11.79 | 0.063|10.59
100 | 0.085 | 4,09 | 0.098( 2,03 | 0.107| 0.50 | 0.914] 1.20
200 | 0.071 | 7.41 | 0.081| 5.50 | 0.089| 3.92 | 0.096] 2.47
¥ {300 | 0.062 [10,01 | 0.072] 8,22 | 0.075] 6.74 | 0.084! 5.37
{é 400 | 0.056 [%2,32 | 0.064[10.65 | 0.071| 9.25 | 0.076 7.96
500 | 0.051 [14.49 | 0.058(12.94 | 0.064 [11.63 | 0.069|10.42
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Table 3
The results of comparison of the formulae (13) and (6)

of the formulae (13) and (7)

The results of comparison

e =3 N4

mev | 9 € £

100 | 0,192 | 10.11 | 0.197 | 9.14
200 | 0.164 | 7.77 | 0.169 | 6.82
300 | 0.148 | 5.97 | 0.152 | 5.05
400 | 0,137 | 4,43 | 0.140 | 3.52
500 | 0.127 | 3.03 | 0.131 | 2.14
600 | 0.120 | 1.72 | 0.123 | 0.85
700 | 0,113 | 0.46 | 0.116 | 0.40
800 | 0,108 | 0,77 | 0.111 | 0.16
900 | 0,103 | 1.98 ] 0.105 | 2.80
1000 | 0.098 | 3,20 | 0.101 | 3.99

iziv”‘” 50 100 150 200
q* i g% £ 9%t £ g% ¥
100 | 0.977 | 2.93 | 0.205| 0.48 | ©0.226| 1.52 | 0.243 | 3.33
200 | 0.147 | 6,34 | 0.171| 4.06 | 0.189| 2.18 | 0.204 | 0.48
1300 | 0.129 | 9.02 | 0.150| 6.88 | 0.167| 5.11 | 0.180 | 3.49
S a00 | 0u116 |11.30 | 0.136] 5.38 | 0.150| 7.71 | 0.163 | 6.18
500 | 0.105 |13.63 | 0.123[11.76 | 0.140[10.13 | 0.149 | 8.75
t00 | 0.192 | 2,93 | 0.222| 0.50 | 0.245| 1.49 | 0.264 | 3,28
200 Q. 160 6,35 0.185; 4.08 0.205] 2.22 | 0.221 | 0.53
Y300 | 0.140 | 9.02 | 0.163| 6,89 | 0.181] 5.14 | 0.195 | 3.54
X400 | 0.126 {11.39 | 0.147] 9.40 | 0.163] 7.75 | 0.176 |6.23
500 | 0.114 [13.63 | 0.134{11.77 | 0.148]10.22 | 0.161 | 8,79
Table 4
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Table 5

The results of comparison of the formulae (13) and (11) at’
N,=38 (aEa_s(p.e)-IOO)

_»&: 1.2 1.5 1.8 2.0 2.4 2.8

9% £ 7> £ g% £ o £ 92 £ g% £
100 | 0.087 | 1.77 | 0.103 | 0.92 | 0.117 | 1.96 | 0.125 | 3.14 | 0.139| 5.40 | 0.152| 7.54
200 | 0.074 | 3.73 | 0.088'|'1.91 | 0.100 | 0.15 [ 0.107 | 0.99 | 0.119| 3.18 | 0.130| 5.24
300 | 0.067 | 5.21 | 0.079 | 3.45 | 0.089 | 1.74 | 0.096 | 0.64 | 0,107 1.49 | e.117| 3.50
400 | 0,061 | 6.48 | 0.072| 4,77 | 0,082 |3.11 ] 0.088} 2.03 | 0.099] 0.15 | 0.108| 2.01
500 | 0.057 | 7.62 | 0.067|5.96 | 0.076 | 4.34 | 0.082 [ 3.29 | 0.092| 1.26 | 0.100] 0.66
600 | 0.053 | 8.68 | 0.063 | 7.07 | 0.072 | 5.50 | 0.077| 4.47 | 0.086 | 2.49 | 0.094| 0.65
700 | 0.050 | 9.69 | 0,059 8,13 | 0.068 | 6.60 | 0.073| 5.60 | 0.081| 3,70 | 0.089| 1.82
800 | 0,047 | 10.67 | 0.056 | 9.16 | 0.064 | 7.66 | 0.069| 6.69 | 0.077| 4.80 | 0.085| 2,99
900 | 0.045 | 11,64 | 0,053 [10.16 | 0.061 | 8.72 | 0.065| 7.77 | 0.074| 5.92 | ©0.080| 4.16
1000 | 0.043 | 32,59 | 0.051 [11.17 | 0.058 | 9.76 | 0.062| 8.84 [ 0.070| 7.04 | 0.0771 5.32




St

The results of comparison of the formulae (I3) and (11) at

Table 6

N,=4(a Eas(,u.g)'lw)

5&15 1.2 1.5 1.8 2.0 2.4 2.8
44 £ g+ £ A £ 2 |« g i€ P a £
400 10.089 | 2.34 | 0.405 | 0.56 | 0.120 | 1.15 | 0.128 | 2.26 | 0.144 | 4.40 | 0.160| 6.42
200 | 0.076 | 4.27 | 0.090| 2.58 | 0.102 [ 0.92 | 0.410 | 0.15 | 0.123 | 2.22 | 0.134| 4.18
300 | 0.068 | 5.74 | 0.080 | 4,10 | 0.002 | 2,50 | 0,098 | 1.46 | 0.1101 0.56 | 0,121} 2.47
100 | 0.062 | 6.98 | 0.074 | 5.39 | o0.084 | 3.84 | 0.090 | 2.83 | 0.102| 0.86 | 0.111| 100
500 | 0.57 | 8.11 | 0.068 | 6.57 | 0.078|5.06 | 0,084 | 4,07 [0.095| 2.16 | 0.104 | 0.33
600 | 0.054 | 9.15 | 0.064 | 7.66 | 0.073 | 6.19[0.079 [ 5,23 | 0.089 | 3.36 | 0.097| 1.57
700 | 0.051 | 10.15 | 0.060 | 8.70 | 0.069 | 7.27 | 0.074 { 6.33 | 0.084 } 4.51| 0.092] 2.77
800 | 0.08 |11.12 | 0.057| 9.71 | 0.065 | 8.32 | 0.070 | 7.41 [ 0.079| 5.63 | 0.087 | 3.92
900.| 0.045 |12.07 | 0.054 [10.70 | 0.062 | 9.35 | 0.067 | 8.47 | 0.076 | .73 | 0.083| 5.07
1000.| 0.043 |13.01 | 0.052 {11469 | 0.059 }10.38 | 0.064 | 9.52 | 0,072 | 7.83 | 0.079| €.21
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