


§1. In a number of important cases it has been proved,that
the inverse scattering method (IsM) /1% js a generalized
Fourier transform’%% . The proofs are based on the complete-
ness relations of the "squared" solutions of the auxiliary
linear problem. The classes of difference evolution equations
solvable through the ISM for different discrete linear sys-
tems have been considered in'/8:10-187,

In the present paper we obtain the completeness relation
for the "squared" solutions of two equivalent linear problems.
The first one is the block discrete Zakharov-Shabat system

'lb(n"'ll Z) =(z +Q(ﬂ)) l,b‘(n,?.-) [

zly O 0 ghn) (1.1
z ==( 1 ) . Q(n) = ( ) >

o L @) O

where on) andrT(n) are rectangular Sxp matrices. The second
one is written as an eigenvalue problem

Dy 0 - o 0. -um |
[(0 D__)+0(n)—2]¢r(n.2)=0. Q&(n) =‘(r-(n)'- 0 . (1.2)

where D, f(n) =f(ntl)and is related to (1.1) by

E(n) = g(n) \;‘2 (n) , -r-(n) =vg(n) r(n -1}, 32 (n) sv-gl(n) .

_ 7 0 n
lﬁ'(ll, Z) = ( 0 “'2 (ll)) '!’(n- Z) , vg (11) = kl=]w(' —l'(k) q(k)) .

(1.3)

In §2 we give the necessary facts from the direct and in-~
verse scattering theory of the system (1.1) and (1.2). It is
well known, that the inverse scattering problem for (1.1) is
equivalent to a Riemanian probiem with noncanonical normali-
zation”1%.The inverse scattering problem for (1.2) is equiva-.
lent to a canonical Riemanian problem, whose solution is well
known / b 18/, ‘
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In §3, following the approach developeqr( in /8% we obtain
- n
the expansions for the potentials w(n) ={‘: ‘l:;)) , W) =(qr-(u)))and
their variations over the "squared" solutions of (1.1) and
(1.2} resp. As coefficients in these expansions there appear
the scattering data apnd their variations resp. We also derive
the trace identities for the systems (1.1)-(1.2).

In the next paper"”/we apply these expansions to describe
the classes of the difference evolution equations related to
{1.1) and (1.2} and to prove their Hamiltonian structure.

The authors are grateful to Academicians I.T.Todorov and
Kh.Ja.Khristov for their support. We also thank P.P.Kulish
for his constant attention and A.V.Mikhailov for usefull dis-
cussions.

§2. Let us suppose that Qm) (and Q) ) tend to zero
fast enough when n.%w, and that det(? -qm)r{n)) £ 0 for alln.
These suppositions ensure the existence and the analyticity
properties of the Jost solutions for both (1.1) (see’!V ) and
(1.2) defined by

lim ¢, 2) 27" = Um S22 =1,

I =& cc n-—+ — oo

- - (2.1)
limy (n,2) 2" = Hm ¢®z)2Z "=1.

n-o n—+ —oo

Let u= introduce the block notations ¢ =[l¢ W™, & =& "¢ 1,
¢=1lg",671l , &=Il¢"6 ||, where the upper sign (¥) means
analyticity with respect to z for {z|>1(|z] <D Let us consider
the solutions y *~|lg*+, ™|, x* =US* T+, x =il 56 ]l »

X “=llg7,6 7{l; from (1.3) there follows that y* and %% are
simply related to each other. The scattering data are introduc-—
ed through

XY=@sT=gst,  xT-pTt-gTT,

- at o + t 8
8~ (2) =(b+ 1)’ stz
1 b - a , 0
.T+ - ) T ’
@ (0 ) T (B’“, ')

Obviously 88 %= THf -8(z) where by X here and in what follows
we shall denote the matrix inverse to X, X=X-1land 8(2) is

(2.2)

]
L]
=1
+
S
-

the transfer matrix of (1.2), S(2) =¢ ¢ (n, z) . The matrix-valued
functions a®(z) , a®N(z) are analytic inz for |z]>1(z| <1,
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Below for simplicity we suppose that the disgrete spectrum
of (1.2) is finite and simple, i.e., that X - (% 2) have only
finite number of simple zeroes for |z]|% 1.Let us denote the
set of these zeroes by A=A"U A*, A7 =i2gy |2 g4 2 1,a=1,...,2N}
and note, that if zg+ € A then ~EZg+€ & also and X ~(@,~ZgH)=

*
=" a3 X (n,zai-)-as‘,.Obvio_usly to each eigenvalue 2Z,,.(z ,.)
we can relate two vectors |e, >, <d, | {|e, ><d, |)such, that

XE @) loge > =0, <dglxy =0, Xpol®) =X MZgs ).  (2.3)

. .. ~ 4 . . e
The functions a¥ and their inverse a— gz) in the vicinity
of Zg+ have the form (see, e.g., ref. ):

at@=al(1-pf)+al@-z )+ 0z-2,)%),

+ 04 . :
~% P a_ ~4
a~(z) = 2. & +a-+0(z-2,4) (2.4)
- dt‘iai']ct > . -
(z Zat )< ar 1Ta !V at
* .
* [Cax ><C gt |
Pa = _""""'“""-_"‘__""-9

%

<e le > . ek, >

, . +
where we have used the notations ]ca+‘> “\ e - > .<Ja+ j=t<dg,ls

a “~

‘<d;+“}), etc.; a'ta are nondegenerate constant matrices,and ai
their inverse.In(2.4) all the upper and lower sign indices
should coincide,being simultalleouily + or -.From(2.3) and-(.Zr.'A)
there follows, that .<da'f+ j=<e_,1a% . The Jost solutions for
the discrete spectrum are related qby:

& @Ho . >eh b oy, >, ¢, @b, [og >=d @l >, (2.5

-+ —+ -+ - +
where ¥ (M =¢" (MZu+ ), &g @ =¢ (@M Zg+)and baarta constant
matrices, determining the "norms" of the Jost solutions. The
analogs of the unitary relation are conveniently written in
the form:
a”dt @ =1-p 0 (0, a"a (@ = T-0"p (2. - (2.6)
The minimal set of scattering data is defined by

T=tp(@, |2l =1, 244 vpg s 12g2 12 L a=1,..Ni

% . .
e by |Cqi><dgt| : 2.7
Pa ™ FooEL R
'<dat'laa ica:b



The inverse scattering problem for the system (1.1) can
be reduced to a Riemanian problem with non-canonical normali-
zation/18/. This is related to the fact, that the leading
term of the asymptotics of the solutions x¥ of (1.1) for z+e
and Z-0, resp., depends on @ (). For the system {1.2) such
difficulties do not appear, since

X*@ Dz 4 Lawm +0(;19-):. ' | (2.8)

Thus the inverse scattering problem for the system (1.2) can
be reduced to the Riemanian problem:

-~

2" ¥ "% Tmz -z 0@z ™"

. _ (2.9

Gz =T"@s (2, Wmy @z =1.

. ) o0 .

The corresponding potential Qm) is recovered from the solu-
tion ¥ *(n,z) of (2.9) by the formula

2
which follows directly from (2.8). In order to solve the Riema-—
nian problem (2.9) we shall use the contour integration method.
Let us apply it to the integral

¥ Xt wat- 6 X moaoen,
v, ¢-2 y_ -5

am) = - lim zag Lag ot (0,227, (2.10)
. Zoo 4

where the contours y, =81U§°°, Ve =SluS°_ , 8t being the po-
sitively oriented unit circle; and §° , 8°, the negatively
oriented circles with infinitely large and infinitely small
radii, respectively, Taking into consideration formulae (2.2),
(2.4), (2.5) and (2.8) we arrive at the following representa-
tion for ¢*(n, z), Jzi|>1,

- N /g @ b @ _
l'1..;1-(“'2)‘5:1:((:)_aél(:f ¢ _ o3t g )Pa'zan—+ (2.11)

a—" % o+ E

1 v 08 ogy () L .

+ 5o :1d§( s - FTe Yo (T

Analogically we obtain the representation for ¥ n,2),)z|<1
- : ? N MEY) ag ¥ 5 @ -
gb'"(n,z)z"ng( )— p ( Va y_2"a )p;za‘l—

0 a=1\(Z ,, ~2) Z gt E

{(2.12)

— - +
_i:_ 5 d{[ ¥ (n:C) + 013'; (n' C) ]P+(C)£ —n.“
2ri gt {-z Crz



The representations (2.11) and (2.12) allow, starting from
the set of scattering data T (2. 7), to construct a s;stem
of singular integral equations for the quantities ¥, (D),

¢ (n. {), ¢ e8 . By solving this system we are able to recon—
struct uniquely the Jost solutions ¢ %, (4 ~) for all z ,
1z > 1 qg|<1 The tqfnsfer matrix 8(z) and its triangle fac~
rorizations » T~ can be calculated from the asymptotics
of ¢ ~(n, 2)__+for A+t = from them we obtain also the Jost
solutions ¢ (n, £), see formulae (2.2), At last the potential
Q@n. corresponding to the given set J is recovered from

X (n, 2z} according to (2.10).

This procedure can be performed explicitly in the simple
case, when p%(#) =0,|z}=1." Then from (2.11) and (2.12) we
obtain an algebraical system of equations, which is explicit-
ly soluble. Here we give only the answer for the simplest ref—
lectionless potential of the system (1.2).

- 2z 28 2z %
U = - —L -, T = R,
1+rg 1+rn+1
‘Aw 2 R .
r. o= 4z1+m2“trp1p1 ® = Zy-
" (z%-32)? ’ z
| i 12 _ 1+

corresponding to the following set of scattering data

H N=11.

Representations analoglcal to (2.11) and (2.12) can be
derived also for qb (n z) and q& “(m,z) They allow one to re-

construct qb {n,z) starting from another, equivalent to the
get of scattering data

5

z1+'.. z}_f‘b;-’pt_!

. I
fo 3@, 12] =1 Za4. 04 » 12ge1% 1, a=L..N},

S B¥ieF »cdF |
O"i =ﬁ+ di(Z), o= = a az az '

oo EeF oo
. <@ ,le e, >

At last note, that introducing the transformation operator
K by ¢,z = 3 K, mz" from (2.11) and (2.12) there

follows the Gel” fand Levitan—-Marchenko equation for the sys—
tem (1.2). The derivation is analogous to the one in ref.
and we omlt it.

§3. Let us go now teo the expansions over the "squared”
solutions of (I.1) and (1.2). Their importance is determined
by the fact, that they allow one to perform explicitly the



transition from the potentials Q(un}, Q(n) to the scatter—
ing data J (2.7). Thus it is possible to prove, that the IST
is a generalized Fourier transform. As a guiding tool in de-
termining the "squared" solutioms of (1.1} we shall use the
relations

2t @naxt®a]” = I xf+ln0A0@ix e,

~t + e % Ay + G.h
X (n,z}8yx ~(n2)| = X x (n+l,z}8Q@myx~(, 1) ,

Notmog ) =—00 :
A; 0
0 Ap
block~diagonal matrix, The 1l,h.s. of (3.1) is easily express~
ed through the scattering data and their variations by using
(2.2)}. The r.h.s. of {3.1) we shall rewrite so, that it could
be interpreted as coefficients of the generalized Fourier
transform of [A,Q] and 8Q over the '"squared" solutions of
(1.1); thus it will become clear now to define the "squares".
For this let us introduce imn the space ¥ A of block 2sxp fast

D (2 1)p(2)
decreasing* sequences EA’Q Zm , X T:(S( T,(x T), Si "I'S‘ T ‘Sxp mat—
rices), the skew-scalar product: :

which easily follow from (1.1); here A =( )is a constant

oo ~ P 1
X, ¥1=_3 uX@Ym, X =(Si°’”,—%) 5. (3.2)

Then the i, § -th matrix elenient of the 3:.h.s.+ of (3.1) can be
written in the form - {wA’Xj_l ] and [qsb‘w, xj;] resp., where

. ((-Alq(n) - amApT (sq ko) )
W E N 5 = .

* + ~ t ‘
in (n, ) =X (Ww,z)° xy w+ 1,2,

W .
(x, @ x ; @) ) @
X ; @2 xy(m,2) = def 1 x.m= )
! @ @ . )
\ X5 @ xy (m x (8
@ 9@ (3.4)

X3 (@ =(x; (@, x; @) .

*It is enough if the elements X(n) decrease like G’i nl for
n.s+e, where ¢ const, |c¢|<I1,
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By xf(n. z} in (3.4) we have denoted the J —-th column of the
solution xi(n.z.) of (1.1) and )}f(n) is the i-th row of

4
x (o, %) . ‘

Thus the question of the applicability of the ISM is rej
duced to the ?uestion of the completeness of the system {Xj }.

Follow:ng let us apply the contour integration method to
4 *om ) a -
the integral —2—0a"(n,m,{)- § —>—=0 (nm¢, where
$+ C(( - 2) Y_ {(C-—Z)
o ‘omo - 2 o) .2 8n-m) - & 0! @m, 2 6(m-n-1),

(i>i) ' ¢ <1)
+ * “ * x ~t
GIi @mz) =Y; (2 Xy (m,z), Yﬁ m,z) =y § (n+1,7)oy R (n,2) .

‘& B¥p :

By 2 and %X here we mean § 2 and i + 2'. ,respec—
i=j 1=t j=g+ 1 L,ij=1 Lf=sti

t1ve1y. Omitting the calculational details we give here two

equ1valent variants of this completeness relation:

8(@-m)E = —--‘ E[in(n)gx”(m) ..Ylj(m)oxﬁ(m)]_
N (3.5)
+ < .
22 = I8 (715!_ (e "5‘“‘”',:,“ m-y,j ® o Ky @, }
L d ) @ V ~ e V= 3.6
N
_2a=1 i%j R %’ ?1 (e, vj (m)[z P + 5‘{(““Vij (“)"V (m))|z-za_,
where
R(I * e 3 d (z- )2 + Y .
—z-x (@,2e Y~ (mn,2)| — Hm Ez_{ Z {n,z)o '(m ,

z-+ 254

+ -t g
Ul_j- (n-z} = Xi— (ll Z) o xi (n,z) . vji (n) = 2 Ujk (ﬂ) 3 ik (z) ) (3 7)
‘s+p 's+
L) = z U” a2, Vi@ = IU“ ay; (@, Vj, "N Uk,(n) i+
i<
If we write down the matrix indeces in the direct product

(Yo X)ar v =Yor }‘(‘ya then B, ¥8 = a8 Sry - In order to
make more expllclt the R—operatlon 1n (3 5) imd (3 6) 1t is
convenient to introduce the expansions of X—, Y', b , V=

in the vicinity of Z,4 i from (3.7) and from the simplicity of
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the discrete spectrum of (1.1) there follows, that

Yt(n, z) = —.....-.}..__.,.

Z % Y(a)iﬂ}(“)two(z“zat) - (3.8a)

at

* -4
and analogically for X * and Ui. As regards V- and V from'
(3.7) and’ (2.4) we have '

Vt".(ﬁ'. 2) = V'(a).t @ + \‘r(a)i' ("”';‘ai ) +0(tz ';"ai_) 2y

- - - (3.8b)
vz = ——-—-1--—-§V(c_l)i(n)+ ol 99y L o
(Z—Zai)' B Z---Zdi-‘

From (3.1) and (3.5) there follow the expansions for w o) and
o.,8wn) over the systems of functions Wii L Indeed, let us
muitiply Egrpysflo-m  in the 1.h.s. of (3.5; by (Wa)8y (or by
(¢o dW)5, )) ) and sum over 158§, y <8+p, ~=<m< . Then the
1.h.s. of (3.5) becomes equal to (WA)O? ( or (a3 %) or ) and
the r.h.s. of (3.5) gives us the necessary expansion over

fYf .  The expansion coefficients are given by [X7;,w,].
and [XQ . 058w}, resp., and can easily be expressed through
the scattering data of (1.}) by means of relatioms (3.1).Ana-
logical expansions can be derived for w{m) .- and ogdW start-
ing from (3.6) and using

.()z-i(ni A )-(.t(n.z)) ij'l;;_w={ Ujf ’ JAL ()Zi(n’z) 3)? i’(n'z)) jj{:a_:[ujii ,qsaal’

which follow. from (i.2). Thus we obtain:

- S 1 S - -
W, (n) = - Er;— b dzigj [V;(n. z)(p;) ji - Vi (n,2) (Pa)ﬁ I+

Sl
N (a.)-;- + @r o ) 1
+2&§1 i%j [Vji (n) (pa’A- }ﬁ +Vij (D) (PG,A 1j »

ot —ptA, —A2p+ , Py =P Ay -Ayp T

: Apt: o . =p A, ~Aipg: (3.9
Paa =Py By ~BAgPg i Paa = Paa 1Pa )

oy - + (@,2) B Ny -V @B Yy 1 -
o.lSSW(n) = 5 .sf dzi%j [V;' (n,2) (8p i 1§ i



N ‘ - (a)+
~23 3 WGy, + VP e ) g0
a=11<j " o .
R - o@= - _
+ Vij (®@)(3p, )lj »«-V1j (m} bp,, )ij dz__ 1. : (3.10)

From (3.9) and (3.10) the interpretation of the ISM as a ge-
neralized Fourier transform is obvious. As an analog of the

- ot +
expgnent one may choose any .of the systems (Y=}, {X*1,
tV 7}, {V " I.. The corresponding analogs of the differentiation
operator are the nonlocal operators A, , As, 4 defined
by the relations:

Ay -2)Y; <Ay —2%)¥] = 0,
Ry -29)V5 =Ry -2V =0, o (3.11)
(11 -29%j =, -2af) =0, 1<

They may be represented in the form

Ar=KiA S, Ay =A

+ -
where the operators Ay, A are defined by

LR + T+ *

e + (3.13)
Alei = 29 .

—t *
e A2Uji.-=zYﬁ. i<ij,

and are written explicitly in the appen&ix. As a domain of

+
definition for the operators Af > Ay etc. we shall choose
the space EA; from the subnote on p.6 we see, that if X ¢ SA

t ; -3 : . .
then AjXcTp and AT X GS)A. Wxth+re5pect to the skew-scalar
product (3.2) the operators Ai-, ) A"it, Ay 7\'1., a, sa-
tisfy conjugation-like relations:

[X, 1;Y] ={A; X,¥), [AsX. Y]1={X Az Y], :
: + . (3.14)
X, AT YI=[AL X Y], .i=12,XYc9,,

(3.14) may be verified either directly, or by using the rela-
tions (3.5), (3.6) and (3.11-12). In greater detail the spect-
ral theory of the operators A4, ~ A+, JMs will be conside--
red in another paper.



At the end of this paper let us derive the so-called trace
identities for the linear problems (1.1) and (1.2). Let us
consider the quantity

Indeta® ), Jz|>1,

Xz} =< €3.15)

~lndet(a™ (z)vz), 2]l <1,

where Vz—lim v2(n). see (I 3). It is not difficult to see,that
z-d;D(z) can be rewritten in the form:

22 5 S [PxeD s+ PG-1 -2P®)],
dz A== k=0

(3.16)

P (x, 2, |2} >1 . . ‘
P(k )={ (k I 1 Pi (krz) =tl'[xi(k,2) xi(k.z).qs—-nqs]..

Pk, 2), |z] <1

Usin_g (i.1) the r.h.s. of (3.16) can be cast into

o0 oo - 8 .
2 3 3 w¥@HRD, HED=- T XEwa, for (2131
o=

n=-—oc k=n

If we now apply the contour integration method to the integral

§ ~%° _ntao - § Ty %% w0,

y+ {2_ 58 Cg 22
where the contours Yi are introduced in §2, we obtain for
HY (o, z) =—M+A+(A+-zg)"1w(n) =-A;(K+ SNLION

M =ATAL =AJAS G.7)

H7(n,2) also equals the r.h.s. of (3.17) for |z|<1. Finally we
have

HD__ s 5 5 uw 22y w) =

& TRt hE TROMAL G e BT 516

— ¥ kfﬂ 2w (£, 25 F® +wo WA, —2H lwin L
n=-o00 = .

- To obtam the 1ast line of (3.18) we have used the expl:.—‘

cit form of the opérators A‘ Quite analogously it is proved,
that' :

o9

Sz “n=§m lx[g;g-w’(n) Hir, 2)]1 = [ogbw, H(p,2)]. (3.19)
10



Inserting (3.17) in the r.h.s. of {3.19) and using (3.14) we
get

oD(z) ={o 0w, M A (A, -28)71w]=[g,8W,(A, ~z9)~! i’]".. (3.20)

The dependence of D(£) on the scatterlng data J is given by
the dispersion relation

D(z) = 1 ldet(] —p*p=)e 3 In ZEETES
% = —gtp~ —_
) e 9{1 7E ity der{ AR ’&o'— —zE 3.21)

Thus the coefficients in the asymptotic expansions of Ng)

o oK L = -
(z) = k—_E-OD'kz . gt ‘D(Z) = —k;‘l Dyz ™", ifz] > 1 (3.22)

can be expressed both as functionals of the potential w(n)

(or w ) {(see (3.18)) and as functionals of the scattering da-
ta J, see (3.21). Equating both expressions for D, we obtain
the so-called trace identities for the systems (1.1} and(1.2},

.

APPENDIX

. i . e L E rt

Here we shall write down‘eXplicitly the operators A}, Aj

and their inverse. Below we shall use the notations E:E
a=1 L C Y

2,2 3,
k=n 2

k=—oc

v = T 0,05 v Y8 b, n® - 1 —a®rw,

By = T -0 k)
and X Y UGS}A should be considered as arbitrary elements
of $A.The possxblllty to invert the relatlons {1.3), namely

S CREURACHE ORI PO RN
B0 = 80 TrD, Fo®ps 14l 30)

allows one to express Ai ,Ai in terms of q,r (or q,f ) on-
ly, which we w111 not do’ here.

Vo) X ) o) K T
+
A;X(n): '

1

V(-0 X,0-1) /) \ T ®i@ /
Ki@ = 21 [a®X,0 - X ®r®l,

11
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ki@ = 33, (0, ®aw - uiml,

CE: Vi@ Y, @ &3Tm 7w
y vo(n) Y, (m-1) Ky M) @ /.,

Ky @) = 33 0v,@+D 7,00 30 -Fk+D Y707, ®],

ot va@ U,@+1) a"@ k4T @
. A U) = . ‘ T .
4 . Vg (n+1) Ug (n} r(n) X ; {n)

LKi ® = 25 a0U,® - ul®eml,

% e D U@+ \rm ¥, @ Ki @ v, @+

(Ke®@ = 35,90 (ak=1 ¥,00 Uy - U v, 0 r@ ¥, @,

v, @ X, b, (@ v @ Ki @r@)

Re@ = 21X ®a® -rwxTw),

A v U, Tm X7 a"@
K—U(n)g ) + I Y. )

) 7 vg (n+1) Ug(n+ D hy(n) Kz@ r(n)

(R7@ = Zor 9500 Up®) a -1 - 10 U v, M1,

v g(n) Y; (o~ 1)) v g{n) q To-1)v lT(n) Ki'BT(n) ‘?IT (n
*
vo (M) Yo(m)

i
0
=

=
e

1

vo(n) r(n) \‘rni(n) Kg (n) vy(n)

KE@ = 2% v, D le® Y,m ~ Y00 c@] v, 6 .

. /v Fmen Uyn vam+D X5 T @m) 77w
Afvwa | 3. . - |
) Vg () Uy vo@m Ky@r(p+D) /-

A v,X0) U, 9% v T+ D RET @ V@)
rAl;U(n)= _ (2 ! )i( 1 e CRR I

( vZ@ X, @-1 h}‘(n.-x)) (G Tm xg'l‘(n)q'ltn.-n)
ot
A2 X(Il) = +

)
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