


§1. A number of nonlinear evolution equations, exactly so-
luble through the inverse scattering method (ISM)/LE/ are
known to describe infinite-dimensional cogﬁletely integrable
Hamiltonian systems (see the review paper '/'y, allowing
a hierarchy of Hamiltonian structures/4.5/, Important examples
of such systems, applicable in physics, are the multicomponent
nonlinear Schrddinger (NLS) equations/8.7/. A number of comple—
tely integrable difference evolution equations (DEE) have
been considered in refs/8-13/ and the classes of DEE related
to a number of auxiliary discrete linear problems have been
described, see the review paper/?/ and the references in it.

In the present paper we consider the discrete analogs of
the NLS eqs., related to the block discrete Zalharov-Shabat

system:

zly, € : 0 am
’ Q(ﬂ);=

0, _11':" n) O

¥ (041,2)= (Z+Q @)W (0,2), Z= | (1)

and to its equivalent eigenvalue problem
D, 0 ‘ . [0 A
_ +Q@)~z | (n,z)=0, Q)= | _ ) . (1.2)
g D _ Ae{n), O .

In (1.1) and (}.2)q ,q , T ,T‘-:r. are rectangular sxp mat-
rices. The interrelations between (1.1} and (1.2) are given
by: 1 8 .

T =a@Vym, T@=yra-1) J@D=| ¥ (8,2)
' : . 0 vyin)

a ~
vi@= Th @, V=viT by @=1-q00®), hy® =1 -xkab, 1.3
UO=T@T, @), 1@=TEDTE@D, T, @= 15, ©),

By0= 1 +TWTRsD), Bp(0= 1 +TRDAR, ¥; @)=Y, (a). (1.4)



The present paper is a direct continuation of ref/14/, where
the inverse scattering problem for the systems (1.1) and (1.2)
is solved, and the expansions over the "squared" solutions of
(1.1) and (1.2) are derived.

In §2 we list the necessary results from/14{Hsing them in
§3 we describe the classes of DEE related to (1.1) and (1.2),
resp. Let us note that those classes contain the systems

im‘;‘:(“):=q(n+1) hy@) +h (g @=-1)-2q @),

{1.5)
—1%:-(1‘)= by (@)F (@=1)+1 (@+1)h (a)~21 (n),
and the equivalent to:
17 - G+ B, 0-1)30-1) ~T@F@T0) - 720),
(1.6)

-i%ﬁl..? (@~1)+T(n+1)E; (8) ~FR)TR)T(m) ~ 2F (),
which in the continuous limit and after the reduction g=+r',
§=+T" go into the multicomponent NLS eqs. In §4 we use the
results in’14/ to derive the hierarchy of Hamiltonians struc-
tures for the discrete NLS equations.The Hamiltonians here ap-
pear naturally as linear combinations of the conserved quan-
tities, so that the question solved is how to define the simp-~
lectic forms. For the case s=p=1 considered in/12,14/the simp-
lest simplectic form related to (1.1) is non-canonical: Qq~

o0 -1
~ Z 8q(n) A5r(n)(1—q(n)r(n)) .The generalization to s+p>2 leads to
Noe—00

great complications in £}y, which now contains under the sum-—
mation sign highly nonlocal and nonlinear expressions of q and
t, see formula (3.8). From that point of view the linear prob-
lem (1.2) is preferable, since the necessary simplectic form
Qy is canonical.

The authors are grateful to Academicians I,T,Todorov and
Kh.Ja.Khristov for their support. We thank P.P.Kulish for his
constant attention and A.V.Mikhailov, A.G.Reiman and M.A.Se-
menov-Tian-Shanski for usefull discussions.

§2. Let us consider the linear problem (1.2) (or (1.1} with
a potential Q(m) (or W) ) falling off fast emough* for
n+ % o, and such, that dethy(n)sdethy(n) # 0 for alln. Let us
also assume, that the discrete spectrum of (1.2) (or (1.1)})

*It is enough if aﬁ (n) ~ clnl for n> £ =, where ¢=const,
lel <1, '
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A=ATU A= AT glzai. —Z 4+ ,Izaii,zl, a=1,.,Nl is finite and
simple. Under these conditions one can show that both sys-
tems (I.1) and (1.2) have the same minimal set of scattering
data

T =1o*@, [2lal, o). 7 0 anlmll, @.1)

which uniquely determines both the potentials Q(n) , Q(n) and
the Jost solutions of (1.1) and (1.2). Besides one can de-

rive the following expansions for the potential w(n)a(q( ()n) l

Tn} +
and its wvariatiom aaaw(n) over the "squared" solutions {V H
of the system {1.2):

— = + - -—
WA(n)a-=§3;—qj dezj (v, (1:1.55)(;7;)1.i =V @2 Yy 1

(2.2)

.2 2 s [v(“)*
i<§
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@6 )y + Yy @6, ),
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assiv'(n->=i-=f 4z (V026" ) ~Vyy (23867, 1~

-2 2“2< {V(R}F(B)(Sp ) +V(a)+(ﬂ){p ) 8z +V (ﬂ)(5p ) +V (n)(p )’ 5Z B2
a=1i<j

(2.3)
Ay 0} . w g . 1
In (2,2)A = 0 A is a constant quasi-diagonal matrix, 8
2
is the positively oriented unit eircle, and
- AT -TmAay)" - 847 ()
Wy () = A 7). oyswm=
T(mA, —A T(m) -3T(n)
‘ (2.4)

-+ + + - = - -
P, = &y ~Ap . 0y =p Ay A,

+ gt A F - - _ -
Pa.A Py —8er 0 B, p =Ry Ao

v (n,z)-Vi(?)i(nH(z—zai ){’f}”i @+0 (a2 4 )% )

From the results in ref. 114/ it ie possible to obtain analogi-

cal expansions for w(n) andeydw(n) over the system iY‘; !} of

"squared" sclutions of (!.1); the corresplndlng expansion co-

efficients will be simply related to the ones in (2.1),(2.2).
In/14/ we introduced the operators Ay, As

- =4 - o+ =+ o2
Ai !AE Ai‘, Ai=A1 AE = IVA (2.5)
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through the relations
2. ot 2 .
(/\i -2 )in =(At -2 )Yij 0,
- e - o (2.6)
(A_t"z )VJ.;_:(A,t -2 )Vij =0, 1<j,

&+
The explicit forms of A »A|{ are given in the appendix in

ref. 14/

Theorem 1. Let us be given the block-diagonal matrix func-
tion ng9)= Fp]zzl’ and. lét us denote by w(Pand %) the

quantities w FD) and WF(p) +see (2.4), Then in order that w

and % satisfy the DEE

cCodw AP ={p)_ PP
ig, o 5 A+w =0, igg — d +§ A+ =0, _ (2.7a,b)

it is necessary and sufficient, that the scattering data T
2.7) satlsfy the linear equations:

120 oty n0, 10 a0, ot o

dt F T dat parF( 7 -Eﬁ—_h.w b (2 8)

+ + +

2.
pF pA'A F(zz)’ o, F PaA IA,,F—- ’ Fa=F(zat)'

The proof is analogical to the ones ln/15’13/ Let us insert
the expansions* for w® )and Ty g:'* in the _1.h.s.‘ of (2.7a)

and make use of (2.6) to obtain

J— - + . .
ig A APH(P) _ p( M +
ig, =Sp ZA W dz = P
% 3t s ™ slrl z1<3 {[1 dt Ez : (Z)ji ]in (0,2
; Joij 2p (P);, - (2.9
["a‘t"""'"fp'z e 2), ]Vl.j (n,2) }=: _
N dp* .
-2 3 X i) - (P)"'
i3 1[1(ﬂt )ji E a+ )l]V (n)+

* The expansion for g can be obtalned from (2.2) by con— |
.sidering variations of tE_ form 8% =W (n,t+8t)~ ~®{nt) :
and retaining only the terms, proportwnal to §t. Then in the

dp : dp—
r.h.s. of (2.3) we shall have — . .

P dt dt dt
&p~ ’8‘05 . 82a+
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dz, . __..dp— l .
gy yer + i @y _.3z°P ®- -
T Vi @, )ji gy ) o )ijwij w (2.9)

dz *{a)_ ‘
a. : —
+ ‘&‘t"‘""vjj (n) (pa )ij l ’

where by p(p)i and p‘:p)i we have denoted pi and o° A Wwith AsF(p.)
see (2.4). In order that the 1.h.s. of (2.7) vanishes it is
necessary and sufficient that all the expansion coefficients
in (2.9) vanish. Thus we have proved the equivalence of(2.7a)
and (2.8). The equivalence of (2.7b) and (2.8) is proved ana-
logpusly by using the corresponding expansions for w(u) and
03 4 over the system {Y}. The equivalence of (2.7a) and
(2.-%) can be verified also directly by noting, that the fol-
lowing relations hold

" v 2 - = =

A";as-%!-g—:-raa-g%:, Ay w=w(n), A+=A;A+K‘; . (2.10)
Actually the expansions of 03dw/dt and W can be obtained from
(2.1) and (2.2) by acting with the operator ﬁt from the
left. :

In particular, if in (2.7) we choose F(2%)~ %ros(z—ze—zhz)
we obtain the discrete NLS eqs. (1.5) and (1.6)." In the next
paragraph we shall consider in detail the series of higher
NLS egs. for which F(z®)= 1{(22)% , 1(z8) being c¢ —number
function. These DEE are local and have the maximally possible
number of series of conservation laws. Indeed from (2.8) it
follows that (see the appendix): )

i-gt-s—'—=+[F(z2),S(z,t)=]-= 0 (2.11)

at, b
where Sa ( bt, a") is the transfer matrix of (1.2)., If F= lf(zz)a3
from (2.11) there follows, that all the matrix elements of the
diagonal blocks of 8 , a*, a™ are conserved, i.e., this gives
824 p2-1 geries of conservation laws*. For generic F(z®)from
(2.11) there follows only the conservation of the eigenvalues
of § i.e. s+ p—1 series.

Suppose we have proved the complete integrability of the
DEE (2.7) and have calculated the actiom—angle variables.
Then every function of the "action" tyge variables will be
time independent for any choice of F(z®).  As regards the mat-

*ye have taken into account that detS=1, which gives one
relationship between them.



rix elements of a%(z)  for generic F they will depend on t-.
This means that they depend also on the "angle"-type variab-
les, which is confirmed by the fact that the Poisson brackets
between a;ﬁ. and aj4- do not vanish/7/, see also’ 18/,

At last we note also that the DEE (2.7) in general allow
boomeron—type solutions, see/1?/. The higher NLS eqs. have no

such solutions, since F~ Og

§3. In this paragraph we shall éonstruct the hierarchy of
Hamiltonian structures for the higher discrete NLS egs.:

ia, .%E,+ tR )¥=0. g %%‘i:+ (A, Yw=0. (3.1)

It is natural as a generating fumctional for the Hamiltonians
of eqs. (3.1) to choase D(z), :

Indeta*(z), |z|>1
D(Z) = { ’ . . (3-2)
~indet(a™{z)vy ), lz[<1,

where vzzé_i'mvg(n) s V() being iatroduced in (1.3). Indeed,

from (2.11) it readily follows, that d D(z)=0. Let us now
make use of the trace identities, derived in/14/:

z dz = 2[1-%“ kzgn tf[W(k)M+A+(A+--Z ) W(k)] -

~ 3 15 zulf@R, -2 5 T @)+ e T ~2) S, (3-3)
kmn . 3 4 A

-

at T +:'+
M+ = A1A1 .A2A2 .

3D(z) =[o, 5w, MA, (A -2%)"1 win)} =

- - (3.4),
"aloy 8%, (A,-2%) 11,

where [,] is the skew-scalar product introduced in/M/‘
- L . - @
(.71~ 3 vE@Y), E@-& W, -2 T @

The Hamiltonians for (3.1) shall be linear combinations of
the coefficients D, entering in the asymptotic expansions of
D () . : '

(=}

, ek < gk ‘
D(z}= kEQD—kZ , |at<<t; D_(z)=—k§sz » lzl>>1, (3.5)



Using (3.3), we obtain

H m—Zf D_m
p P P
f——-—l
= 2 {E tr w(k)g(A YW (K)+ —-tr[aa w(n)g(A yW(n)l+
D00 Rmpy
+fptrin(  + Q@To+1)) 1 = (3.6)

- 3 § 2 ttw(k) AgAwE ~ftrIn (T —qm)r@p}

1= 00

s
2, 1f -1 2(p—1)
BE@ )= = ds (1T ) f ()= }.‘.pfpz .

The corresponding simplectic forms I-i'o and , we shall choose
so, that the Hamiltonian equatums of motion

ﬁ’(aé‘ I=BH(), 0,0 —-.-)-sn “), C (3.7

coincide with the DEE (3. l) It is easy to see that this will
be the case if T - ' .

ﬁo =-?‘—[035W P g 5w def

x .
1 = - - -
=?{63 aiw' OSSEW]—‘T{Usazw,aaalw] (3.8)
1
QQ= ',';'{ 38‘# oM LA o, swl,
where &% and 8,  are two independent variations of w.
Indeed, from (3.5) and (3.4) we easily obtain, that
SH =lo 5%, 1(A,)W]1=[o 8w, M ATA Jw]. (3.9)

Inserting (3.9) into the r.h.s. of (3.7) and using (3.8) we
immediately obtain (3.1). )

Let us briefly discuss the relat:.on between 2, and Q
Using (2.10), the property [X,A% . Y]= [A X, Y1 (see formula

i
(3.14) in/14/) and the explicit form of Af we obtain

Q, =ﬁ:0+-1-.f-:i;:[v28?233(55‘(n)r‘(n5)]. S (3.10)



Now, if we restrict the phase space* related to the system
(1 1) by the condition vg=const, then Qo= 90 . Such restriction
is compatible with the dynamics of the NLS eqs., since Vg is
motion invariant for all the DEE of the type (3.1).

The 2-forms £ and ﬂo are the simplest from the hierarchies
of simplectic forms, related to (3.1):

i+t = - = -
0, =dlo dw AM Ao bwl, =2l 8, (A 7o, 5wl (3.11)

The compatibility of these forms is established by recalculat-
ing @ and ©2_ in terms of the scattering data variatioms.
Using the expansion (2.3) and the relation (2.6), we obtain
2m+1 N .
ig uz—- {’ dzz " tr{&a+a+/\ Sp+a+-50_tz"7\ pTa"] -
™ gl

+ .
2 % fs P Lsa  A8L, +rdg A BE 1+

a=1
+ z:"_“f'l [82, _~ 34: +irdo /\35;’“‘ {3.12)
sginvtol i aaSEY - Zitstit
35"0. e, (7 “‘P )8 i *'.“Jf;é?iai( 1 ...p: )

Here oF » a_+ arg the elements of the equ:.valent to J set of
scattering data T (see (2.13) in/14/); a” are 'the block-

diagonal elements of the inverse transfer matrix § = (3+ ,6") .

The pro_}ectors Pai and P; determine the degeneracy of a—(z)
and o~ (z). resp., for z=2z,+4,

The calculation of @y by using the corresponding expan-
sion for oy dw is analogous, and the answer is the same,
only now we should insert in the r.h.s. of (3.12) the quanti-
ties g% , g%, etc., related to the system (1.1). Comparlng
the definitions in §2 of /14/yze see that pimpt, ot aot v Vo, =

= vga . Thus we obtain that @, differs from {}J, by terms, con-

* Analogical restrictions are known in the literature, see
ref./18



taining under the trace sign the quantity 8v, \?2 . Obviously
if v =const,then O = . s ; o _

‘f‘ne Hamiltonians H; may be also expressed through the scat-
tering data using the dispetrsion relation: ST '

2

2 N z? -z
1 ag” oL - 1 a+ )
D (2)x e In det(7-p* -2 In . . (3.13)
. g

From (3.6), (3.5) and (3.13) we readily obtain:

H, ool 6 a2%(¢® mdet(71-pt 5 g

€770 g1 (€ maet(T1-p") = 2 (81 50 ~By0- )
IR B (3.14)

2y ¥ as ' 2 2

g,(z")= { dsf(s), 8, =8, (G, ) CE - SR T

Let us also write down the four simplest conserved quantities
calculated from (3.3):

o o0

Dy = Indetv, = 3 trin(1 ~q@r@)=- % rin(7 +3@T@HA),
QF—o0 pepeeto

Dy = g tr g(o)r(n—1)= - ; trg(n)T(n)
=t =T

D_1 = ; trq(n—1)r(n) = -=§ tr (i:;\1 (n—-1)g(n-1) F(ml):hl (),
. | Tpemsta i N=—n0 -
D'2 = g tr] ~q(n+1)h o (n)r (n.‘-l) +L (q(m) l'.(n---l))2 1=

nm=—so 2

- T i@ Gy
Naeem0s 2
The Hamiltonian structure of the systems (1.5) and (1.6) is
given by (@, .Hypg ) and Qg Hypsg ), where HNLS=D0 +D 2D
the dependence of Hyis on the scattering data is ogbtained
from (3.14) for t‘(zz)=(2--zz--z"2 y. The Hamiltonian structure
for the discrete NLS egs. obtained in 12,18/  for the case

s mp=1 corresponds to the choice (@ _ Hy;g) where Hl o =
= =2D3+D,+D_y . ‘ .

At the end let us note that the simplest reductions q{n) =
=+r*(n}, ('1'(n)=i_r'+(n) are incompatible with the dynamics of



the systems (1.5) and (1.6). Instead we have found the reduc-
tions: a)q(n)=tr+(-n) > A@=2r"(-0) and b) in the case s R
Q(n)=t r* ) ,G@)=*r*(n) which are compatible with (1.5) and
(1.6) and lead to equations of NLS" type. The detailed ana-
lyses of the reduction problem/19/ for the DEE is out of the
‘scope of this paper. : ‘

APPENDIX ‘ x

" Here we shall derive eq. (2.11) from (2.8). In doing this.
we shall suppose, that the DEE (2.7b) can be interpreted as
the compatibility condition of the linear systems (1.1) and ’

: dafci"'l‘"n e My (0,2)4 (8,2)~ ¢ (0,2)C(2), a.1)

where C(z}) is a constant (i.e., time and n —-independent)
block diagonal matrix. The recurrent procedure for the con-
struction of M (n,z) is a trivial gemeralization of the one
for the case gswp=1, see/2/. 1t steams out from the compatibi-
lity condition : :

jl(mz) | L @.2)Mp @,2)~ My, (n41,2) L(n,2)= 0,

dt (A.2)

L®2)=2+Qq),

which should hold identically with respect to z. In what fol-
lows we shall make use only of the fact, that M,T= liﬂi M (n,2)

- F o0
should be block-diagonal matrices; this can be seen:1 e.g.,
from (A,2). . :

We shall obtain the time dependence of the scattering data
by inserting the analytic solution, »%,y~ in (A.1) and
‘going to the limits B s D2-o, Using the definitions in
§2 0f/14/ ye have

. 08 * oy - -
1 —— s —.s C N
My (2}

. (A.3)
N YR,
IEF:--MFT -T C(z).
Now let us insert (2.8) in (A.3) remembering, that
soof &0\ o] E (4.4
p+a+ F ' 0 a”
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It is not difficult to see, that (A.3) and {(2.8) are compa-
tible if and only if

+ - 2 '
MFHMcm(Z)a—F(Z )..
Thus we obtain
1957, (F@2),57120, 14Kl [F@?), T]=0,
dt dt
_ (A.5)

_dat 2y 4 . da”’ -

gt F » aO. ——— ! 2 b

1dt +[ 1(Z)a1 e +[F2(z ),a” =0,

which together with the "unitarity” condition (2.6) in ref./1¢/
gives us

1

" -+[Fl(z2).a"=]-0. i-%‘lJ,[Fz(z?),a*]zu; (A.6)

From (A.5), (A.6)} and '8~ = S*T~ we obtain, that s* and T™
also satisfy eq. (A.5), which together with S=878* gives
us (2.11).
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