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Let us assume a quantum-mechanical system with state Hilbert 

space Jr and time evolution governed by a self-adjoint Eemilto­

nian H . Le~ further 6 = [ 'l"j : 0 = !'0 < 'l"1 < ... < 't'n = t J denote 

some partition of the interval (O,t] with Jj ="l:j+l- 'lj and 
J(~) max Jj . Having a strongly continuous projection-va-

O~j~n-1 
lued function E : [O,b] ~(8(1() we can introduce 

( 1 ) 

This expression has clear physical meaning, if E(~) is inter­

preted as a yes-no experiment performed on the system at the ti­
me 7: • It seems thus reasonable to accept that 

(2) 

(if it exists} represents the evolution operator of the given 

system subjected during [O,t] to a continual observation charac­
terized by the function E(.) • Standard urgumente yield some 
simple properties of UE(. ,. ) : 

0 ~ t ~ b (3a) 

" (Ker UE(t,O)) = E(O).ir (3b) 

( 3c) 



The known resu.lts [t-3] about the evolution operator (2) con­
cern mostly the case when the apparatus fUIJ.ction is constant, 
B(t) = P for all tt [O,b] • A special attention has been paid to 
the situation when .l:'.;y represents e state space of some unstable 
system ; the evolution operators (1) have been st~died together 
with 1:10re general ones corr~sponding to randomly distributed mea­
surements (see [.5-6 J and references therein). 1rhe peculiar featu­
re is that for a semibo~nde:i H continual observation pre­
vents decaJ : it was recognized first in Ref.4 and later formu­
lated as the so-called Zeno's paradox(3]. It should be mentioned, 
however, that in realistic physical models with large but finite 
density of measurements the paradoxical situation is avoided(7,8]. 

As we shall remark below, "Zeno's theorem<~ of Ref.3 can 
be strengthened if it is combined with the product formula of 
Chernoff [9]. 

Recently, Aharonov and vardi [10] treated the case of conti­
nual observation in which the apparatus function is non-constant 
and its values are one-dimensional projections. They argue that 
the observation forces the system to follow the "trajectory 11 in 
~ given by E{.) ; they assigned to it meaning of an operatio-

nally determined "Feynman path". Further they show that if H is 
a Schr6dinger operator in L2(R) and E(.) corresponds to Gaus­
sian wavepacket travelling along a given' trajectory x

0
(.) in R , 

then UE(.,O) (.see (4) below) in effect multiplies this wavepac­
ket by the familiar factor exp(iS(x0 )) , where S(x0 ) is the 
classical action along x0 . The main purpose of the present let­
ter is to show that the results of Aharonov and Verdi can be re­
covered rigorously under some mild smoothness assumptions and 
(what is more important) that they are not conditioned by parti­
cular asswmptions made in Ref.10 about the measuring device (ro­
tating Stern-Gerlach apparatus or reduction to Gaussian wavepac­
ket) and the Hamiltonian. Some related problems will be mentioned 
in concluding remarks. 

0 0 0 

We shall start with the following technical remark. Let ~n 
be the equidistant partition of [O,t] , 6j = t/n • The operator­
valued function 

s-lim UE(t,O;~n) 
n .. oo 

2 

(4) 



is often studied instead of UE because the limit here cen be 
manipulated more easily. 

Consider first the case of constant l:l.pparatua function 

E(t) = F for all t€ R ( 5) 

Essential characterization of the time evolution is then given by 
the assertion which follows from the Chernoff product formula [11] 
as a direct generalization to Theorem 2.2 of Ref.2 : 

Proposition: Assume (5) with dimP<...c and Pd(c.D(H),then 

~ -iPHP 
UE(t,O) = e F t<R ( 6) 

This assertion generalizes in various ways. The assumption 
about finite dimension of P can be removed, for instance, if 
H is positive with PHP densely defined and t is complex with 
Im t<O (cf. [1] and also [12], [13], theorem I.2); in such a case 
PHP on the rhs of (6) has to be replaced by the self-adjoint ope­
rator Hp associated with the quadratic form h : h(f) = /)11

1
/ 2 )011 2 , 

Q(h) = D(H 1/ 2 ) n p)( • As for the physically interesting case of 
real t , the following y,·eaker assertion iS valid (1] under the 
assumptions stated above 

for all If' E dr (7) 

t~nd almost l:lll t t: fl: • 

Thus if UE(t,O) exists it must be a partial isometry. With one 
additional assumption, UE(. ,0) t P~ is even a strongly continuous 
unitary group oimilarly as in the finite-dimensional case (6) : 

Theorem 1 : Assume that (5) holds with P being an orthopro­
jection on ~ • Let H be a eemibounded self-adjoint operator 
on ~ with D(H) dense in P~ , and let exist an antiunita­
ry operator e such that 

9 P6-l -iHt -1 iHt = p e. e e for each t €" (8) 

Suppose that UE(t,O) exists for t~[O,bJ • b,. 0 • then the-
re is a self-adjoint Hp ::> PHP such that 

for all t?: 0 • (9) 

3 



l'l:.Q..Q.f : The assumption (5) implies UE(t,O) = UE(t+t,'C') so 
UE(t,O) exists for each t~O due to (3c). It further implies 
existe_nce of UE(t,O):::: UE(t,O) for t ~ 0 • The function F : 
F(t) = Pexp(-iHt)P t Fdc is obviously contraction-valued &nd 
strongly. continuous with }'(0)::: 1' , and such that the strong deri­
vative F(.,.Q);:) -iPH.I:' is densely defined in P7"( • 1'hus Theo-
rem 2.1 of Fl:ef.9 may be applied according to which T(.) = 
= UE(. ,0) ~Pdf is a continuous contractive semigroup and ite ge­
nerator iH1, is an extension of -F(·tO) :> iPHP . Continuity of 
:r(.) together with semibOtmdedness o.f H and (8) make it possib­
le to u.:se the mentioned theorem of ~f:isrfl and Sudarshan [3j, which 
asser-ts thot T(.) is restriction to [O,oO) of a strongly con-
tinuotls unitary group, i.e., that Hp is self-adjoint. D 

Let us pass now to the cEise of non-constant apparatus func­
tion ; for the sake of simplicity we limit ourselves to the simp­
lest possibility when dimS(.) = 1 . 

Theorem 2 : Let H be 1:1 self-adjoint operator on :If , and 
let E(t) for each t e: [O,b] be one-dimensional projection 
corr.esponding to a unit vector 1ft e: D(H) . .Assume that t H }'t 
is c 1 on (O,b) and that t ,_,. H1ft is c 0 on [O,b] , then 
the operator UE(t,O) ~xists &nd 

l"t • UE(t,o)r = exp { 1 I L('t) d?: J 'l"o·l"l)l.'t (lOa) 

L(t) -i<h•h)- ('f't•H'f't) (lOb) 

for all tE.[O,b) and pe:Jf. Moreover, UE(.,O)f obeys the 
equation 

_dl't • 1 
> dt = [iE(t)E(t) +E(t)HE(t)J)'t (,) 

~ : UE(t,O) depends actually on E(.) only, not on the 
representing vector-function ~ if 1ft= 'Ytt exp(ia(t)) with Ct: 
absolutely continuous, then L<t) = L(t) - ~(t) , and consequent-
ly ~t = 'Pt . 
Proof: For an arbitrary partition ~ of (o,t] and !fE.Jf we 
have UE(t,O;&) = f(t,0;6)(¥0 ,~)~t , where 

n-1 
f(t,o;s-) = n g<"j•''"j) 

j=O 



By ~tandard limit arguments, the smoothness assumption!::l of the 

theorem imply thl:lt g(.,.) is continuously differentiu.ble in 

both arguments and that 

L: L(t) =-iap;(r,~l~ 
a r r=t 

is cont.inuous in [U,b] . ;Jince g(t,t) :;_ 1 , we have also 

a ln 
L( t) = -i g(r, t) I 

(lr r=t 

Further we express ln f(t,O;G) with the help of T,flgrange remain­

der theorem for tht"· reel und imc..ginS-ry vu1·ts of ln p;(r,s) 

lr. f(t,0;6') ::= 

r.-1 [ 
= i L. Re 

j=O 

n-o1 

L ln g("tJ."' 1 '!:'J.) -= 
j=-0 

L(Sj) • i Im LCj'jl]<!j 

with some J.,li~E'('L.,'Z:'. 1), j=O,l, ••• ,r:-1. gd Ro::> L(.) 
J J J ,l ,]+ 

lm L(.) tlre continl.lous bond therefor<o> Riewl:l.nn intPf"("bble in 

so we obtain 

lim ln f(t,o;~) 
/l(o)~u 

t 

t 
i IRe 1(-r) d't 

0 

= i f L(~) d< 
0 

t 
f Im 1,(1) d'f 
Cl 

and 

[o, t] 

it proves (10). 1/erification of {11) is straightforward. • 

Corollary 1 : Let 1f E.f\IRd) I XoE. c1[ [O,b) ;ad] and 1ft 
'lft(x) = 1f<x-x0 (t)) . Let further H be a self-adjoint opera­

tor on :Jf= L 2 (1t.d) such that D(H) :::tj(f.:d} and t-H¥tt is 

continuous on [O,bJ , then 

'ft = expfi i c3,ak(~)J'k(~)-[(·rl]dr}<1f'o•flh (12a) 

for all t E: (O,b) and !p€Jf , where 

Proof: One has just to specify the first term on the rhsdof (tOb). 

Using continuity of x0 and the fact that "ft€_f{Rd) C n D(Pk) , 
k=1 
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( rk 1ft)< x) = -i {8}' ;ayk);y~--x-xo( t) 
one findo: the <krivr~Uve 

it is conUnuous du.e to t'Ont.inui ty of .x
0 and of trsm:lutions in 

L2 (Rd) . Since Qk(t) ~ i 0 k(t) , the &suertion folluwe. • 

Corollary 2 'i'heoren: 2 and ~oro) hry 1 n:matn valid if 
H is assumed to be b pr.;ct;do-llfllr!iltoniBn, i.e., a closed opr::­
rator on f1r such that iH gencrBtf08 u. cor.tinuous r.or.trsctive 
semigroup [14]. 

0 

• 
It is desirable to generel :tze Tbeor'!Il' ? fo~ rnore general 

apparatuG functions i:c:cludlng infirJittc-rlilllt:JiSiunal oneH. The fol­
lowing case :i ~ of particular intcre~>t : n = H(~ .f V it: a [;chrOdir.e-er operator on df = L?<Hdl &nd l~(t) is the p;ojection on r/(Mt)c 
C ~ , where lfJt C !ltd . l f H = !-i() = - ~ d , then 

J ufn 
(UE(t,0)1p)(x) = t"t (x) JHJ<<D)) D'fVl (lJ) 

ru~o,x) 

where l<'eynmtm integYa] on the r-J1s of ( 13) iF. understood in the 
sense of Ref, 16 1:1nd r(M,x) cor.bjst.s of continuous paths J' : [O,t]~~d vdth ,r<t)=x. 8nd j'('t)£M, ,'t'c[O,t]. Thus the 
operator-VfJlued function~ UF. G<'<n l":8p)Bce in a senE'.e the no:r::-exi­sting Feynman measure {cf. [2] ; compere to thf~ ur.alogous problem 
for the Wiener measure : [13], Lemma 7. 10 and Sec. ?.2). 

It would be useful to obtain UE(. ,0) , suy, by solving a 
differential equation inot;eu.d of ce.lcull;jting the limit (2). Thie 
problem remains in general or-en for non-constant l~(.) • One pos­sibility is represented by the eq. ( 11) whic}J was first obtei.ned 
formally by Bloch and Burba [15). l>ctually, such an equation holds 
for ~~ = UE(t,0;6) whenever its rhe mHkee sense ; so it applies to ?t if the interchange of the derivative with the limit 
0(6·)--. 0 can be justified. On the other hsnd, in the above menti­oned c~se with permanent localization of a Schr~dinger particle 
to Mt (when Ect) in general does not exiet), Friedman propo­sed (2J the equ.ation 
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( 14) 

where HE(t) is a ~ui!.<:.:ble extension of E(t)I-H;(t) (I:t•J.ltipLe of 

the Laplace-Dirid~ltd overatur for smoothly varying interval 
Mt C (R considered in kef.2). Ee exhibited some conditi.orw under 

which solution of (14) would exist, howevtr, he guve no proof 

that it would obey rt ~ U~(t,O)f 

'Phe last rem&rk conCerns the situation when H L:1 a pseudo­

Hamiltonian, i.e., when the undisturbed motion of the system is 
dissipative. Corollary 2 suggests that the Feynman dynamical for­
mula might hold, e.g., for Schr~dinger Hamiltonians with complex 
absorptive potentials too ; this fact was already established for 
some particular classes of potentials within various definitions 
of the J.o'eynman integral (16-18]. 
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