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l. INTRODUCTION 

Composite operators have always been the main tool fo-r 

field theore-tic description of bound states. In the framework 

of Bethe-Salpeter amplitudes thes·e operators are used as non­

local obj-ects·- In case of Quantum Chromodynamics gauge inva­

riance poses special proble~. The description of colour 

singlet bound states should be performed by means of gauge 

invariant composite operators. Especially if one wants to ex­

ploit short distance properties of composite operators one 

has to restrict consideration to gauge invariant ones, other­

wise short distance properties depending on gauge fixing pa­

rameters would lack physical relevance. 
It is well-known that gauge invariant composite operators 

have to be found with the help of phase factors/1/. Renormaliza­

tion and operator product expansion of meson operator 

M(x1,x2 ) • ~a (x 2 }Ua,a(x 2 ,x 1 )t/F fi." 1 ), 

'2 
U("2 ,x 1)= P exp ig f dx~ A~(x) 

•t 

has already been studied/2z For baryons the operator 

B(x1'"2• 1 sl• .Pa. 1<
1 tl.Pa.,1/ 1 2li/ta&<xs )x 

xU fl,_"l("o·" 1) U /3t<2(xo ·" 2) U flsa. a(x o.X s ), /31/32/33 

has been proposed/a/. 

(1. I) 

(I. 2) 

It seems worthwile to extend considerations to gauge inva­

riant gluonium operators, too, which could be useful for the 

study of colour singlet states from gluons. In analogy to 

(I. I) one may define 
&dj a b 

G~vpu· (xl,x 2 )-F~v(x2)U,b(x2,x1)Fpcr(x1) (1.3) 

with 

(1.4) 
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Here in contrast to (1.1) the phase factor appears in the ad­joint representation. The contour joining the points x1 and x 2 should be smooth and without double points in order to avo­id specific ultra violet divergences connected with such con­tours /4,5/, 
There is another possibility of building gluonium operators, which uses a closed contour passing through x1 and .x.2 toge­ther with phase factors in the fundamental representation: 
G.~:! (~1 .x 2 )= td F,v(x 2 ) U(x 2 ,x1)F P7 (x 1 ) U(x1 ,x2 )I.. (1. 5) 

Such a constructibn is known from investigations of Wilson · loop functio1;1al equations 14~6,7,8/ The basic tool uSed for the study of_all Of such gauge invariant operators is the formalism of auxiliary fields/6/ which will be reviewed short­ly in sec·tion 2 •. It ·allows a reducti<:ln of- the nOnlocal objects to products of local composite ones. As a first example we calculate· Z factors and anomalous dimensions· of the Composite operators needed foi.- the construction· of (1.3). Then in sec­tion 3 renormalization and short distance· behaviour of G adj itself is obtained. It turns out that both OperatorS ·Gadj and arund show the same Short-distanc·e behaviour. In this sense the group theore·tic ·representation has no influence- On p:bysical properties. In section 4 we discuss alternative constructi~ns of hadronic operators. Again for the meson-operator (4.2) renormalization and short-distance properties are not changed. On the other hand, the new expressiOn allows one to determine the renormalization properties of baryon operators (compare eq. (4.4)) in a··convenient manner. In the last section we,. discuss modified hadron and gluonium operators with triv,ial Z factors, i.e., Z = 1+0(g4), which eventua'lly could 'be useful in nonperturbative calculations. 

2. GLUONIUM OPERATORS IN THE ADJOINT REPRESENTATION 
In considerations of operators with phase factors the for­malism of auxiliary field/a/ has proved to be useful. Usually one introduces an anticommuting field z defined on the con­tour X=X(1]), OS.q S,,l, which transforms accOrding to the fundamental representation of gauge group SU(N). This allows. one to represent phase factors u~t ,x2) from the fundamental representation by means of 
u.13 cx2 •• 1 J-z.<~2 )z13 <~il, (2.1) 

where x 1 ~x (~ 1 ), x 2 ~x(q 2 ). The effective action for the enlarged system (QCD+auxiliary field) reads 
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• A Aa a ( a w1th ~~· ~ t t generators of SU(N) 
tation).ln order to get phase factors 
tation, we need auxiliary fields z,Z 
pect to the adjoint representation so 
the form 

err 1 -~b. c 
S.SQCD+Jd~{iza~z+ igz A~x~z fabcl. 

The corresponding Feynman·rules are 
r-......,...., 

z propagator' z·(~)zb("" )- e (rr-"" )Oab 

vertex 

(2.2) 

in fundamental represen­
in the adjoint' represen­
transforming with· res­

that the action takes 

(2.3) 

., . . . 'I' 
---+---

1"" 
b. Jt" ........ c. . 
' ' , ' 

We should emphasize that in spite of the mOdification of acti­

on (2.2) or (2.3) this theory does not really differ from 

QCD. There are no contributions of the auxiliary field neither 

to the usual Green functionS of .QeD nor to the 8 function or 

th~ anomalous dimensions of quark, gluon or ghost fields. The 

reason is that because of the structure of the .z· .Propagator all 

closed z loop diagrams vanish. To avoid unneces'sary complica­

tions with renormalization /4,5/ we restri_ct us to smooth con­

tours without. double points which are strict'ly time-l'ike or 

space-like. In the treatment of light-like contours special 

renormalization· problems appear/9/. · · 

In turning to the study of gluonium oPerato·rs we start 

with their definition in the framework of our auxiliary field 

formalism 

a x2 - b 

F~" (x 2 )(P exp ig/ dx~A~(x))abF P" (x 1 )~ 
a a 

1 
b b 

~(F~"z )(~2 )(z FP" )(" 1). 
(2.4) 

This is a consequence of eq. (2.1) of course also valid for 

the adjoint representation. Thereby the study of.the nonlocal 

gluonium operator is reduced to that of the product of two 

local compo~ite operators .F~-tv z and ZFpq , ~it~ respe~t .. to 

the shdrt-dlstance propert1es to be stud1ed 1t 1s suff1c1ent 

to determine the ·renormalization properties (i.e., Z factor 

and anomalous dimension) of these operators. We apply the 

technique outlined in /s,S,2/: all the calculations are done 

in x-space and we use the gluOn and massless quark prop.;;tga-.. , 

tors 
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(Feynman gauge) 

for the -calculation of Z factors in dimensional renormaliza­tion scheme. Whereas the calculations of- Z factor and anoma­lous dimensions are done in Feyrunan gauge later on renormali­zation group equations are used in Landau gauge. However gene­ral experience tellS that anomalous dimensions of gauge inva­riant ope-rators should not depend on gauge parameters used. An important tool are the following formulas 
n 2 if(x) (d zD (x-z)f(z)- ·+reg. terms 

8 ,ll(n-4) ' 

( d n zD (x-z) f(z)il D (x-z)= 
M 

· ( d"z D(x-z)f(z)D(y-z)-

;ae f(x) 

16172(n-4) 
+ r.t .• 

· rc 1 2 -t 2 2-n/2 1 =-• n 2 -2)(1617) [(x-y)] !f(x)+ ?.{y-x),.ai(x)+ ... l 

(2. 5) 

(compare Appendix of ref. 181 ). At first one has to determine the Z -factor of z field: 

which results in 

C Ag'l 1 zsz·l +- _,, 
4172 4-n 

For the composite operator 
lowing diasrams (the other 
identical results) 

~ 
' 

4 

F P1 z we 
operator 

(2. 6) 

have to calculate the fol­
ZF JLV , of course, yields 



a a n a •• 
+Z (Au xp- Apxu)l+reg. 

-g
2

'CA (-l), 1-z'F" +reg. 
4"2 4-n 4 W 

g2 1 1 a a a a•• a .. 
- 2 CA 4-·l-4 ,z Fpu +Z (A x -A x ) 

4rr -n p(J (JP 

1 a a •• a. 
+ _,z (F x x -F x x ) 

2 paau uaap 

a a • •• • •• # 

+z(AxXxx -xx) 
P a a P 

l·aa• a· 
+2iJ~z (Apxu -Auxp)l+reg, 

(The parametrization of the contour is normalized so that 

X2: I). As usual counter terms of new structure are demanded. 

The following operators are allowed by the BRS transformation 

(compare ref./!0,11/) 

nt .Faza 
ptJ ptJ 

2 • a. • a. a 
Opa. xa (Fpa xu- ta xp )z (2. 7) 

3 • a . a a 
{l ptJ • ( xpAu - XuA p) (Dz) 

a · a b c 
(Dz) ~a~z +gfabcA z • 

Collecting our results we get 

1 - g2 1 
<{!Az>=-CA-x 

4rr2 4-n 

x<l-.!..n
1 
+.!..0

2 +~03 !Az><s"> +reg.+O(g 4 ). 
2 2 < 

(2.8) 

As usual the radiative corrections of mixing partner are also 

to be determined. 

(2. 9) 

This could be obtained immediately from (2.8) by taking into 

account definition (2.7). 
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For U 3 one obtains pq 

2 
g laa• a· a• -'CA- _,z l(xa)(A x -A X ) + 4 11 2 4-n 4 u P P a 

\ 

~\ 
a a • •• · •• · + z (A x )(x"xP -xp x") I +reg. 

g 
2 

1 a • .. • .. • - CA_,z (A'i )(x x -x x ) +reg. 4rr2 4-n P u tJ P 

A 
' 

i'- 1 3z" • · • · •· 
4

" 2 C A .r.:;;· 4 ·1 ("J>a• -x"aP )(Ax ) + 

so that 

3 ;, g2 (-1) 3 - (g") 4 <0 Az>•-. - 2,CA --<0 Az> +reg, +O(g ). 
4" 4-n 

(2. 10) 

Comparing eqs. (2.8), (2,9), (2.10) with the definition of the 
Z matrix for operator renormalization 

i - -1/2 -1/2 j -<il Az>=Z .. Z3 Z 3z <0 Az> (2.11) lJ reg. 
and using (2.6) and 

g2 1 10 "r Z 3=1+-- --I-CA--1 
4"2 4-n 12 3 

( nr =number of quark flavours) we finally get 

5 1 
1/2CA -CA- -nr 12 6 1/2CA 

z =1+ 0 11 nr 
-CA--12 6 1/2CA 

g2 1 (2. 12) 
4 "2 4,'::;; 

0 0 1 ~ 12 - 6 

From this the matrix of anomalous dimensions can be extracted 
according to Z-1- L+O(g4 ), 

4-n 
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ad" g2 y J __ -

. . 4,2 0 
(2. 13) 

0 0 .. 

It has the following eigenvectors .and eigenvalues 

- 3 g2 5Ct nr 
n1 :n1 -n ~ Y1 =-.... <-..,.,.. + -l 

- 2 1 . 3 
!}2=!} +20 

n : na 
3 

4,;2 · 1< s 

The physical consequences are discussed in the next section. 

3. SHORT-DISTANCE BEHAVIOUR OF GLUONIUM OPERATORS 

Turning back to our original problem the short distance 
behaviour of gluonium operators aadj can be determined in 
the following manner 

adj a . x2 b 
G~vpa (xl'x 2 )=Fw(x2)(Pexptg fdxiLAIL)abFpa(x 1 ) 

. 't 

= !} !v<~2 )!} :X, (~1) 

= <iit +0"2 --ina l~'v <~2 Hiii +ii2- t'os l pa<~ 1l· 

Here 0 1 has been expressed in eigenvector combinations with 
respect to renormalization, so that we can take advantage of 
the anomalous dimensions (2. 13). Furthermore noticing that 
n3 is a second class operator contributing, contact terms.to 
Green's functions only, it will b~ neglected in the following. 

adj "- 1 - 1 -1-2 -2- 1 -2-2 
a~tvpa (xl'x 2 )=n~'v<~2 )npu<~ 1)+ n n + n n + n n • (3.1) 

The operator products ninj can now be represented by stan­
dard methods in form of an operator product expansion 

- - ij X1+X2 
ni (~2)nj (~1) B ~ [n (x1-x2)0n<-r- ), (3.2) 
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where 0
0

(x) are local operators, among which also the opera­tors -oc-cur known from the operator prodqct expansion of cur­rents in the case of forward scattering/121. The asymptotic 
behaviour of coefficient functions r~J (x 1 -x2 ) is obtained 
by means of standard methods 114/ (supposed that operators 0 n have already been diagonalized and y •. g2/ 4t~ 2cn are their anomalous dimensionltsl): n 

fij (~) 
• .\ (A+~) 

a 1+aj-en 
2b ij - m r. (x !"""2 ,g(A), -:;:>· (3. 3) 

which appears in the 
and a 1 .aj are 

(3. 4) 

Collecting (3.1), (3.2), (3.3) the operator product expansion of G~~pu is determined. In the fo~lowing we will discuss ano­ther definition of gauge invariant gluonium operator suggested by the consideration of Wilson functional equations/4.6,7,8,11,16~ Taking a closed smooth contour we define in the fundamental representation 
2 fund 

g 0/WfXT ~· trf gFI'v ("!! )U(x2,x 1)g F pctx 1)U (xl'x2 )!~ 

= •a (l)(g z F"v z )(~ 2 ) (gzF paz)(~ 
1

) z a (0). 
(3.5) 

Here the usual auxiliary field transforming according to the fundameptal representation appears. Let us review the results of /8,11/. The set of operator.s mixing under renormalization is 

(3.6) 

with the matrix of anomalous dimensions 
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1/2CA -1/2CA -CA/4 CF 

0 0 -CA/4 CF L yfund .... (3.7) 
4"2 

0 0 CA/4 

0 0 0 

fund yfund 4 
and Z ~ 1 - -r.:;;-· + 0 (g ). 

Eigenvectors and eigenvalues are 
g2 1 

Wl =rut-(1)2 .. yl• - ~CA 
4-172 ;::; 

-CF 

0 

There are two second class operators, namely (J} and (t)4 which 
can be neglected in the short distance analysis. In analogy 
to eqs. (3.1)-(3.4) one obtains the leading short distance 

behaviour (restricting to '0 0 =1 with d0 -· c 0 =0) 

2 fund X X 4 g 2 
CJ 2b -

g G (~ .~) • A [ -l .<z (1);;;'1 (~ )w1(~ ) z (O)> I -(A) 
A A (A~~) g2(A) 2 1 g 

4 CJI 4b 
+A[ ... ] <z(1)(.;;1.;;·2 + .;;2c;;1fz(OJ>1- (3.8) 

~(>-) 

Because of the explicit coefficient g appearing in the opera-
tors (3.6) there is an additional factor (logA)-1 originating 

from the matrix elements. To compare this w~th our earlier 
results we have to multiply the operators n' (eq.(2.7)) by g 

thereby changing the Z and y matrices 

z d.~ z z -{1- ..!!...2g2_1_)z 
aJ g 4tr 4-n 

and (":· -l/2CA -1/2CA ) Yadj ~ .f_ 0 -1/2CA 
4,2 

0 CA 
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with eigenvalues 1/2CA :
17

2

2. , cA-:;.2. Insertion tnto the ana-
logue of eq.(3.3) and restricting to the· first term .n =0 yields a result identical to (3.8) • 

. We therefore ~oncb.lde that both constructions of gauge in­variant gluonium· operators are equaivalent-wit~ respect to the short distance prOperties. It is an amusing fact that the identity 
u~:J (C)-tr!t"U(c)tbu-i (C) I .fund 

or 

z\~2 )z·b (~1) adJ - z(1)(z t
0
z) (~2 )(z t•z ) (~ /Z(O) 'rund 

valid for classical fields has some: reflection in-terms. of 
g2 1 Z factors. The Lh.s. has the Z-factor Zadj•1+-CA 4-n eq. (2.6)) whereas for the r.h.s. one obtaines eatf.~y" 

(see 

z2_ z -
(Z t Z) Z(l)Z(Q) 

g
2 

1 2 • (1 +-cA.,....,..) 1··ZadJ g,2 •-n 
(up to order g 2 ) • Of course the contour used in the· funda­mental representation is degenerated. However, as is well 
known/41. cusps of angle• 180° do not produce singularities and moreover they ar~ without influence on anomalous dimensions. A final remark concerns more complex gauge invariant opera­tors which can be constructed most.conveniently With the help of phase factors in the fundamental representation:;namely 

by insertion of a number of field­
strength tensor into the Wilson 
loop. In the framework of auxili­
ary fields this is equaivalent to 
iflsertions Of an appropriate 
number of operators gZF vz in analogy to eq. (3.5). Of course the previously calcufated ano­malous dimensions determine the short-4istance properties of these objects, too. 

4. ALTERNATIVE CONSTRUCTIONS OF MESON AND BARYON OPERATORS 
The two possibilities discussed in the last section pose the question, whether there are different constructions of gauge invariant meson or baryon operat.ors,- too. The most popu­lar construction 

IO 

M(x1 ,x 2 )= fa<x2 )f'Uaf3Cx 2,x 1 )\b/l(x 1). 

• <if\; za)(~2)f'(Zfl¢!3)(~1) 
r ··l·Ys•Y .... 

fl. -
(4. I) 



has already been analysed/2/. In analogy to the gluonium ope­
rators it is possible to define a meson operator which relies 
on a closed contour passing through x 1 and x2 • In case of colour 
group SU(3) we build 

M' (x 1,x 2)~;;., (x 1 ) U,8
2

,8 ,<x2 ,x1 , C1 ) /tiltYt x 

y ,B a 
xf'UY

2
Y
1 

(x2 ,x 1 ,C2 ).,r, 02 ("!!)< 2 2.2 

(4.2) 

In order to :rewrite this with the help of auxiliary fields, one 
now has to introduce two such fields z (1) and z (2) defined 
on the contours C1 and C2• respectively. Each field contributes 
( d11 . 'Z(i) Dz(i) (T/.) to the action; there are no contrac-

tioJs between
1 

z (1) and z (2) . Note that in contrast to the 
construction of the gluonium operators the contour now consists 
of two parts, which both are directed from x 1 to x2. Then 
eq. (4.2) can be rewritten as 

M'(x ,X )•(V: zW z(2) )(1),•tf'ltYII(z(2) z(,Bt) <f, )(2)<;?~2"2 • (4.3) 
1 2 a1 P1 Yt . Y2 2 a2 

The ~ew composite operata:_ ifra z<J>z~2)~ a{3y is group the­
oret1cally equivalent to ~aza used 1n eq. (4.1). Both opera­
tors together can be applied to form a gauge invariant baryon 
operator without introducing a fourth auxiliary point x 0 in 
eq.(1.l) 

In order to obtain renormalization and short-distance proper~ 
ties of both M' and B' one has to determine the Z factors of 
.,r, z<il and z (2 ) z (Ill) </f. ,a,By From121 one gets 

a a a y 
3CF g2 1 

z.,. -~1+ -----'f'aza 4 4rr2 4-n 
3CF ~ 

y~aZ: =--4-4
77

2 · 

(4 .5) 

For the other operators the following diagrams have to be cal­
culated 

A '~ 1 I 
+ 7' ..,.. 

I I 

' I 
~ •t ~ 1. 

II 



LJ' , '! "\ 
/1 't 

Taking into account the Z factors of the fields rp and z (i) 
(compare eq. (2. I I)) 

z fund 
1 

C g 2 
1 

3 •· + p--z 4 17 2 4-n 
and 

this leads to 

rfl 1 rfl z ~1 +--. y ~---. (zzo/J) 4 172 4-n (zzo/J) 4 17 2 
(4.6) 

Taking into account Cp (N .a ) ~4/3, we obtain that Z factors 
and anomalous dimensions of both operators 1/J z"{l) and 
z~2) z~) if; EafJy coincide. This has the cgns~quence that 
renormali~ation and short distance properties of M and M" 
coincide, too. It is now straight forward to discuss the bary-
on operator B' (x 1,x 2 ,x 3 ). Its Z factor looks like 

2 g2 1 z8 ,m(Z,,.-) Z .,.~ 1+ 3-2-. ., 
opl. (zz'f") 4rr 4-n 

g2 g2 
y ~-3- "'k· -· B~ 4rr2 4

17
2 

(4. 7) 

Here a remark concerning the Dirac matrices r is in order. 
As is well known, in case of local composite operators the ·Y 
structure is of essential influence on renormalization proper­
ties (compare jp.p and ifiy ~ o/1 ) • The non local operators M • are 
reduced by the auxiliary field formalism to products of local 
operators at different points in between r· can be inserted 
without changing the ultra violet divergencies and Z factors. 

If it is necessary to study the short distance behaviour of 
B' one could apply the operator product expansion 

Xl+Xe+Xa B'(x1 ,x 2 ,x 3 )•·; f
0

(x1 ,x2 ,x3 )On<-
3 

), (4. 8) 

where the coefficients behave as 

X X X 9f2-d0 g2 r. (.!J...::2,:::l! l ~ " [-l 
A .\ .\ (.\-) g 2(A) 

1asymptotically. 
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5 • HADRON OPERATORS WITHOUT Z FACTORS 

The results of the foregoing sections can now be exploited 
to look for modified hadron operators showing a simpler beha­
viour with respect to renormalization. ·Returning to the basic 
composite operators Z., .Pa or z~) z~) ofoy ,af3y with the 
identical Z factor Z=1 + 3g2 CF/(16"2{4-n)) {eq. 4.6) and 
comparing this with the well-known factor of multiplicative 
mass renormalizationlt4/ ( m denotes a quark mass) 

3g2 1 z =1--C,- {5.1) 
m g"2 4-n 

{which is also independent of the gauge parameter) we observe 
that the operators ym zip or vm z~>z<,Jl .p ,af3y have tri­
vial renonnalization factors Z =1+0 (g4): Therefore turning 
back to the hadron operators of eqs. (4.1), (4.3), (4.4) we 
conclude that the following modified meson and baryon opera­
tors 

m ;i(x 1 )U(xl"x 2 )r,P(x 2 ), f' =1,y5 ,y~,. .. 

m
312

.pa (1)Uf3a (3,1)ofoa (2)Uf3a (3,2),P (3)({3.2{31a3 
1 1 ·t ~ 2 2 aa 

(5.2) 

have a trivial Z factor. We would like to emphasize that this 
statement is obtained in the framework of dimensional renorma­
lization (minimal subtractions) which at the same time is the 
single scheme to deal with phase factors at present. The renor­
malization properties of operators (eq. (5.2)) should be com­
pared with that of similar local...!/perators: m(.p.p )(x) has a 
trivial Z factorhs/ but not m(,Py .P )(x) (because 
(i/i'y~ ,P)(x) has Z=l). ~ 

In the case of _gluonium operators the problem is more inv-ol-
ved. The operator g2 G~~~ has nontrivial renormalization. 
Its basic composite operator gZF~wz has, as a member of 
a set of mixing partners, a nontrivial Z matrix (compare 
eq. (3. 7)) .. Surprisingly an essential simplification occurs 
if the field strength tensor is contracted with its tangent 
vector. If in addition the second class operators w~vand w4 

(in eq. (3.6)) are neglected then because of w1 i = w2 x ~v 
one arrives at ((lj 1 X /en =((s) 1 X )un. ctriseG.uent~Y the • p..v v _IJ.V v 
gluon1um operator 

g
2 x v(2) x "(1)G ~~~~" (x1 ,x 2 )= tr! g (,(, F ~v X2) U(2,1)g(x"F pa )(1)U(1 ,2)1 

(5. 3) 

has the trivial Z factor Z =I. The same of course is true for 
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2 • • adj • a 
g xv(2)xJl)G (x1,x 2 )- g(xv F uvpa /lV 

ab • 
)(2)U (2,l)g(x F 1'7)(1). (5. 4) 

The result just obtained· seems to be of a 'somewhat paradoxial 
character. Let us·consider the· gauge invariant quantities 
g2GJ.tvpu· (x1 ·._x 2)n; n;· . . , with arbit·rary (no_rmalized) ve'c-
tors nl and n2 .• ~e closed_ curve C _connec~s t~e points. x_ 1 and x 2 . Aston1sh~ngly enough the renormal1zat1on of th1s ope­
rator depends drasticallY on the geometry of the curve C, e.g., 

I c 
(: nl,n2 are not tangent vectors:· 

nontrivial renormalization 

C
': n1=x(xl), n2-l<(x2 ): 

trivial renormaliz.ation. 

Letting shrink both curves to one point (x~(~,A)-J.x~(~)) one 
gets a different short distance behaviour of 

2 G (x x ·.C) nln2 and g IJ.II(XJ 1'2' (J V 

the distinct behaviour of the basic operators g Z'Fttv nvz and 
gZ'FfW X

11
z in both caseS is of a connnon origin w1th the ad­

ditlonal Z factors for Wilson functionals with corners/5/, 
Obviously the gluonium operators (5.3), (5.4) play a distingui­
shed role havirig nd_avoidable Z factor and showing a definite 
shortdistance behaviOur. 
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