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l. During more than a quarter of century in quantum field 
theory (QFT} the functional equations of. renormalization group 
{RG) are known. These equations obtained11•21 on the basis. of 
very specific ideas and reasonings, connected with the proce­
dure of reno-rmalization of ultraviolet divergences, have a ve­
ry simple and elegant form. They obey the universality proper­
ty, i.e., do not depend on details of specific QFT model. 

Several years ago it has been discovered131 that in the 
one-dimensional problem of radiation transfer there also arise 
the functional equations identical with RG equations. This 
means that the universality property has a more wide scope. 
To describe the general nature.of this phenomenon, we intra-. 
duce a special term- the functional automodelity (FA). 

A natural question about the nature of FA arises. We show 
here that FA reflects the simple property of transitivity of 
physical variables with respect to the way of specifying their 
initial or boundary values in the systems with a small number 
of neffective" degrees of freedom. This conception allows us 
to find a wide set of physical systems for which the property 
of FA takes place. For theoretical analysis of such systems 
the renormalization group method, wh~ch is of a wide use in 
the modern QFT problems, may turn to be fruitful. 

2. The key position in the RG formalism is occupied by the 
so-called invariant coupling constant g. For the QFT model 
with one nonzero mass and one dimensionless coupling constant 
g it can be represented as a function of three agruments 
i(x, y. g), where x and y are dimensionless momentum and· 
mass arguments. The functional Eq. for g has the form~"2/* 

g(x, y, g) ~ g(x/(, y/(, g((, y, g)). (I} 

From this Eq. there follows dir~ctly the normalization con­
dition i(l, y, g) =g. Hence the third argument serves as an initi­
al or bound-ary value of the function g. Equation (I) states 
that the simultaneous transformation of all three arguments 

*For derivation of Eq.(l) and discussion of details of the 
RG formalism we refer to the chapter "Renormalization Groupn 
of any of editions of the book/4/,, 
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x ~x;e, y ~ y;e, 
leaves the invariant coupling g unaltered, that justifies its 
name. 

Under definite physical conditions (massless QFT model, 
ultraviolet asymptotic behaviour of massive model) the mass 
argument can be put equal to zero: y =0. The corresponding func­
tional equation 

icx. g) = iicx;e, ice. g) l (2) 

will be referred to as masSless. The system of equations equi­
valent to Eq. (2) was obtained in paper1 I!. 

Functional equations (1), (2) obey the evident group struc­
ture. In applications of RG to QFT problems the important role 
is played by differential group equations. By differentiating 
(I) with respect to X and putting then e =X, we find 

ai(x, y, g) 

a lnx 
where· 

(3(!..., g(x, y, g)) ' 
X 

(3(y, gJ· 
aiice. y, gJ 

1 . ae e= 

(3) 

(4) 

Differential group equation (3) first obtained in 12/ de­
scribes the momentum evolution of the invariant coupling g~ 
We shall call it the evolution equation. 

The main source of dynamical information in QFT is provided 
by an infinite system-of coupled integral-differential equa­
tions for Green functions and vertices, i.e., quantities like g. This system can be approximately solved by the perturbati­
on method that leads to power expansions like 

- ( ) 2r ( ) . ·ar ( l .. . gp.th. x,y, g =·g +g 1 x,y + g 2 x,y + ... . 
with coefficients f£ (X, y) given in the explicit, form. Despite 
the smallness of the g paramete.r, such expansions turn out to 
be unsufficient in specific regions of x,y variablfs because 
of the singular behaviour of ff. So, at x >>1, fe-.. (lnx) . Here 
the evolution differential equations can help. Using for the 
definition 'Of (3-function the ip.th.(in the r.h.s. of Eq. (4)) 
and solving then evolution equation (3) one obtains an expli­
cit expression for i. which on the one hand satisfies func­
tional equation ( 1), and on the other hand under the expansion 
in powers of g provides a given number of correct terms of the 
perturbation series. In this way it turns out to be possible 
to enlarge significantly the domain of x, y arguments in which 
a new "improved with the help of RG" perturbation expansion can 
serve for the quantitative description of objects like g. The 
procedure of combilling the dynamical information from the equa-
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tion of motion with RG properties is known in QFT as the re­
normal-ization group method. It has been proposed in pa­
pers 12•51 and nowadays provides the only basis of quantitative 
theoretical calculations in quantum chromodynamics and in the 
theory of grand unification of interactions. 

For the following needs we perform in (I) the change of 
variables and introduce the notation 

x .... t = Inx, y .... T = Iny, e ... r == Ine, 
- , T 

0 g(e , e , g) = (t, T, g). 
The functional equations take the form 

O(t+r, T, g) =G(t, T- r, G(r, T, g)) 

G(t + r, g) = G(t, G(r, g)) • 

(Ia) 

(2a} 

In contrast to the initial Eqs.(l) and (2), in the new 
equations the transformations of arguments t,T have the ad­
ditive structure. We shall call these equations additive ones. 

3. In paper·t:3/ the property of automodelity in the one-di­
mensional transfer problem was studied. It reflects the well­
known Ambartsumian;s principle of invariance and yields the 
functional equations for the intensity of monochromatic ra­
diationG,penetrating from the vacuum into the semi-infinite 
mediUm. The intensity G is considered here as a function of 
a distance t from the boundary and of intensity g of the radia­
tion falling on the boundary from the vacuum. The remarkable 
feature of the equation obtained is its identity with the ad­
ditive massless eq. (2a)· In a recent investigation/EV, follow­
ing the line of paper13 ,it- has been shown that the transition 
from the semi-infinite medium to the finite layer with thick­
ness yields the massive eq.(la). At the same time the tran­
sition from the monochromatic case to a system of photons with 
two different energies (when at each act of the interaction of 
radiation with atoms of the medium quanta of one frequency 
can transform into quanta of another frequency) leads to the 
system of coupled functional equations 

This system is just an additive version of RG functional 
equations for the QFT model with two coupling constants. It 
was first obtained in paper'/7/-.. 

The property of identity of functional equations for physi­
cal quantities in complex systems from very diverse region of 
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physics, which are described by sufficiently different dynami­
cal equations at the first moment, seems to be rather astoni­
shing. We will show now that the functional equations of the 
considered type formalize a rather simple and general property 
of transivity of those physical systems which in a certain 
sense are equivalent to a mechanical system with a few number 
of degrees of freedom. 

4. Consider the evolution in time t of the simplest system 
with one degree of freedom. Labelling initial values of the 
coordinate by· g1, of the velocity by g 2 and their running va­
lues by Gi(t,g 1 ,g~ (i=l,2), we find that two functionsG 1 and 
G2 satisfy the system (5). Hence, it follows that Eq •. (5) 

expresses Dnly the transitivity property of running phase 
variables with respect to their initial values which one can 
fix at different moments. One coupling constant additive eq. 
(2a) from such a point of view corresponds to a system with 
"half of the degree of freedom", the evolution of which is 
described by the first order differential equation. 

This mechanical system, however, in some sense is not pith 
for our purposes. The-problem is that in this example the va­
riable t is the real time and the differential evolution equa­
tions (3) coincide with equations of motion. 

5. A valuable (or nontrivial) example implies the existence 
of a physical system in which there is one (or several) physi­
Cal quantity G that can be represented as a function of the 
evolution variable t and its boundary value g. The property of 
transitivity, if it takes place, can be expressed in one of 
two forms - additive or multiplicative. If the system has no 
fixed parameter of the same dimensionality as an evolution 
variable, functional equations are of the "massless" form (2), 
(2a). Otherwise, we meet with massive equations (1), (la). The 
nontriviality of the system is due to the fact that the dyna­
mical equation for G is not the differential equation over t 
variable. 

Consider now several examples and discuss their value in 
the afore-mentioned sense. 

(a) "Rapier." Let us imagine as elastic rod fixed at some 
point at the nonzero angle with respect to the vertical direc­
tion and bent by the force of gravity (the rapier stuck into 
the floor). By denoting the angle at the point of fixation 
through g, and the angle at the pain~ at the distance t through 
G(t,g) we find that the function G(t,g) satisfies the functio­
nal equation (2a). To the rod of a finite length T there cor­
responds the massive equation (Ia). However, it turns out that 
this example is trivial, as far as the shape of the bent rod 



is defined through the solution of the differential equation 
with respect tot variable. More interesting is 

(b) "Vibrating rapier" - the same rod oscillating around 
the position of equilibrium. Here it is possible to formulate 
the nontrivial problem for amplitudes of vibration. 

(c) "Symmetrical pond" - a basin with the rotation symmet­
ry filled with some liquid. The FA here takes place for a set 
of dynamical variables: e.g., the amplitude and energy densi­
ty of converging and diverging surface waves, including shock 
waves. 

(d) "3-dimensional spherically symmetric systemtt represents 
the obvious generalization "f the "synnnetric pond". Here we 
have in mind a rather wide scope of physical systems and phe­
nomena from hydrodynamics, aerodynamics, transfer theory,plas­
ma physics and so on. 

The use of differential 
to be useful for the study 
in the problems of quantum 

group equations can here turn 
of singularities, as it takes 
field theory. 

out 
place 

The author is indebted to N.N.Bogolubov, M.A.Mnatsakanian 
and R.M.Muradian for valuable discussions. 
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