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I. INTRODUCTION 

The generalized coherent states (GCS) were introduced ia 
principle by J.Klauder111 as an example of his overcomplete 
family of states (OFS), which realize continuous representa­
tions of Hilbert space 'H and are convenient for the study of 
the general relationship between classical and. quantum mecha­
nics. In the second paper·/11 an OFS was defined as 

(I) 

(sum over repeating indexes) 

where 1<1>0'> is a fixed ("fiducial") vector in H and V(f ) is 
a unitary irreducible representation (UIR) in H of a tie 
Group O,fa. being the canonical group parameters;and La,the ge­
nerators of the representation V(f a) (a~ 1,2 ••••• ,r) -In Ref. 111 

it was noted that the states (I) form automatically an OFS 
for UIR of compact groups but the example that has been tho­
roughly examiried is connected with the representation opera-
tor · 

V(q,p) ~exp(-iqP+IpQ), [Q,P] ~il 

of the Weil-Heisenberg group Ow and 

i<l>(q,p)'> ~V(q,p)\<1> 0 > · 

(2) 

(3) 

The same OFS was independently studied by Glauber /2/ in the 
notations 

ia'>~D(a)io!> 0 >, D(a)~exp(aa+- a*a) ~V(p, q), (4) 

where to within a factor, the parameters q and pare the real 
and imaginary parts of the complex number a and a, a+ are the 
known lowering and raising operators for the harmonic oscil­
lator. Glauber has called such states "coherent" (CS). The CS 
(3) (further called usually CS or G_-CS) possess a number of 
remarkable physical and mathematical properties and later ma­
ny authorsi&-iO/ (see also Refs/lt·ts·r and references therein) 
have introduced and studied more general CS, generalizing dif­
ferent properties of the usual CS but one of the best genera­
lizations is just the first one, proposed by Klauder by the 
Eq. (1). The (over)cornpletenesses of the set of vectors (I) 

I 



as was shown in Ref.171 holds for any UIR of a Lie group G. 
In the same paper a factorization of the OFS (I) over the 
stationary group KCO of the fixed vector l«llo'> was also pro­
posed since the physical states are defined up to a constant 
phase factor: 

v ·lw '>- e ia(h) ·l·w '> h· 0 - 0 ' hGKCO, (5) 

(6) 

where ·s is a cross-section in the group fibre bundle (O,X.,.11{ 14: 
i.e., ·s(x) is a representativ.e of the coset X=~ g~. Such fac­
torized OFS have been called systems of GCS. We shall use in 
this paper both terms. 

The properties and applications of CS and GCS are widely 
discussed in the literature/1-131 so we would not list them 
here. We shall only elucidate in Sec.2 the geometrical mean­
ing of GCS as images of cross-sections in the fibre bundle 
(M,X,p) associated with the fibre bundle (O,X,"). The relation 
with the X -measurements in sense of Holevc/ 15/ is pointed out 
.also. 

In our paper we discuss two main aspects of the dynamics 
of GCS - their exact time evolution and their stable evoluti­
on. (By stable evolution we mean that an initial GCS, when 
evolved in time, remains aGCS of the same type at all times, 
i.e., the set of GGS is invariant under time evolutio1;1). 

The dynamics of the usual CS is completely examined' 1•5•11 •1&--2·,V 

Their exact evolution was explicitly found for quadratic sys­
tems·./S,20,211 and in Ref/22/ a method was proposed to const­

ruct usual CS for any system. The stable evolution of CS was 
considered by several authors:!tS·l9( The most general form of 
the Hamiltonian which preserves all CS stable was found at 
first in Refs .. 116•171 and later by other method in Refs/ 18•191 

The main results of the present paper are the following. 
In Sec.3 we give a method for constructing GCS for any Lie 
group and any quantum system by the realization of the repre­
sentation Vg of 0 in the space H of solutions of the SchrO­
dinger equation. For this purpos.e one may use invariant lower-
ing and raising operators A(t), A:.<Jr(t)15•111 and express V g 
in terms of them1 2:T251;. This method permits one also to con­
clude that the dynamical symmetry group of quantum system may 
be any group G, which has UIR in the Hilbert space H. Using 
the sufficient conditions (21), (22) we prove that the N -di­
mensional oscillator preserves stable the GCS for any Lie 
group G, which representations are generated by the operators 
a 1 a J , a"":"a-1:, a+1,+l. (i,J=1,2, ... N)Some applications of developed 

h d • l . • ( ·fOOl) met o are cons~dered ~n the subsequent paper see Ref. • 



2. GCS AND QUANTUM MEASUREMENTS 

In this section we briefly consider the factorization· 171 

of the OFS (I) and elucidate.the geometrical meaning of GCS 

defined by Eq. (6) as well as the relation of the systems 

GCS with quantum measurement theory :/15,27( 

Let K be the stationary subgroup of the vector ·l'~n·>, '{, l'~ti>= 

= ela(hl·.1·~0 .1> , h ~ K ca. Then it is clear that two vectors 1'~ > 

and·l~82•> differ from each other by a phase factor iff g~~~~~~ 
i.e., lff g 1 and g 2 belong to the same coset gK. 'l'he state 

is determined by the point x ~X::O/K.. One can construct an 

OFS according to (I) choosing a representative ·s(x) from eve­

ry coset gK. The so-obtained OFS factorized in this manner 

was called a system Gcs·/71. The function s(x) is evidently 

a cross-section in the group fibre bundle (O,X,tr), 11 being 

the canonical projection. For a given ·s(x) every element g<;;O 

can be written as a product g=·s(x1
)hg, where x 1 denotes the 

coset to which g belongs. Thus 

, ~~ '> = 8 ta(hgll'~ •>.. (7) 
If Xg 

The operators of the representation V g act on ·tctJ-x> transi­

tively to within a phase factor: 

V8 1~&> =V8 V. 8(x)i'~o·>= exp(lf(g,x))l~,->, 
(8) 

where x' is determined from the equation gs(x) =s(x ')h(g,x) .Intro­

ducing the mappings 8: ax K ~ a , ll(g.b) =ll h (g) =gh and u:'§x K~§, 

u(iifr>, h) =o: (11/r>) = ela(b)l!/r> (§ being the set of unit 

vectors inbH ) , where Cl(h) is defined by Eq. (4), one can 

consider 0 and § as K-manifolds. The following diagram 

OxK 
~X id .,! •. 

t>XO. 

8 --a 
(1 - 1 ·~ 

§ 

(9) 

is commutative and consequently the map ·ct: 0-+ ·~ is a morphism 

in the category of K -manifolds' !4(. The set of such morphisms 

HomK(O, '§) is in one-to-one correspondence with the set 

of cross-sections ·~ in the associated fibre bundle (M,X;p), where 

M =(§ x G)/K and ·p: M ~ X is the canonical projection: ·po y = 

= ,.o pr / 14/.(Here y: Ox § ~M satisfy the following condition 

·y.(g,lf/r'>)= y(gh, "h<l!/r>)),hQt).The correspondence ~~·lb is pro­

vided by the commutative diagram: 
a id?!t, Ox§ 

" l 1 y (I 0) 

X ·.f M 
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From this diagram it is easy to obtain 

<l>{x). = y{g, 1<1> g>), g ~ "-l(x) • (II) 

Definin~ y{g,ltf•>) = exp(-ia(h_gllltf> we may .iden.Eify the system GCS jcllg'> w~th the ~mage of the cross-sect~on W',. 
The most important property of the system GCS is their 

ov7rcompletenes·s, expressed by the equation: 

r ,c~>l<~>. ><<~>. 1 = r. (12) 
wher-e IL(dx) is an iri.variant measure on X. Eq. (12) implies 
that the family of operators 

M(i\) = r ,(dx)j<l> ><<I> I t.~q: (X) a X X · 

( t. be'i'ng a Borel set in X, 'll(X) -a - algebra of Borel set&) 
foiin a generalized resolution of identity (or positive opera­
tdr-valued measure on X )1 15~ According to a theorem due to Da­
vies and Lewis1 27/ there exists· at least one measurement ·~.de­
termined by the formula 

tr&,.. (pl = trpM(t.l (I 3) 

(recall that the measUrement ·~ on ·x is a linear continuous map 
·g, q:(X) ~·Aut ~(H) , ~(H) being the space of trace class opera­
tors in H, such that tr&x (p) =lrp12$1and the positive cone ~(H)+ 
is invariant under '&i\ , t. ~~X)) , Basing on Eq. (13) the re­
solution of identity M(~) itself can be refe-rred to as X­
measurement1151 (Let us note that Holevo definition differs 
froffi the one given above). Moreover it is clear from the 
constr~ction that this .measUrement is covariant with resyect 
to the UIR Vg• i.e., the following condition is fulfilled lM: 

V; M(t.)V g = M(g -lt.), t." $(X) . (I 4) 
If the state of a quantum system is described by the density 
operator p, then the probability distribution of the results 
of the measurement M(t.) is given by Eq. (13). The covariance 
property (14) permits one to establish a relation between the 
physical characteristics of the system and the resolutions of 
identi~y in Hilbert Space ·H. 

3. EVOLUTION OF GCS 

The dynamics of quantum systems is described by the evolu­
tion operator 'St': 

t 
S ,= Texp(- ( H(t)dt), 

"where H(t) is 0 the Hamiltonian of the system. The evolution of 
an OFS (I) is given by the relation 'l<l>g; '1>=811'4>g•::i.The direct 



action by St on the vectors :[·~g1> may turn to be difficult even 
impossible especially in the case of nonstationary Hamilto­
nians. It is proved to be more effective the method of integ­
rals of motion, developed in Refs/6•111' .• If :A is an integral 
of motion then it commutes with the SchrOdinger operator Ds = 
=ia1-H, ([,A,D8 ] =O)and thereby one can get new solutions act­
ing by·A on a fixed solution 1·11!0; .~~.Thus if the operators of 
the representation V(t a>= V g(t) are realized as integrals of 
motion, then by means of them one can obtain OFS (1) as solu­
tions of the equation of motion according to the formulae 

It!! 
1 

(t)> = V 1(t)lltl! 0 (t}> = Mil ( t a La ) 111!0 (t}> 

= s v s - 1111! (t}> = s It!! ·>=It!! ; t,>· .• 
tgtO tg g 

Here the generators L a(t) = StLa·stt are formal solutions of 
equation [ A,Dg ]=0 and consequently are integrals of motion. 

(15) 

Because of the completeness of system of vectors (15) eve­
ry solution of the SchrOdinger equation may be realized in 
the carrier space H of UIR V1(t). ·The group with such a proper­
ty is called dynamical symmetry group of the quantum system. 
For.nonstationary systems the dynamical symmetry was studied 
in refs;/1t.29{.Thus if the vectors 'It!! '>=V ltl!o ·> form on OFS in 
Hilbert space H then the related groftp Q ~Y serve as a group 
of dynamical symmetry for any quantum system. This assertion 
is in agreement with the results of Refs/11,29~ where it was 
shown that for N -dimensional system the noncompact group U(N,l) 
can describe dynamical symmetry. Now we get from Eq. (15) that 
dynamical symmetry can be described by any Lie group 0, which 
has UIR in H. 

In practical calculations the more efficient way is to 
solve equation [A,Dsl= 0, looking for solutions 'A(t) of some 
special form, say linear in generators L 1\. Since La may be 
expressed in terms of the lowering and ra1sing boson operators 
a,a+, it is convenient to construct first the invariant opera­
tors 

(16) 

and then to use them for construction o~ generators La.(t). We 
follow this way in the subsequent paper 126/in constructing of 
exact time evolution of OFS for some groups and quantum sys­
tems. Here we would like to say that integrals of the form 
(16) are constructed explicitly for any quadratic Hamiltoni­
arf20.211and for some nonquadratic ones:! lV. 
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Let us turn to the question of stable evolution of OFS. The 
Klauder condition S ,:<:' C'i:', :<: being the manifold of GCS,may 
be written more explicitly in the form: 

(17) 

i.e., the whole time-dependence of the vectors from OFS is 
contained in the group parameters fa (t). It is apparent that 
Eq. (17) holds for any fixed vector 14>0 ·> iff S t is an opera­
tor of the same representation': St=V g(t). Moreover I.A.Malkin 
has proved the following 

Theorem125~. Arbitrary system of GCS (I) remains stable 
under time evolution iff the Hamiltonian of the quantum sys­
tem has the form 

H = r, (t)L, , (I8) 
where fa.(t) are arbitrary functions. 

On the face of it this theorem contradicts to the well known 
fact:llS·l9/ that the most general form of the Hamiltonian which 
preserved stable the system of usual CS is 

H = OJ(t) a+a + F(t)a+ + F(t)a + fl(t) (19) 
which is nonlinear on a, a+. Let us note however that the ope­
rators a+a·, a, a+, I form a projective representation of 
Lie algebra of the two-dimensional Euclidean group E(2~'f~S0(2). 
~hen using the relation 

exp(>.a+ a +~a+ va ;J = exp(ua +) exp(za +a) exp(va) exp(w) , 
where z, u, v, w depend on the canonical parameters A, ll• v, 
one can see that GCS for this representation of E(2) and l'<l>(j> = 
= 10->, coinsides with the usual CS. The Hamiltonian (I8), pre­
dicted by Malkin theorem for E(2), has just the form (I9). 

Let us now consider the special case when the fiducial vec­
tor l~o·> is stable under the action of the evolution operator: 

(20) 

Then for the stability of OFS (V 
1 

, J<l>o >) the evolution opera­
tor St ought not to be operator from the representationV

1
• 

·st can be an (external) automorphism of the group of repre­
sentation operators: 

s, vgs~ 1 =vl(tl' g =H, J. (2I) 
The OFS (Vg ,J<I>o'>) for which conditions (20), (2 I) are satisfied 
may be called superstable rela~ively s, (or corre~ponding Ha~ 
miltonian). Another. explanation of the above-mentioned seeming 
contrad:lctiOn can be given if one oQserves that the system of 
usual CS is superstable relatively to the Hamiltonian (I9), 
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A superstable OFS may be realized also when the generators 
of the representation are homogeneous functions of a,a+ and 
St is the evolution operator corresponding to harmonic os­
cillator. Then 

exp(f• L•(t)) - e:t~p(f• (t)L&) (22) 

which can be easily proved using the formula'/SO/,: 

e:tq>(sa+a)F(a,a""J e:tq>(~sa+a) -.F(ae-•, a+e 8 ). · (23) 

Obviously this result can be easily extended to the case of 
N -dimensional ·oscillator. If Xt (i=l,2, .•. ,p+q) are generators 
of the·~ (p+q)-representation of Lie group U(p, q), then 
the following Hermitean operators 

¢ =(a 1, ... ,ap, a;+l , .•. ,a;+q) T (24) 

- + + ¢ =(al, ... ,ap ,-a-P+l , ... ,-ap+q) 

are homogeneous generators of U(p,q). Thus we derive that N­
dimensional oscillator preserves stable GCS (V g ,\.,n·>) for any 

Lie group G, V g being generated by the corresponding subset 
of operators (24) and l'.,n'> any stationary state. 

The stable evolution of the OFS is correctly determined 
by the functions fa(t{ 11 ,which are solutions of Euler equations 
for the functional 

I(f) - fdt(!<f\ d/dt\h- d\ Hi C>) (25) 

whose domain is restricted on the OFS-manifold, i.e., 'jf>= [·cllg :>, 

g=(f.,.(tl). Minimizing functional (25) one gets the following equa­
tions' 11·: 

ca.Rb-abR,Jfb =a.)( . 

l( = !((fa l = <_, 
8 

IH I_, g >, 

a. =a/ at a 

g = (f • ), a= 1,2, .... r 
(26) 

d where Cab are structural constants of the group O.The classi-
cal action functional assumes the form: 

I= fdt(R f -H} .. 
a • 

(27) 

If the matrix 0 b =d Rb-~ R is symplectic, i.e., the 2-form 
• A a ~a , d( 

0 2= 0 but 0 dfb 1s nondegenerate,- _close dO e=O) and exact 
(0 2=d0•1), "then the classical system described by Eqs. (26) was 
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studied by R.M.Santilli"311 and called by him Birkhoffian sys­
tem, ~ being the Birkhoffian of the system. It is not diffi­
cult to see that the matrix Dab is symplectic iff it is 
nondegenerate. The group manifold in this case has symplectic 
structure and may be regaided as a classical phase space. In­
volving the matrix 0 a.b , inverse to the matrix Oa.b one can 
write Eqs. (26) in the form 

i = <t.,H), a=1,2, ••• ,r, 
where the brackets (,) are defined by 

(A,B) = n•b a. A abB 

and apparently are generalized of usual Poisson brackets'f:S1,S2< 
In the case. when Da.b is singular (e.g., for groups ·with 

odd dimensions J V) the equations of motion (26) do not deter­
mine the solution fa(t) uniquely. Then the dynamics of stable 
OFS can be effectively described by classical equations of mo­
tion in the quotient space X =0/K, (K being the stability 
subgroup of 1'4110 •> ) which can be treated as phase space. The 
symplectic structure on X was constructed by E.Onofri' 13~: 

"' = i(a2r;azi az.j) dz /' dzj , (28) 
where zi are ·(complex) local coordinates on X and f=f(z.z*)= 
=In l<<llo W g 1·<11 0 >1-2 is the so-called Klihler potential. Then on 
X there exists the Poisson bracket 

(29) 

where gli is the matrix inverse to the matrix [iia 2r;az .a.~ Ji:. 
c;onsequently ~!>e equation of motion for z 1 =Z 1 (t) has the Yorm 
z 1 =(Z;o H) =g11 at H, H being the classical Hamiltonian. 

Finally we shall consider the time evolution of the pro­
bability distribution "'P (!i) = trpM(6) when the density opera­
torp evolve in time: p(t) =8 1pS"t 1.Suppose that the system GCS, 
determining the resolution of identity M(!i) (Sec.2) is stable 
under evolution operator ·st. Then St = V g(t) and making use of 
covariance property (14) one immediately derives 

"'p(t)(!i) = tr (p (t) M(!i)) = tr(pM (g -! (t) 6) = Wp (g -!(t) !i), 

i.e., the probability distribution is only translated by means, 
of the group transformation g-l(t), providing soine motion on \ 
phase space X. Thus the quantum evolution is represented in this 
case as a classical motion on the manifold x.· 
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