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1. INTRODUCTION 

In the last years formulae of quantum chromodynamics (QCD) 
for the one-gluon exchange amplitude are widely used for cal
culations of different processes at short distances. So, for 
example, in ref Jll an effective potential of the quarkonium 
is calculated as the Fourier transform of this amplitude. How
ever, in this case considerable technical difficulties appear 
when the expression for the effective ("running") coupling 
constant a 8 (Q2) is used in the one-loop approximation. The use 
of formulae in the two-loop and three-loop approximations and, 
especially, the formulae which take into account the quark 
masses would lead to greater difficulties. 

Moreover, the formulae for the effective constant obtained 
in QCD are singular at Q 2-+ 0. As a result, in the calculation 
of the effective potential as the Fourier transform of the 
QCD Born amplitude it is necessary to resort to the regulari
zation of the expressions for a

8
(Q2) at small Q2.: 

However, we can approach to the mentioned range of prob
lems from a different point of view. Namely, we may pose the 
task of finding in the momentum space a simple enough expres
sion regular at Q2 -.Ofor the effective potential, that be
haves at high Q2 as the QCD one-gluon exchange amplitude. 

This t;sk in the one-loop approximations has been solved 
in ref. 12 where it is established that a Fourier transform 
of the Coulomb-like potential 

( 1) 

in the relativistic configurational representation (its coor
dinates rare conjugate to rapidities but not to momenta) 131 

has the form 

2 4..g 2 S!rg 2 
v o(O ) =- = - • (2) 

m2 y·slnhy lg2- Q2 .lnQ2/m 2 

Here y =COsh-1(1+Q 2 /2m~ is the rapidity, m is the effective 
quark mass. From (2) it follows that the behaviour of the po
tential at large Q2 coincides in an asymptotic region with the 
Q2 -behaviour of the QCD one~gluon exchange amplitude 
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(3) 

The aim of the present paper is to construct such a simple 
regular at· Q2....,. 0 expression for the effective coupling con
stant ~0 (Q2 ) that the amplitude 

T(Q2)= "·<~1 (4) 
Q 

coincides at Q 2 ~ ~ with eq. ~3) and differs from eq. (3) by 
no more than 10% at moderate Q • For a 8 (Q2) in eq. (3) we will 
use two- and three-loop formulae and other presently known 
expressions and its generalizations. The denominators of for
mulae (3), (4) coincide with each other~ therefore, we will 
compare the expressiOns for a 8 (Q 2) and £i 8 (Q 2) with each 
other. In other words we want to find the function a8 (Q 2) that 
approximates all known formulae for a

8
(Q2 ) listed in the 

first section. In the second section the obtained expression 
for the effective amplitude is continued into the cross-chan~ 
nel and is compared with presently known continuations. 

2. THE FORMULAE FOR THE QCD EFFECTIVE COUPLING CONSTANT 

By now a number of formulae for the effective couPling con
stant a 0 (Q

2 ) ~ g2 (Q 2 )/16~r 2 is obtained. So, in the first pa
pers on QCD·/4-/ the widely known expression for a

8 
in the one

loop approximation 

(5) 

has been found. There llo=ll-2/3·N !' Nr is the number of quark 
flavors, ~2 is a subtraction point, A is a scale parameter 
of QCD. 

The constant a 
8
(Q 2) has been calculated in ref .:lSI in the 

two-loop approximation and in re£.161 in the three-loop appro
ximation (MS scheme): 

2 

2 1 
a (Q ) = ---

' " L fJ 0. 



The first term corresponds to the contribution of one-loop 

diagrams; the second term, to the contribution of two-loop 

diagrams; and the third term, to the contribution of three

loop diagrams. A detailed analysis of the formulae (5), (6) 

is performed in ref. 171 .• 

In the derivation of the formulae (5), (6) the quarks are 

considered as massless ones. However, in the attainable ener

gy range it is necessary to take into account quark masses. 

This was carried out in ref JSI in the one-loop approximation. 

The formula for a 8 is complicated but it can be approximately 

represented in the form 

(7) 

where i = u, d, ·s, c, ••• , mi is the mass of a quark with the i -th 

flavor. 
In ref / 91 the masses of heavy quarks are taken into account 

in the two-.loop approximation. The author obtained the follow

ing approximate formula: 

~·(~; ~1+ a 8 (~2) ·[9·1nX- .&..(J'(x) -J'(l))]+ ~4a (~ 2) x 

a 
8
(Q ) 3 s 

xln{l+a 8 (~ 2 ) .[9·lnX-_g_(J'(x) -J'(l))]l, 
32 

where 
G 

J'(t) ~ l; !l(t/yi ), yi ~mt/~2, X ~Q2/~ 2, 
. I~ 4 

I 
I 1(t) ~6· fdx·(l-x)X·ln[l+x(l-x)t]:. 

0 

(8) 

(9) 

( 10) 

However, the comparison of QCD predictions with the recent 

experimental data11~1shows that the scale parameter Ay8 is of 

an order of SO MeV111(In this connection it may be expedient 

to take into account the contribution of the light quarks also. 

If we will follow reasonings of ref / 91 and will take into ac

count the masses of all the quarks, then, as it is easy to show, 

we will arrive at the new formula 
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The basic difference of the formula (II) from (8) consists in that J(t) in (II) is the sum over all quark flavours of the functions I 1 (t/y1 ), where y 1 =mjl/~2, while J'(t) in (8) is the sum over the b and c quarks only. Therefore the formulae differ from each other by numerical factors also. 

3. THE EFFECTIVE POTENTIAL OF THE ONE-GLUON EXCHANGE AND A SIMPLE REGULAR AT Q2~o PARAMETRIZATION OF THE RUNNING COUPLING CONSTANT 
Above listed formulae for the running coupling constant a 

8 
(Q2) (5)- (II) are correct for such values of Q2 when the condition of weak coupling '471'·a.

8
(Q2)<<1 is hold. As a result, an extension of the formulae (5)-(11) on a range of small Q2 

is illegal. It cannot be performed because of technical reasons also: the formulae (5)-(11) are singular at Q 2 ~o. To use, nevertheless, the fonnulae for a 8 (Q 2) at small Q2 a regularization of the formulae is necessary. For this purpose in the problem of quarkonium the substitution JnQ2jA2" ~In(.;+Q2jA 2 ), ( > 1 is used because it leads to a linear confining potenti-al at large r /1!. 
' On the other hand, the simple Coulomb-like potential (l) gives the expression (2) in the momentum space that represents at large 0 2 the Q 2 -behaviour of the QCD one-gluon exchange amplitude (3). 

The difference between the asymptotics of the expressions (2) and (3) is that the other unknown parameter, the quark mass m, enters into eq.(9) instead of the scale parameter A'.. As is known/12/ the magnitude of the scale parameter A is insignificant, if the one-loop approximation (5) is chosen for the "running" coupling constant as (Q 2) and calculations are restricted to the first order in (lnQ 2/A 2 ) - 1., Namely, any change in the scale parameter A in describing 
f . . k /12/ . . 1 . structure unct1on moments, as 1s nown • 1s equ1va ent 1n a nonleading. order to a shift of coefficients of higher corrections proportional to the one-loop anomalous dimensions. Thus attempts to extract the value of A from experimental data with only the leading order formulae in QCD have no meaning. 
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Analogously, in the first approximation in (lnQ 2) -1 the 
formula (2) coincides with the formula (3) with a 

9
(G ~ taken 

in any form among (5)-(7), (11) and correction terms of order 

(lnQ2) -n , n·> 1 give the smaller contribution in the coupl

ing constant. Indeed, 

( 12) 

1 1 
---·-"---

The coincidence of formulae (2), (3) at asymptotic values of 
Q2 allows us to int·roduce the following approximation of the 

effective coupling constant 

g 2 

Y·sinhy · 2m2 ·• 
(13) 

1 Q2 Q2 Q2 
---. -- ... 1, y ... ln-- = ln -- , 
sinhy 2m2 m2 A2 

so that a 8 (Q 2)~g 2/(lnQ 2/A2).0n the other hand at Q 2 ~0 

- 2 2 y Q 2 2 2 
a (Q ) ~ g -- . ~ g • 1· 1 ~ g , 

8 sinhy y2.2m2 
i.e., the expression (13) is regular at Q2 __. 0. 

To compare a (Q 2) ( 13) with the formula (5), we wi 11 pro

ceed as follows :
8 

Let us fix the boundaries Q f. Q: of the in

terval of changing Q2·: Q~:'S_ Q 2_"S_Q~; then divide the interval 

[Q~, Q~] into 10 equal parts (in the log scale). Let us 
denote the obtained points by Q f , j = 1,2, ... , 11. Further, let 
us fix the value of the scale parameter A and find by the 
formula (5) values of a (Q2) at the points Q2. Let us denote 

Q 2 8 J 
a J ~ a 5 ( j) • 

Now we can use the program 11FUMILI" 1131 and find such values 

of the parameters m and g 2 in ( 13) that the a.(Q2) passes 

through the points aj the most accurate way. It turns out 
that a good agreement between the formulae (5) and (13) can be 

achieved if one parameter g2 will be considered as a free one 

and the quark mass m will be fixed in the interval 100-500MeV. 

As a measure of the deviation of a_
8

(Q 2) from a.
8
(Q 2) we use 

the quantity 
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( max 
Q2< Q2.< Q2 

1- - 2 

a.,(Q ~ - a, (Q 2) 
. --f. 
a .(Q ~+a,, (Q 2 ) 

(14) 

In table 1 the values of E and g2 are represented for I\ =50, 

100, ISO and 200 MeV and m ~100, 200, 300, 400 and SOO MeV at 

N 1 = 3 and N r = 4. The following interval of changing Q 2: Q[~ 

= 5 GeV 2, Q~=1000 GeV 2 has been choose. The results of com

parison of a (Q 2) with the formulae for a (Q 2) in the two

and three-loo; approximations (see (6)) ar~ represented in 

tables 2,3 (figs.l-3). 
Comparing 11" (Q2) (13) with the formula (7) we used values 

of the paramete
8
rs such as in ref / 81 : ~ 2 =9 GeV , a (u 2)=~ 

s r- ~017"'' 

m.e = 1.5 MeV, m =0.4 GeV, m =md=m. /20. The results are re-

presented in tabfe 4 (fig.4). 'iro compa're a (Q2) with the for

mula (I I) we put as in ref. 191 ~ 2 ~ 10 G
8
eV 2 and the follow

ing values: 100·a.
8

{f<2) sa~ 1.2, J.S, 1.8, 2.0, 2.8 are sub

sequently taken. Values of the quark masses are taken such as 

in comparing with the formula (7). In both the cases we have 

chosen01= 20 GeV2. The results of analysis are represented in 

tables S,6 (fig.S). 

From tables 1-6 it follows that the formula (13) for a (Q2 ) 

well approx~mates the expressions for a
9

(Q 2) obtained in !he 

massless quarks case in the one-, two-, and three-loop appro

ximations and in the case of massive quarks in the one- and 

two-loop approximations. 
It is interesting that in the one-looP approximation for 

a 8(Q~ the asymptotics of the wave function of a spherical sym

metric state of a two-particle system does not depend on the 

scale parameterA. Really,in the single-time formulation of 

two-particle proble~141an equation for the wave function (see, 

for example, re£( 151 ) after integrating over angles (see 

ref; 161 ) takes the form 

(IS) 

where Xp and xk are· constituent rapidities. If as an effec

tive potential we shall take the QCD one-gluon exchange am

plitude in the one-loop approximation (10) then the kernel of 

eq.(IS) will acquire the form: 
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V(x .x l=ln 
p k 

In I 2m sinh Xp -xk I 
A 2 

In 12m ·sinh Xp + Xt ·1 
A 2 

Xk 
= --, 

r;J!. ....,.oo Xp 

i.e., it does not depend on A:. As a result, the solution of 

eq. ( 15) does not depend on A,. In the two- and three-loop ap

proximations the kernels of eq. (15) contain the A-depen

dences. 
The potential chosen in the form of the amplitude (3) with 

the coupling constant in any approximation can be represented 

according to (12) in the form 

( 16) 

where the potential V0 is given by the formula (2). For eq. 

(15) with the potential (2) an exact solution is known and so

lutions of eq.(l5) with the potential (16) can be obtained 

'Jithin perturbation theory. 

The solution of eq. (15) with the potential (2) was found 

in ref / 171 by the transition from the momentum space to the 

relativistic configurational representation·/3/ 

¢sa (Pl = (dr . e(p,r). ¢ sa<r1. 

. '~ " li I -l-inn ~II" 
where the funct1ons ;(p, r 1 = (p n~ m) , n~ (l,r · r 1l rea-

lize unitary infinite-dimensional representations of the Lo

rentz group71S1,. The solution has the form 

¢ (~ =C. e -rmxo 
sa 

where C is an i-periodical constant and the parameter X 
0 

is introduced by the parametrization M =2m cosxO·· 

4. THE CROSSING TRANSFORMATION FOR THE EFFECTIVE 

COUPLING COI\STANT 

The approxiMation of the effective coupling constant by 

the expression (13) allows us to approach to the problem of 

the chromodynamic description of processes in the time-like 

transfer momentum range in a new way. 
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As an expansion parameter in perturbative calculations 
the quantities a

8
(IQ 21), la

8
(Q 2JI, Rea ,(Q 2)and the expres-

sion 

(17) 

(in the one-loop ap~roximation) and other combinations were 
suggested (see ref.· 191 and references therein). The formula 
for a_s (Q 2) ( 13) can be also continued into the cross-channel. 
At the crossing transformation we have: y 4Y+h;, ·sinhy 4--sinhy/20/ 
therefore 

-- (18) 
(Y+i").sinhy 

As a result, as an expansion parameters the quantities 

(19) 

(20) 

and also a8 (IQ 2 i) can be used. The behaviour of ci'
8

(1Q 2 p , 
la8 (Q

2
)1 and Rea8 {Q'1 as functions of ·IQ2 j is depicted in 

fig.6 (curves 1,2,3, respectively). The quark mass value m 
wastaken to be 200 MeV, the value of the constant g2 "'0.928 
was obtained by comparing the formula (13) with the formula 
(5) at A -100 MeV. In this figure the behaviour of a

8 
(IQ 2 1}, 

Ia 
8
(Q 2)j , Rea 

8
(Q 2) in the one-loop approximation (see eq. 

(5)) and the expression (17) is also depicted (the curves 
4,5,6,7). In all the cases the value of the parameter A was 
taken to be equal to 100 MeV. 

The best parameter of the perturbative expansion is the 
modulo one. From fig.6 it follows that it is the parameter (20). 

The authors are grateful to V.N.Kapshay, V.V.Sanadze, 
A.V.Sidorov and I.L.Solovtsov for useful discussions. 
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Fig.l. The dependence of the effective 
coupling constant on Ql: I) the QCb for
mula for a,(Ql)(5) in the one-loop appro
ximation at A=I00MeV,N1=4; 2) the for
mula for a (Q2) (13) at ro = 100 MeV 
g2 = 0.120; 

8
3) the formula for a, <iJ) (13) 

at m = 300 MeV,g2= 0.088; 4) the formula 
a,(Q 2 ) (13) at m =500 MeV, g2 =0.072. 
The best approximation of a 8

(Q2 ) among 
depicted ones is curve 2 (that practical
ly coincides with curve 1). 
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Fig.Z. The behaviour of the effective 
coupling constant onQ2: I) the QCD for
mula for a

8
(Q2) (6) in the two-loop ap

proximation at A =I 00 MeV, t-11 = 4; 2) the 
formula for a

8 
(Q2) (13) at ro = 100 MeV, 

g2=o.098; 3) the formula fora (Q2) 
{13) at m=300 MeV,g2= 0.072; 4~ the 
formula for a

8 
(Q2) (13) at m = 500 MeV, 

g2 = 0.058. The best approximation of 
a (dl) among depicted ones is curve 2. 
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Fig.3. The dependence of 
the effective coupling 
constant on Q": I) the 
QCD formula for a

8 
(Q2) (6) 

in the three-loop appro
ximation at A= I 00 MeV, 
Nr = 4; 2) the fornrula for 
a (Q") (13) at m=IOO MeV, 
gl = 0. 222; 3) the for
mula for a

8 
(Q2) (13) at 

m=300 MeV,g2 = 0.163; 
4) the formula for a

8 
(Q2) 

(13) at m =500 MeV, g2 = 
= 0.134. The best appro
ximation of a

8 
(Q2

) among 
depicted ones is curve 2. 
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Fig.4. The dependence of the 
effective coupling ·constant 
on Q2: I) the QCD fornrula for 
a (Q2) .(7); 2) the fornrula for 
il

8
(Q2) (13) atm=IOO MeV,g2 = s 

= 0.197; 3) the fornrula for 
i1 (Q2) (13) at m= 300 MeV, 
g'!!= 0.152; 4) the fornrula for 
i1 (Q2) (13) at m=500 MeV, 

<-.!--'--~---'---'--...._ _ _._,.., g~=0.131. The best approxima-
1000tion of a 

8 
(Q2 ) among depicted 

ones is curve 4 . 
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effective coupling constant 
on Q2: I) the QCD formula 

for a
8 

(Q2) (II) at 
a=a,(~~;IOO=I.8;2) the 
formula for a.(Q~(I3) at 
m=IOO MeV,g2= 0.120; 3)the 

formula for a, (Q2) (13) at J m=300 MeV, g2=0.092; 
4 4) the formula for a (Q 2 ) 

(13) at m~ 500 MeV, g2 = 

= 0.078. The best appro
ximation of a

8
(Q2) among 

depicted ones is curve 2. 
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Fig.6. The behaviour of the effective con

stant on IQ2 I in the time-like transfer-

ols momentum region: I) the formula for a (IQ2
\), 

where ii (\Q2\) is given by the expressi~n 
(13); 2~ the formula fori a (Q2)\ (19); 

3) the formula for Rea (Q~' (20); 4) the 
4 QCD formula for a (IQ2il, where a (Q2) is 

~ given by the expr:ssion (5); 5) tte QCD 

~ formula for \a 
8 
(Q~ \;6) the QCD formula for 

6 Rea (Q2); 7) the QCD formula (17). 
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Table I 

The results of comparison of the formulae (13) and (5) 

"'~ 50 100 150 200 

9z f :Jz t f/2 f jz £ 

100 0.096 2.51 0.111 o.ooo4 0.123 2.02 0.132 3.83 
200 0.080 5.95 0.093 3.61 0.103 1.72 0.111 0.006 
300 0.070 8.65 0.082 6.46 0.091 4.67 0.098 3.os 
400 0.063 11.05 0.074 9.oo 0.082 7.31 0.0089 5.77 
500 0.057 13.32 0.067 11.40 0.075 9.81 0.081 8.36 

100 0.103 2.51 0.120 0.0004 0.133 2.02 0.143 3.83 
200 0.086 5.95 0.100 3.61 0.111 1. 72 0.120 0.006 
300 0.075 8.65 0.088 6.46 0.098 4.67 0.106 3.05 
400 0.068 11.05 0.079 9.00 0.088 7.31 0.096 5.77 
500 0.061 13.32 0.072 11.40 0.081 9.81 0.088 8.36 

Table 2 

The results of comparison of the formula (13) with 
the formula (6) in the two-loop approximation 

':..~ 50 100 150 200 

~· E ~· ( !2 £ j' ~ 

100 6.078 4.22 0.089 2.20 0.097 0.54 0.104 0.97 
200 0.065 7.53 0.074 p.66 0.081 4.11 0.087 2.69 
300 0.057 10.1) 0.065 8.37 0.071 6.92 0.077 5.57 
400 0.051 12.42 0.059 10.78 0.064 9.42 0.069 8.15 
500 0.046 14.59 0.053 13.06 0.058 11.79 o.063 10.59 

100 o.085 4.09 0.098 2.03 0.107 0.50 0.114 1.20 
200 0.071 7.41 0.081 5.50 0.089 3.92 0.096 2.47 
JOO 0.062 10.01 0.072 8.22 0.075 6.74 0.084 5.)7 
400 0.056 12.32 0.064 10.65 0.071 9.25 0.076 7.96 
500 0.051 14.49 0.058 12.94 0.064 11.63 0.069 10.42 
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Table 3 

Tbe results of comparison of the formulae (13) and (6) 

~v ..... v 

100 

200 

300 

400 

500 

tOO 

200 

JOO 

400 

500 

50 100 150 

5~ f_ 5' £ .r• f_ 

0.177 2.93 0.205 0.48 0.226 1.52 

0.147 6.34 0.171 4.06 0.189 2.18 

0.129 9.02 0.150 6.88 0.167 5.11 

0~116 11.)9 0.1)6 9.38 0.150 7.71 

0.105 13.63 o.1a3 11.76 0.140 10.19 

0.192 2.93 0,222 0.50 0.245 1.49 

0.160 6.35 0.185 4.08 0.205 2.22 

0.140 9.02 0.163 6.89 0.181 5.14 

0.126 11.39 0.147 9.40 00163 7.75 

0.114 13.63 0.1)4 11.77 0.148 10.22 

Table 4 

The results of comparison 

of the formulae (13) and (7) 

~-~a ~~~~-~ ... ,. £ f' € MeV 

100 0.192 10.11 0.197 9.14 

200 0.164 7.77 0.169 6.82 

300 0.148 5.97 0.152 5.05 

400 0.137 4.43 0.140 ).52 

500 0.127 J,OJ 0.1)1 2.14 

600 0.120 1.72 0.123 0.85 

700 0,113 0.46 0.116 0.40 

800 0.108 0.77 0.111 o. 16 

900 o.1oJ 1.98 0.105 2.80 

1000 0.098 3.20 0.101 3.99 

200 

gz f 

0.243 3.3) 

0.204 0.48 

0.180 3.49 

0.163 6.18 

0.149 8.75 

0.264 3.28 

0.221 0.53 

0.195 ).54 

0.176 6.2) 

0.161 8.79 
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Table 5 

The results of comp~rison of the formulae (13) and (II) at 
N 1 = 3 (a ~a 

8 
(1'2 ) ·. 100) · 

1.2 1.5 1.8 2.0 2.4 

~· [ 1~ £ 9"' £ F £ 9' t: 
. 

0.087 1. 77 0.10) 0.12 0.117 1.96 0.125 ).14 0.1)9 5.40 

0.074 ).7) 0.088 1.91 0.100 0.15 0.107 0.99 0.119 ).18 

0.067 5.21 0.079 ).45 0.089 1.74 0.096 0.64 0.107 1.49 

0.061 6.48 0.072 4.77 0.082 ).11 0.088 2.0) 0.099 0.15 

0.057 7.62 0.067 5.96 0.076 4.)4 0.082 ).29 0.092 1.26 

0.05) 8.68 0.06) 7.07 0.072 5.50 0.077 4.47 0.086 2.49 

0.050 9.69 0.059 8.1) 0.068 6.60 0.07) 5.60 0.081 ).70 

0.047 10.67 0.056 9.16 0.064 7.66 0.069 6.69 0.077 4.80 

0.045 11.64 0.05) 10.16 0.061 8.72 0.065 7.77 0.074 5.92 

0.04) 12.59 0.051 11.17 0.058 9.76 0.062 8.84 0.070 7.04 
- ---- -- ' ----

2.8 

!I' t: 

0.152 7.51 

0.1)0 5.24 

8.117 ).50 

0.108 2.01 

0.100 0.66 : 

0.094 0.65 

0.089 1.82 

0.085 2.99 

0.080 4.16 

0.077 5.32 
- -
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"' 

I~ 

100 

200 

300 

400 

500 

600 

100 

800 

900. 

1000 
-

Table 6 

The results of comparison of the formulae (I3) and (II) at 

N r ~ 4 (as a 
8 
(~ 2 ) .100) 

1.2 1.5 1.8 2.0 2.4 

J~ £ g' f J' t !' [ If' ( 

0.089 2.34 0.105 0.56 0.120 1.15 0.128 2.26 0.144 4.40 

0.076 4.27 0.090 2.58 0.102 0.92 0-110 0.15 0.123 2.22 

0.068 5.74 o.oao 4.10 0.092 2.50 0.098 1.46 0.110 0.56 

0.062 6.98 0.074 5.39 0.084 3.84 0.090 2.83 0.102 0.86 

0.57 8.11 0.068 6.57 0.078 5.06 0.084 4.07 0.095 2.16 

0.054 9.15 0.064 7.66 0.073 6.19 0.079 5.23 0.089 3.36 

0.051 10.15 0.060 8.70 0.069 7.27 0.074 6.33 0.084 4. 51 

0.048 11.12 0.057 9.71 0.065 8.32 0.070 7.41 0.079 5.63 

0.045 12.07 0.054 10.70 0.062 9.35 0.067 8.47 0.076 &.73 

0.043 1).01 0.052 11.69 0.059 0.38 0.064 9.52 0.072 7.83 

--- -

2.8 

.!' < 

0.160 6.42 

0.134 4.18 

0.121 2.47 

0.111 100 

0.104 0.33 

0.097 1. 57 

0.092 2.77 

0.087 3.92 

0.083 5.07 

0.079 6.21 
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