


- . INTRODUCTION

Composite operators have always been the main tool for
field theoretic description of bound states. In the framework
of Bethe—Salpeter amplitudes these operators are used as non-
local objects. In case of Quantum Chromodynamics gauge inva-
riance poses special problems. The description of colour
singlet bound states should be performed by means of gauge
invariant composite operators. Especially if one wants to ex-
ploit short distance properties of composite operators one
has to restrict consideration to gauge invariant omes, other-
wise short distance properties depending om gauge fixing pa-
rameters would lack physical relevance.

It is well-known that gauge invariant composite operators
have to be found with the help of phase factors/1/. Renormaliza-
tion and operator product expansion of meson operator

M(xy,2g ) = P, () Ugg(Bg Xy J¥ gX 1)
12 (1 » 1)
U(x2 ,xl)uP expig [ dx; Au(x)
Xy
has already been studied/24 For baryons the operator

Bix,,Xxg,Xg)= lllat(x 1)'!":2(!2.)%::3‘3 Ix
(1.2
XUBW-{ XX 1)U Bzaz(xa X g)U 330- 3(1{ g Xg )¢ 313238

has been proposedfa/-

It seems worthwile to extend considerations to gauge inva-
riant gluomium operators, too, which could be useful for the
study of colour singlet states from gluons. In analogy to
(1.1) ene may define .

adj 3 »
Givpo (%)= F.uv(xz)uab("z" PFor(®y ) (1.3)
with
¥z .
Uz x,)=Pexpig [ dx A (X
. 27 . 1y Ll (1.4}
(B ye =hy Wiy -



Here in contrast to (1.1) the phase factor appears in the ad-
joint representation. The contour joining the points %y and

X g should be smooth and without double points in order to avo~
id specific ultra violet divergences connected with such con-
tours/4.5/,

There is another possibility of building gluonium operators,
which uses a closed contour passing through X, and x; toge-
ther with phase factors in the fundamental representation:

fungd’

: ,..#vw-(xt'?‘a)ft?IF#yl(xz)U-(xg-31)Fp,',(3 DUG L (1)5)
Such a construction is known from investigations of Wilson -
loop functional equations/iﬁﬁhS/, The basic tool uged for

the study ef all of such gauge invariant operators is the
formalism of auxiliary fields/® ‘which 'will be reviewed short-
ly in section 2. It allows a reduction of the nonlocal objects
to products of local composite ones. As a first example we
calculate 'Z factors and anomalous dimensions of the composite’
operators needed for the construction of (1.3). Then in sec-
tion 3 remormalization and short distance behaviour of G 24
itself is obtaimed. It turns out that both operators G2% ang
cgfund  opoy thé-same'Short—distance behaviour, 'In this sense
the group theoretic representation has no influence on physical
properties. In section 4 we discuss alternative constructions
of hadronic operators. Again for the meson-operator (4.2)
renormalization and short-distance properties are not changed.
On the other hand, the new expression allows one to ‘determine
the renormalization properties of baryon operators {compare
eq. (4.4)) in a convenient manner., In the last ‘section we.
discuss modified hadron and gluonium operators with trivial Z
factors, i.e., Z= 1+ 0@g*), which eventually could be useful
in nomperturbative calculations.

2. GLUGNIUM OPERATORS IN THE ADJOINT REPRESENTATION

In considerations of operators with phase factors the for-
malism of auxiliary field/8/ has proved to be useful,Usually
one introduces an anticommuting field z defined on the con-
tour x=x(y), 0%y X1, which transforms according to the
fundamental representation of Bauge group SU(N), This allows.
one to represent phase factors U(xl,xg) from the fundamental
representation by means of

Uap®g 2 1 )=2,(15)% g (ny) , | _ @

where x;=x (ny), x4 =X(7, ) The effective action for
the enlarged system (QCD+auxiliary field) reads
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eff 1 = e
S =85.p + Jth(manz+ngpxuzL

(2.2)

with A =Aita (t* generators of SUM) in fundamental represen-
' tationg.ln order to get phase factors in the adjoint represen-
tation, we need auxiliary fields z,z  transforming with res—
pect to the adjoint representation so that the action takes
the form

eff 3. ..o . =a,b* G '(2_3)_
.sasacﬁ,gdnhzahZflgz Aux“zfahch
The corresponding Feynman rules are B
. r"'——-'—'ﬂﬁ_b . } 1) o -1?'
z propagator’ z%(n)z (" )= @ (pn’ )8 2P, ——— —
. ‘ ' | R
=b M ~ .
Z°2°A%  vertex ~gX,f., . b, & .\&*

. . ‘
We should emphasize that in spite of the modification of acti-
on (2.2) or (2.3) this theory does not really differ from
QCD. There are no contributions of the auxiliary field neither
to the usual Green functions of QCD .mor to the B function or
the anomalous dimensions of quark, gluon or ghost fields. The
reason ig that because of the structure of the z propagator all

_closed z loop diagrams vanish. To avoid unmecessary complica-
tions with renormalization /45/ we restrict us to smooth con-
tours without double points which are strictly time-like or
space-like. In the treatment of light-1ike contours special
renormalization problems appear/%, - ‘ : ‘

In turning to the study of gluonium operators we start
with their definition in the framework of our auxiliary field
formalism e -

a Y2 ~ b
Fuv(xz)(P expigxf dxﬂA;ﬂxDapra(x1)‘

1 o | (2.4)
- (5, 2 )my) @ Fppy )y

This is a consequence of eq. (2.1) of course also valid for
the adjoint representation. Thereby the study of the nonlocal
gluonium operator is reduced to that of the product of two
local composite operators thz and ZF,, . With respect to
the short-distance properties to be studied it is sufficient
to determine the renormalization properties (i.e., Z factor
and anomalous dimemsion) of these operators. We apply the
technique outlined in /6.8.:2/; all the calculations are done
in x-space and we use the glucon and massless quark propgga—h;
tors



F('E' ~1) (Feynman gauge)

10Cs)
Sp@m—f e

2p* (x%-i0)
for the calculation of Z factors in dimensional renormaliza-
tion scheme. Whereas the caleculations of Z factor and anoma-
lous dimensions are done in Feynman gauge later on renormali-
zation group equations are used in Landau gauge. However gene-
ral experience tells that anomalous dimensions of gauge inva-
riant operators should not depend on gauge parameters used.
An important tool are the following formulas

4% D% (x (2w if(x)
fa=D"@-2)(@) 8 n¥(n<4

)-+ reg. terms,

[ 4%2D (x~2)8(2)9, D (x-z)e 0 f®) .
" 16 7%(n—4)

. (2.5)
fdz D (x-2)f(2)D (y~z)=.

==il /2 -2)16r%™ [a-y)?12 " 1), L2, 5,004}

(compare Appendix of ref, 78/ }. At first one has to determine
the Z-factor of z field:

1 1
5 ¢ 2. . —a d . -
—g~if if d dn =z n - - )
_m_ B e cbdof "Ic{ g2 (1 )z (712)6?0;:1 ”a)Duv(l 2}xu(n1)xv(;;2)
CA82 i 1 —-a - .
ST T imE 00,2 ) 4
which results in
232”1 +o——— e, (2-6)
For the composite operator F_z we have to calculate the fol-

lowing diagrams (the other operator .'Z'F#V , of course, vields
identical results)

2
g (-—1) a,, 8 * .. . TR
A“{\R 3 4";50:& m_;z (A x)(xpxo,—xa‘xp)}ﬂeg.



g2 1 L 4,4 - a
4::20‘\’4—{[8'?2 By %, ~By%,)

a,a = Bee
+7 (Aa’xp— Apxa)§+[eg,

2

g -1}y 3 a
& g, 2% .
.2 B4, T Tee TR

a,,an" s o T
+z27(A 1!1)(1:{_,1;:0r "‘xaxp)
1 45 a,,8r" a-
+-§—8nz (Apxa.—Ao.xp)l.;.reg_
(The parametrization of the contour is normalized so that

%%= 1), As usual counter terms of new structure are demanded.

The following operators are allowed by the BRS transformation
(compare ref./10.11/) .

Ql -Faza
i fo )
. a . a .
02 =%, (F % ~E %)z (2.7)

9,'1;’ (ipA’t, ~5,A%5)(Dz)

(Dz)* =37 2" +81,

b ¢
nbcA LA

Collecting our results we get

- 2
,<QIAZ) = ..E—- CA_I;_-. 'Y
4”2 4N
2 - i 2.8
x,<{—.-!‘§ﬂi+ -;—Q +—12-513 iAz>(ga) + reg.+0(g4 ) ( )

As usual the radiative corrections of mixing partner are also
to be determined.

Bami B 11 03,=0 (€ "
<Q%Az> 'ETECAE:E:E_(n Az> +reg.+0E" ), (2.9)
This could be obtained immediately from (2.8) by taking into

- account definition (2.7).



93 e obtains

2
g 1 3 a. s a -« a »
.C ...:;l..‘...:z {(xa)(Aaxp —Apxo} +

£

47 % A

& a-
p=Ap%y)

“oﬁ art e
+ (iaép-— }.Ipaa XA L ) +reg,
i PR 1 .
4—n 7

& A sea - .
+2 (AE )%, —X,%; )} +reg,

: 2
g 1 a a0 e = . e
f: 3 -4:2CA‘-1:-.Z (A% ) %, ~¥%,X ) +reg.

Y
g2 1 3z°
. . z—- o l(xpaa—xaa )(Ax)+
« . +(x9 )(Apia-Af‘, £,)} + reg.
so that
2
~1
<Q Az>=£—-CA —(-_2<Q Az>gO) + reg, +0(g4 )

47% * 4-n

(2.10)

' Comparing eqs. (2.8), (2.9), (2.10) with the definition of the

Z matrix for operator renormallzatlon

<@ A%>-2Z, 7 1/‘?z 1’2<n AZ

reg.
and using (2.6) and
2 n
g 1 {IOC f

Z,=1+-
3 a2 4 12 ATF

-1}

(0 *number of quark flavours) we finally get

5 1.
TECA—-é«Hr 1/201\ 1/2GA \
Z=1+. 0 E_C _nf 1/2C gZ 1
y - — [ = .
1227 gl PR e
0 - {
0 12 6

{2.11)

(2.12)

From this the matrix of anomalous dimensions can be extracted

according to Z-l—_a-}:-—-+0(g4 N
-n



sCi 1/20

2dj ,._IEE_ e NG 8

v yyed I : T
(2.13)

It has the foilowiﬁg eigenvectors and eigenvalues

2 -ql_g3 5Cy, By,

Oy =707 2y = ("'E' 5

s’_ . 2 '

g -0.1q® & (g _1
g=t gt P T At )

g -0 - -_5;2.{..1_0 + 51y,
3 Yg= T ee AT

The physical consequences are discussed in the next section.

3. SHORT-DISTANCE BEHAVIOUR OF GLUONIUM OPERATORS

Turning back to our orlgznal problem the short dlstance
behaviour of gluonium operators G*¥ can be determined in
the following manner. :

dj
G a
Hvea

o Xg

(xl,x2)=F‘ (xg)(Pexp ig fd n)ab pcr(xl)
1 1

=0 (nz)ﬂ (ny)

_.=(nl+9 28y )y, (g )y 0, Juﬂ 3 ol

Here 0! has been expressed in eigenvector combinations with
respect to renormalizatiom, so that we can take advantage of
the anomalous dimensions (2. }3). Furthermore noticing that
93 is a second class operator contributing contact terms to

GCreen's functions only, it will be neglected in the following.

d
G:Vjpg (xy.% 2)=91 (ng)g (ny) + are2, 20! . 42qQ%. (3.1)

The operator products Q ﬂ can now be represented by stan—
dard methods in form of an operator product expansion

Qi (nz)ﬁj (m) = 2 rn (xy—%)0, ¢ 12”,2_).

(3.2)



where O,(x) are local operators, among which also the opera-
tors occur knowm frem the operator prodyct expansion of cur-
rents in the case of forward scattering 12/ The asymptotic
behaviour of coefficient functions th (x;-%, } 1is obtained
by means of standard methods /14/ (supposed that operators O,
have already been diagonalized and v, =8% 4:?20n are their
anomalous dimension/1%/);

&i'f'a. -0
- g AL

i ij - m
A Ty 20 : A
11C, by . . . , ;
where bax - is Qge coefficient which appears in the
B functiogé, §B(Jl-§—-g2'{1+-g-§- log AZ 1 and a;,a; are
defined by 4w
-5C, 1, 11Cy n,
T 6T TR

(3.4)
33 =1/12C, +n,/6.

Collecting (3.1}, (3.2), (3.3) the operator product expansion
of GL}W is determined. In the following we will discuss ano—
ther definition of gauge invariant gluonium operator suggested
by the consideration of Wilson functional equations/4.8,7.8,11,18/
Taking a closed smooth contour we define in the fundamental
representation

fund

gﬂ{}ﬂvm_ = :ring (%, YU(xy.x g Fpa(x DU,z

=2, (DEZF,, 2)(n,) B2, 2)n )% , (0).

(3.5)

Here the usual auxiliary field transforming accordiang to the
fun -ame}xtal representation appears. Let us review the tesults
of 7811/, The set of operators mixing under remormalization is

1 =
muvzng“wz .
mﬁy-.gf(;y}?‘m -qum lzx, (3.6)
- . . — . -
wﬁ,, =glz (2,4, ~2,8,)Dz~ZD(x A, ~£ A )z}

— &
4 . . .. #» b
muV--l(k“xy—-pr#)(ZDZ +zDz)
with the matrix of anomalous dimensions
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1/20& —1/205 -CA/4 Cy

0 0 ~C,/4 C
A ¥ 2
ynd = =3 3.7
() 0 C,/4 ~Cp "
0 0 0 0
fund f“
and Z =1~ 4 — +0@g*)

Eigenvectors and eigenvalues are

Gl =wl-w? 1

2
g” 1
- =B ¢
4 4ﬂ2§A

o =0+l » y2 a0
4ACp 3 g% 1
-3 3 4 5. =C
= - 4 —— =
@ w Ca b4 e A
L + pit=0.

There are two second class operators, mamely o and ot which
can be neglected in the short distance analysis. In analogy

to egs. (3.1)-(3.4) one obtains the leading short distance
behaviour (restricting to O, =1 with d = ¢, =0)

2
2;fund 4. € Cy/2b — —

X ...3 - . 1 1 ]
gG (A 3 )(A-;oo)A Eg'ﬁ()\)] <z{l)w (n )@ (1? 12 (0)> | reos

Caf
+X Lol A/4b<z(1)(515'2 "2'1)z({})>|_ : (3.8)

ot <z()o® (Uz)a-)a(ﬂ )Z(O)>‘g('\)

Because of the explicit coefficient g appearing in the opera-
tors (3.6) there is an additional factor (logA)~! originating
from the matrix elements, To compare this with eur earlier

results we have to multiply the operators Q' (eq.(2.7)) by g
thereby changing the Z and y matrices

22 ..(1~ 8 41 L)z
and 1/ch -1/2C,  —1/2C,
adj
¥ 5 0 0 -1/2C
472 A
0 0 Ca



2 2
with eigenvalues 1/2CATg—9* , CA%, Insertion into the ana-
. ¥id 7o .

logue of eq.(3.3)and restricting to the first term 'n =0 yvields
a result identical to (3.8), .

We therefore conclude that both comstructions of gauge in-
variant gluonium operators are equaivalent-with respect to
the short distance properties. It is an amusing fact that the
identity !

U:gj (C)=tri t*u {c) th"‘ 1 ©)} fund-

or
a —-:h — & - A - N ’
Z{n,)z (nl)adj =z{1)(zt 2) (1, )27z ) (1) 2(0) pynq

valid for classical fields has some reflection in terms. of

2
Z factors. The 1.h.s. has the Z-factor_Zadj-l-;-—g--CA-al_:ﬁ (see
eq. (2.6)) whereas for the r.h.s. one obtaines ea?ﬁ-y )

2 g 1 2 ’

%G o Baiey =4 g‘,‘,'ch 1557 ) 1 =Zagy

(up to order g? ). Of course the contour used in the funda-
mental representation is degenerated. However, as is well
knownfi/,cusps\of angle: 180° do not produce singularities and
moreover they are without influence on anomalous ‘dimensions.

A final remark concerns more complex gauge invariant opera—’
tors which can be:constructed most .conveniently with the help
of phase factors in the fundamental representation: namely

‘ by insertion of a number of field-
strength tensor intc the Wilson
loop. In the framework of auxili-
ary fields this is equaivalent to
insertions of an appropriate
number of operators gZ¥ - in

analogy to eq. (3.5). Of course the previously calcufated ano-—
talous dimensions determine the short-distance properties of
these objects, too.

4. ALTERNATIVE CONSTRUCTIONS OF MESON AND BARYON OPERATORS

The two possibilities discussed in the last section pose
the question, whether there are different constructions of

gauge invariant meson or baryon operators, too. The most popu—
lar construction

M(x1 'x2)= JQ(XQ)FUQB(X,Q’XI)‘#B(XI)D P *'1 -sto'yup... . (4.])

= (4, 2, )1 )T @ g n, )
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has already been analysed/Z/, In analogy to the gluonium ope-—
rators it is possible to define a meson operator which relies
on a closed contour passing through x; and %,. In case of colour
group SU(3) we build

G % ayByy
I3 M7 (x,.x )"”ff (X )U (% /%4, )€ 717
e _3 2" 1 4.2)

¥oB,a
X c, xTUy (X1 Cp)ug,y () 2722

In order torewrite this with the help of auxiliary fields, one
now has to introduce two such fields z(1) and z¢® defined

on the contours Cl! and C2, respectively. Each field contributes
(g 20Dz ) to the action; there are no contrac-
tions between z1 and z®) . Note that in contrast to the
construction of the gluonium operators the contour now consists
of two parts, which both are directed from x; to X,. Then

eq. (4.2) can be rewritten as

M~ (x, x ) (d, "(é) Z_(2) )(1)6“'1313’1["(3(2)2(1) & )(2)67’282'12' (4.3)
1 Yo B2 ag

The new comp051te operator J;‘z(l) B aBy is group the-
oretically equivalent to \[; used in eq. (4.1). Both opera-—
tors together can be apphed to form a gauge invariant baryon
operator without introducing a fourth auxiliary point x4 in
e‘h{‘l-l‘l

6 g
B (xyky kg ) =g, (DUg . B0, g , (320, Bk 25175

(1) =) @ 1) BgBja (4.4)
‘_(%1 ay )(1)(1,/;a2 ag )(2)(25 By 1/r 27173 K3).

In order to obtain remormalization and short-distance proper—
tlE‘.S of both M' and B' one has to determine the Z factors of

Vo 2y 70 and z(z) (ﬁ)‘[’y afly | From/?/one gets
—_ «-1+ 3CF v—gf-n——l.-.—..
gb 2 4-n (4.5)
3Cp
.yd; za = 4 4772 '

For the other operators the follow1ng diagrams have to be cal-
culated

g
472

1
40

1



“ 82 2 4
Aoooerd - = 1.
A ~ 472 3 4-n

'1 . s
Taking into account the Z factors of the fields ¢ and 2@
(compare eq, (2.11))

2 C 2
Zmnd-.iq.cp.g._.-.l—... and Z2=1——~F——g-——-1---
3z 472 4-n 2 4p% 4
this leads to ' 7
2
z ..E 1, __ 8 (4.6)
(zzyh) 472 4-n (z2¢)  4,%°
Taking into account Cp (N=3 ) =4/3, we obtain that Z factors
and anomalous dimensions of both operators r/;ai'f:) and
sz)z Dy eaBy coincide, This has the consequence that

renormalization and short distance properties of M and M’
coincide, too. It is now straight forward to discuss the bary-
on cperator B’ (zy,x,5,%4 ). Its 2 factor looks like

2 ' g% -

Z = Z o = e, | —————
B = Ey3 ) 2y 48t

2 2 : (4.7)
v =-3-7--z ’ g

B’ 4n% 4:72

Here a remark concerning the Dirac matrices I' is in order.
As is well known, in case of local composite operators the ¥
structure is of essential influence on renormalization proper-
ties (compare ¢y and ayu ¥ ). The nonlocal operators M’ are
reduced by the auxiliary field formalism to products of local
operators at different points in between I' can be inserted
without changing the ultra violet divergencies and Z factors.
If it is necessary to study the short distance behaviour of
B” one could apply the operator product expansion

, X+ XgiXg
B (xl ngixs )"" nz rn(x:l ,32 'xs )On(- 3 )l (4.8)
where the coefficients behave as
[ Y
8/oq. L2 z _
f, Gh32,5,) . o A : iy B
B S A L X OO

| asymptotically.

12



5. HADRON OPERATORS WITHOUT Z FACTORS

The results of the foregoing sections can now be exploited’
to look for modified hadron operators showing a simpler beha-
viour with respect to renormalization. Returning to the basic
composite operators Z,y, or 22 z%) by € &Py with the
identical Z factor Z=1 + 3g® CF/(16n2(4—n)) {eq. 4.6) and
comparing this with the well-known factor of multiplicative
mass renormalization/14/ (m denotes a quark mass)

3g? 1
Z =138 Gt
m 81‘.\'2 4—[1 (5'1)

{which is also independent of the gauge parameter) we observe
that the operators ymzZy or Vi z{&4Y) u,f; @By have tri-
vial renormalization factors Z- 1+0 ). Therefore turning
back to the hadron operators of eqgs. (4.1), (4.3), (4.4) we
conclude that the following modified meson and baryon opera-—
tors

mtr(xl)U(xl.X2)l_‘¢(82), r =—"1f}’5 o‘}’#--"

of2 B.B.a (5.2)
W, WU B, @V, BRY, B¢ 1

have a trivial Z factor. We would like to emphasize that this
statement is obtained in the framework of dimensional renorma—
lization (minimal subtractions) which at the same time is the
gingle scheme to deal with phase factors at present. The renor-
malization properties of operators (eq. (5.2)) should be com—
pared with that of similar local operators: m(¢y )(x) has a

trivial Z factor/t6/ but not m(g.try ¥ )}(x) (because
&y, ¥)(x) has Z=1).

In the case of gluonlum operators the problem is more invol-
ved. The operator gEGfu“pa has nontrivial renormalization.

Its basic compc>31te operator ng z has, as a member of
a set of mixing partners, a nontr1v1a1 Z matrix (compare

eq. (3.7)). Surprisingly an essential simplification cccurs
if the field strength tenmsor is contracted with its tangent

vector. If in addition the second class operators mgvand m:v
{in eq. (3.6)) are neglected then because of aﬂyi = o x
one arrives at (w L2 = (o &V xv)‘m Consequent’iy the

gluonium operator

g% @k (GRS (1) x,)=trl g, Fy, XU Ve, F,, XDUL
(5.3)

has the trivial Z factor Z=!. The same of course is true for

13



£k (2)xa(1)c oo 1% )=8G Fr XU @Del ). (5.4)

The result just obtalned-seems to be of a 'somewhat paradoxial
character. Let us consider the gauge invariant  quantities.

g°G (xl.xg)n n? ‘with arbitrary (normallzed) vec—
‘o, v
tors n} and n2, The closed curve C connects the points x
and x2 © Astonishingly enough the’ renormallzatlon of this ope-
rator depends drastically on the géometry of the curve C, e.g.,

c C: nt,n? are not tangent vectors:-
: nontrivial renormalization

o n'=%(x1), 0¥=x(p )
' trivial renormalization.

L . . .
", ‘ : _ ,

Letting shrink both curves to cne point (x (n,A)=Ax hﬂ) one
gets a different short dlstance behaviour of

g GWW (xl.xg.C) nlnz and g GW‘:‘gr (xl,xz,C )111112 May be,

the dlStlnCt behaviour of the basic operators ng n,z and
BZF,, x z in both cases is of a common origin w1th the ad-
dxtlonal Z factors for Wilson fumctionals with corners/s/. |
Obviously the gluonlum operators (5.3), (5.4) play & distingui-
shed role having no avoidable Z factor and showing a deflnlte
shortdlstance behav1our
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