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§I .. A number- of nonlinear evolution equations, exactly so­
luble through the inverse scattering method (ISM)/1,2/ are 
known to describe infinite-dimensional completely integrable 
Hamiltonian systems (see the review paper /3'/), allowing 
a hierarchy of Hamiltonian structures/4.5/.Important examples 
of such systems, applicable in physics, are the multicomponent 
nonlinear Schrodinger (NLS) equations/6,7/, A number of comple­
tely integrable difference evolution equations (DEE) have 
been considered in refs/B-13/ and the classes of DEE related 
to a number of auxiliary discrete linear problems have been 
described, see the review paper/2/ and the references in it. 

In the present paper we consider the discrete analogs of 
the NLS eqs., related to the block discrete Zalharov-Shabat 
system: 
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The present paper is a direct continuation of ref/14/.where 
the inverse scattering problem for the systems (1.1) and (1.2) 
is solved, and the expansions over the "squared" solutions of 
(1.1) and (1.2) are derived. 

In §2 we list the necessary results from/ 14(Using them in 
§3 we describe the classes of DEE related to (1.1) and (I.Z), 
resp. Let us note that those classes contain the systems 

i ~~(n)=q(n+l)h 2(n) + b
1
(n)q(n-,1)-2q(n), 

and the equivalent to: 

i-:~n) = q (n+1)+~1 (n-l)q(n-1) -q(n)f(n)q\n) --2li(n), 

-i df(nl - r (n-1)+ r(n+l) iil (n)-r(n)ij'(n)r(n)- 2 r(n), 
dt 

(1.5) 

(I .6) 

which in the continuous limit and after the reductiOn q=±r+p 
q~ ±f+ go into t-he multicomponent NLS eqs. In §4 we use the 
results in/14/to derive the hierarchy of Hamiltonians struc­
tures for the discrete NLS equatio.ns.The Hamiltonians here ap­
pear naturally as linear combinations of the conserved quan­
tities, so that the question solved is how to define the simp­
lectic forms. For the case s:p, 1 considered in/12.14/ the simp­
lest simplectic form related to (1.1) is non-canonical: D0 -

~ -1 
- ::!: llq(n)Ailr(nXl-q(n)r(n)) • The generalization to S+P>2 leads to ·-great complicati-ons in Do, which now contains under the sum-

mation sign highly nonlocal and nonlinear expressions of q and 
r, see formula (3.8). From that point of view the linear prob­
lem (J.2) is preferable, since the necessary simplectic form 
0'0 is canonical. 

The authors are grateful to Academicians I.T.Todorov and 
Kh.Ja.Khristov for their support. We thank P.P.Kulish for his 
constant attention and A.V.Mikhailov, A.G.Reiman and M.A.Se­
menov-Tian-Shanski for usefull discussions. 

§2. Let u~ consider the linear problem (1.2) (or (1.1) with 
a potential Q(n) (or Q(n) ) falling off fast enough* for 
n~ ± ~, and such, that deth1(n):deth 2(n) ~· 0 for all n. Let us 
also assume; that the discrete spectrum of (1.2) (or (1.1)) 

*It is enough if Qij (n)- clnl 
I c I <1. 
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for n ~ ± "'• where· c=const, 



1'1~!!/u/'1-, 1'1± ,fza± -•a± ,lza± ~~ 1, a ~l,. • .,NJ is finite and 
simple. Under these conditions one can show that both sys­
tems (1.1) and (1.2) have the same minimal set of scattering 
data + 

:f,.fp±(z), tzf~l. p-,z+,aml, .. .,NJ, (2.1) 
a a-

which uniquely determines both the potentials Q(n) , Q(n) and 
the J<>st solutions of (I. I) and (I. 2). Besides one can de-

rive the following expansions for the potential w(n)m (~~(n)J 
and its variation u3aW(n) over the "squared" solutions ~~ij r 
of the system (1.2): 

;;,A (n) =-,-2i ji dz :!; [ vj~ (n,z)(p+ L - v-:: (n,z)(p- )ij ]+ 
rr S 1 i< j A Jl lJ A 

N ~~ + -~ -+2:!::!; [V (n)(p ), +V,. (n)(p )
1
,J,] 

a=l i<j Ji a,A Ji lJ a,A 
and 

- i + + -
a,jJw(n)=-' f dz:!: [V11 (n,z)(llp ) 11 -V11 (n,z)(llp- )

1
,JJ-

2" gl i<j 

(2.2) 

N (a~ + "(a)+. + (a~ _ • (a~ _ 
-2:!: :!: IV,

1 
(n)(Bp L +V, (n)(p L llz + V1, (nXllp l +V, (n)(p ). 8z f. 

a•l i<j J a Jl Jl a Jl a+ J a 11 lJ a tj a-

(2.3) 

In (2.2) A =t~! ~2) is a constant quasi-diagonal matrix, S1 

is ·the positively oriented unit circle, and 

_ (('\ ij(n)-q'(n)A2 )T) _ ( 8ij T (n) 
W A (n) • , a3 8 W (n) • 

r(n)'\ -'\ r(n) -llr(n) 

+ +A A + p A •p 1 --""2P ' 

+ + --· -
p+ =p Al -A.;_p ' p A =p A2 -Alp-' a,A a a a, a a 

+ .Ia)± " (a)± 2 
V1~ (n,z) = V:, (n)+(Z-Z + )V1, (n)+O((z-z +) ). 

J IJ a-J a-

(2.4) 

From the results in ref./14/ it is possible to obtain analogi­
cal expansions for w(n) and a35w(n) over the system I Y1'} I of 
"squared" solutions of (J.I); the correspinding expansion co­
efficients will be simply related to the ones in (2.1),(2.2). 

Ix/14/ we introduced the operators A± , At 

(2.5) 
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through the relations 
2 + 2 (A± -z )Yji =(A± -z )Yij -0, 

-- 2 ± _, 2 
(A±-" )Vii =(A± -z )Vii sO, 

(2.6) 
i .< j. 

+ ,..± The explicit forms of Ai ,ai 
ref./14/, , 

are given in the appendix in 

Theorem L Let us be given the block-diagonal matrix func­
tion F (zZ)= l: r<P~2p and let us denote by w<Pland w (p) the p . 
quantities wF(P) and WF(P) , see (2.4). Then in order that w 
and w sad.sfy the DEE 

. dw ... -·P -<P> lU -;+ ~A w =0. 
8 dt p + 

. dw "' AP (P) lUg -=+""' W =0, dt p + (2.7a,b) 

it is necessary and sufficient, that 
(2.7) satisfy the linear equations: 

the scattering data ~ 

.d·± + .dp± + ,:;,e__pF-(z,t) ;,O, 1- -p- (1)=0, dt dt a ,F' 
dza± 
-=0, 
dt 

(2 .8) 

The proof is analogical, to the ones in/ 15~ 13/. Let us insert 
the expansions* for w(p) and o;

8 
~; * in the l.h. s. of (2. 7a) 

and make use of (2.6) to obtain 
+ 

iu
8 

dw+ l:APw(P) = ~ (dzl: {[i dpii -2lPp<:pl+(z),.JV+. (n,z}-
dt p + 2" s 1 i<j dt p Jl Jl 

dp+ 
l[i (--..!!.) 

dt ji 

2p ( )+ (a)+ 
-•2Z .(pp )]V .. (D)+ 

p a+ a ji Jl 

(2. 9) 

*The expansion for og ~' can be obtained from (2 .2) by con­
.sidering variations of tlie form aw·=w(n,t+llt)-w(n,t) 
and retaining only the terms, proportional to 0 t. Then in the 

d± dp± dz+. r.h.s. of (2.3) 
Op± ~Op~ , Oza± 

4 

we shall have _!!_ -A. ~ 1nstead of dt ' dt dt 



dz "( )+ 
+ ..::!!±., V a (n)( +) 

dt Ji Po. ji 
(2.9) 

dza_ •(aL, -· 
+ -V1J (n)(p ) I, 

dt a lj 

(p)+ (p)± ± + 0 (p) 
where by p - and Pa we have denoted PA and p- A w1th A-F , 
see (2.4). In order that the l.h.s. of (2.7) vantshes it is 
necessary and sufficient that all the expansion coefficients 
in (2.9) vanish. Thus we have proved the equivalence of(2.7a) 
and (2.8). The equivalence of (2.7b) and (2.8) is proved ana­
lo~usly by using the corresponding expansions for w(n) and 
u3.;,. over the system !YI. The equivalence of (2. 7a) and 
(2.70) can be verified also directly by noting, that the fol­
lowing relations hol~ 

A"'+ dw' dw "'+ - -+ "+ 
t"sdl'-"sdi'• At vi-w(n), A+-A1A+A1 (2.10) 

Actually the expansions of uadw/d~ and w can be obtained from 
(2.1) and (2.2) by acting with the operator R~ from the 
left. 

In particular, if in (2. 7) we choose F(z2). 4u3(2-z2_z-2 ) 

we obtain the discrete NLS eqs. (1.5) and (1.6). In the next 
paragraph we shall consider in detail the series of higher 
NLS eqs. for which F(z 2)-i-f(z2 Jua, f(z2 ) being c -number 
function. These DEE are local and have the maximally possible 
number of series of conservation 1-aw.s. Indeed from (2.8) it 
follows that (see the appendix): 

i~+[F(z 2 ),S(z,tH-O (2.11) 

( 
+ b-) 

where S- :+:a- is the transfer matrix of (1.2). If F-if(z 2
)13 

from (2.11) there follows, that all the matrix elements of the 
diagonal blocks of S , a+, a-' are conserved, i.e., this gives 
s2+ p2-1 series of conservation laws*. For generic F(z2)from 
(2.11) there follows only the conservation of the eigenvalues 
of S i.e. tS+ p -1 series. 

Suppose we have proved the complete integrability of the 
DEE (2.7) and have calculated the action-angle variables. 
Then every function of the "action" t~e variables will be 
time independent for any choice of F(z ). As regards the mat-

*We have taken into account that detS==l, which giVes one 
relationship between them. 
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rix elements of a±(z) for generic F they will depend on t·. 
This means that they depend also on the "angle"-type variab­
les, which is confirmed by the fact that; the Poisson brackets 
between a f. and aTJ, do not vanish/7/. see alsolts/. 

At las£ we note also that the DEE (2.7) in general allow 
boomeron-type solutions, seelt7/. The higher NLS eqs. have no 
such sol~tions, since F .... o-

8 
• 

§3. In this paragraph we shall construct the hierarchy of 
Hamiltonian structures for the higher discrete NLS eqs.: 

(3. I) 

It is na~ural as a generating functional for the Hamiltonians 
of eqs. (3.1) to choose D(z), 

Incieta+(z), 1•1> 1 
D(z) • { 

-lndet(a-(z)v 2 ), lzl<l, 
(3.2) 

where v2 -limv2(n) , v 2(n) being introduced in (1.3). Indeed, ... _ d 
from .(2.11) it readily follows, that :;rrD(z)-0. Let us now 
make use of the trace identities, derived in/14/: 

dD ~ 
z -=-2 I. 

dz n--oo 

<)0 ::::, _, 2 -1 - r-::;::r: -. -1-l I. 2tr[w(k)(A -·z ) w(k)] + tro w(n)(A -i!) w(n)l, (3.3) k•n + 3 + · 

BD(z) •[o3 aw, M+A+ (A+-.z2 )-1 w'(n)}• 

. -· -· 2 -1-•[03 Bw, (A+-z ) wl. 
(3.4) 

where [.] is the skew-scalar product introduced in/ 14/-

[X,Y]• 
~ (2)T (1) 
I. tr(X(n)Y(n)), X(n) =(X (n), -X T (n))• 

The Hamiltonians for (3.1) shall be linear combinations of 
the coefficients Dk • entering in the asymptotic expansions of DOO . 

00 
2k 00

' -2k D (z) = I. D k z , I z! <<1 ; D (z). -I. Dk z , 1 z 1 » 1. (3 • 5) k•Q - b:t 

6 



I 

Using (3.3}, we obtain 

Hr •-; fpi}P • 

00 00 =· -· _, 1 ~ _, -
- I. I I. trw(k)g(A+)w(k)+ -

2
tr[u3 w(n)g(A+)w(n)}+ 

n--oo t-n 

(3.6) 

The corresponding simplectic forms 00 and Oo- we shall choose 
so, that the Hamiltonian equations of ·motion 

dw 
llo<"a(it•·l·SHr(·), (3.7) 

coincide with the DEE 
be the case if 

(3.1). It is easy to see that this will 

-11 1 [ .-, .- 1 def. 
0 = i u3 oW ~ u

3 
oW • 

- ~ [u3 S1w, u3 S2wJ-+[u~B2w',u3 S1wl (3.8) 

11 0~- [£u3 Sw -;- M+A,.u31lw]. 

where BtW' and 82 W' are two independent variations of w. 
Indeed, from (3.5) and (3.4) we easily obtain, that 

(3. 9) 

Inserting (3.9) into the r,h.s. of (3.7) and using (3.8) we 

immediately obtain (3. I). 

Let us briefly discuss the relation 'between 0 0 and 0 0 . 
+ --Using (2.10), the property [X,AiY]s[Ag'_i X,Y] (see formula 

(3.14) in/14/) and the explicit form of Af we obtain 
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Now, if we restrict the phase space* related to the system 
(1.1) by the condition v2.const, then n0 =ir0 • Such restriction 
is compatible with the dynamics of the NLS eqs., since v2 is 
motion invariant for all the DEE of the type {3.1). 

The 2-form.s 0 and 0'0 are the simplest from the hierarchies 
of simplectic forms, related to (3.1): 

(3. 11) 

The compatibility of these· forms is established by recalculat­
ing Om and 0' in terms of the scattering data variations. 
Using the expa~sion (2.3) and the relation (2.6), we obtain 

_ 1· 2ro+l + + + + 
ill = -· ( dz z tr[8u a " 8p a - 8u-·a-A 8p-;,-·]-

m 2" sl 

N 
-2 l: I z2m+l 

-a:::c1 a+ 
+ + 

[8z A8( +tr8u a+ a a 
+ 

" II {a J + 

{3. 12) 

~J'"± •. tr[u± •+ 8 +•+ . i:' +·+ + •+ u ~ a- p- a- _, ou -a- p- .a-
a aa aa aaaa 

Here u± , a_;t ar~ the elements of the equivalent to 5' set of 
scattering aata 5" (see (2.13) in/14/); a+ ,a- are the block-

diagonal elements of the inverse transfer matrix S = (fJa:· ~-) . 
+ ->+ a 

The projectors p-a- and Pa- determine the degeneracy of a±(z) 
and a±(z), resp., for Z=Za±~'A• 

The calculation of Om by using the corresponding expan-
sion for aa8w is analogous, and the answer is the same, 
only now we should insert in the r.h.s. of (3.12) the quanti­
ties p± , ;;±,etc., related to the system (J. J). Comparing 
the definitions in §2 of /14/we see that p±,.,p±, ;± =u+ v2, u-'= 
= ;20'-· Thus we obtain that nm differs from {fm by terms, con-

*Analo-gical restrictions are known in the literature, see 
ref.lls/. 

8 

I 



~a~n~ng under the t~ce sign the quantity ~2 ; 2
• Obviously 

~f v -const.t-hen {lm - n m• . 
fhe Hamiltonians Hr may be also expressed through the scat­

tering data using the· dispersion relation: 

(3.13) 

From (3.6), (3.5) and (3. 13) we readily obtain: 

2 N 
H1 =-,.L, p d,; f({l)Jndet(J-p+p-)-, :£ (g -g ), 

4 17i -sl a•l l,a+ t,a-· 
(3. 14) 

Let us also write down the four simplest conserved quantities 

calculated from (3.3): 

D0 = lndetv2 ~ :£ trln( I -q(n)r(nc))=- i trln(f +<i(n)f(n+1)), 
n-oo n=o:-ob 

~ ~ 

D1 :- :£ tr q(n)r(n-1)=- :£ trq(n)r(n) 
n""'""""" n:s-oo 

~ ~ A, A 

D =-, :£ tr q(n-1)r(n) = _,:£ tr (ii1 (n-1)q(n-1)f(n+1)h1(n)), 
;-1 n--oo ll=-"-'0 . 

~ ' 2 

D2= .!-tr[-q(n+1)h 2 (n)r(n-1)+ ~ (q(n)r(n-1)) ] = 

£ tr[ -q(n+1fi(n)+:.l\q(n)r(n))\ 
n- 2 

The Hamiltonian structure_of the systems (1.5) and (1.6) is 

given by (U0 ,HNLS) and (U0 ,HNLS ), where HNLs=D0 +D2 -2D1 ; 

the dependence of HNLS on the scattering data is obtained 

from (3.14) for f(z2 )=(2-z2-z-2 ). The 1\amiltonian structure 

for the discrete NLS eqs. obtained in/l2,ta/ for the case 

s =P=1 corresponds to the choice (U_ 1.HJ.Ls)• where H~LS 

= -2D0+D 1 +D_ 1 , 

At the end let us note that the simplest reductions q(n) 

=± r+(n), q(n)•±r+(n) are incompatible with the dynamics of 
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the systems (1.5) and (1.6). Instead we have found the reduc­tions: a) q(n)~±r+(-n) , ij(n)~±r+(-n) and b) in the case hP, q(n)-±r*(n) ,q'(n)•±r*(n) which are compatible with (1.5) and (1.6) and lead to equations of NLS' type. The detailed ana­lyses of the reduction problem/!9/ for the DEE is out of the seope of this paper. 

APPENDIX 

Here we shall derive eq. (2.11) from {2.8). In doing this we shall suppose, that the DEE (2.7b) can be interpreted as the compatibility condition of the linear systems (1.1) and ,I 
i djl(n,z) ·MF (n,z).p (n,z)- .p (n,z)C(z), (A.I) dt 

where C(z) is a constant (i.e., time and n -independent) block diagonal matrix. The recurrent procedure for the con­struction of MF(n.z) is a trivial generalization of the one for the case S•P=l. see/2/. It steams out from the compatibi­lity condition 

,; dL(n,z) + L(n,z)MF (n,z)-MF (n+l,z) L(n,Z)= 0, dt 
(A. 2) 

which should hold identically with respect to z. In what fol­lows we shall make use only of the fact, that Mi· lim M F(n,z) 
n-+±eo should be block-diagonal matrices; this can be seen, e.g., from (A,2). 

We shall obtain the time dependence of the scattering data by inserting the analytic solution, x+ ,)( in (A. I) and going to the limits n .... co , n -+-oo. Using the definitions in §2 of/14/ we have 
' dB_, + _, _, 
1 dt''-Mf.S -8 C(z), 

(A.3) 
, dT" M-'"+ T+c ) 1-, •. F~ - (z, dt 

that 

(A.4) 
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It is not difficult to see, that (A.3) and (2.8) are compa­
tible if and only if 

M + s M-E C (z) ~ - F (z 2 ). 
F F 

Thus we obtain 

dS""' i-+ [F(z2 ),8-]sO, 
dt 

(A.S) 

which together with the "unitarity" condition (2.6) in re£/141 
gives us 

(A.6) 

From (A.S), (A.6) and rs-,= s+T-, we obtain, th,llt s+ and T­
also satisfy eq. (A.S), which together with s=s-s+ gives 
us (2.11). 
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