


Let us gssume 8 gquantum-mechanical system with state Hilbert
space JF and time evolution governed by & self-adjoint Eamilto-

nian H . Let further & = {'t‘j HIE Z’O-’.?‘.I(...ctn:tj denote

some partition of +the intervel [0,t] with §j=?j+1-z:-} and
de) = o r;ax \ ch . Having a strongly continuous projection-ve-
ERES
lued funetion E : [0,b] - f(#) , we can introduce
-1Hd, ~iHd -84
Tg(t,006)=E(t)e = 'Ee, e "Ce  OKO) . (1)

This expression has clear physicel meaning, if E(T) is inter-
preted as & yes-nc experiment performed on the system at the ti-
me T . It seems thue reasonsble tc accept that

U {t,0) = g~lim U_(t,0;,&) (2)
E dteys0 B

(if i1t exists) represents the evolution operator of the given
system subjected during [0,t] +to & continual observation charac-—
terized by the function E(.) . Stenderd arguments yield some
simple properties of UE(.,.) H

logts, ¥ €1, 0<st<v (3a)
(Ker Ug(t,0))" = E(0)¥ , Rem U (t,0) = Bi)& (3v)
UE(t,TlUE(’E.O) = Up(s,0) , CETEtL Db . (3e)



The ¥nown results [1-3] about the evolutien operator {2} con-
cern mostly the case when the apparatus function is constant,
EB(t)=p for ell te [0,b] . & special attention has been paid to
the situation when FP¥ represents & state space of some unstable
system ; the evolution operators (t} have been studied together
with more general ones corregponding to rendomly distributed mea-
surements (see [5-6] and references therein). The peculiar featu-
re is that for & semibtounded H continual observation pre-
vents deecay ! it was recognized first in Ref.4 and later formu-
lated &8 the so-called Zeno's paradox {3]. It should be mentioned,
however, that in realistic physical models with large but finite
density of measurements the parasdoxical situation is avoided [7,8].

As we shall remark below, *Zeno ‘s theorem" of Ref.3 c¢an
be strengthened if it is combined with the product formula of
Chernoff [9].

Recently, Aharonov and Vardi DO] treated the case of conti~
nual observation in which the apparatus function is non~constent
and its values are one-dimensional projections. They argue that
the cobservation forces the system to follow the "trajectory" in

& given by E(.) ; they sssigned to it mesning of en operatio-
nally determined "Feynman path". Further they show that if H is
& Schrddinger operator in L2(R) and E(.) corresponde to Gaus-—

sian wivepacket travelling along a given trajectory xo(.) in R,
then Upl.,0) (see (4) below) in effect multiplies this wavepac-
ket by the familiar factor exp(iS(xo)) , where S(xo) is the
classical action along Xy - The main purpose of the present let-
ter is to show that the results of Aharonov and Vardi can be re-
covered rigorously under some mild smoothness agsumptions and
{(what is more important} that they are not conditicned by parti-
cular assumptions made in Ref.10 about the measuring device (ro-
tating Stern-Gerlach apparatus or reduction to Gaussian wavepac-
ket) and the Hemiltonian. Some related problems will be mentioned
in concluding remarks.

- 0 - 0 - 0 =
We shall start with the following technical remark. Let @;

bte the equidistant partition of fo,t] . 53= t/n . The cperator-
valued function

U, & To(t,0) = s—lim Uo(t 0j@ ) (4)
3 't o Upltilioy



is often studied instead of UE because the limit here can be
manipulated more easily.
Consider first the case of constant spparatus function

E{t} = F for all teR . (%)

Essential characterization of the time evolution is then given by
the assertion which follows from the Chernoff product formula [11]
88 a direct generslizetion to Theorem 2.2 of Ref.? :

Iroposition : Assume (5} with dim P <» gnd P& ¢ D(H),then

o~ -1FPHP
UE(t,U) = e F y tem . (6)

Thie assertion generalizes in various ways. The assumption

about finite &imension of P c¢&n be removed, for instence, if

H 1s pesitive with FPHP densely defined and -t 1is complex with
Imt <0 (cf.[1] and alse [12], [13], theorem 1.2} ; in such & case
PHP on the rhe of (6) has %o be replaced by the self-adjoint cpe-
rator HP associated with the quadratie form h : h{p)=!fH1 2pﬂ2,
Qh) = D(H1/2)ﬂ P& . As for the physically interesting case of
real t , the following wesker asserticn is valid 1] under the
gssumptions stated zbove

lim fUL(t,0;6,0p) = tP¢l  for all ped (1
oo 2nd almost all teR .

Thus if UE(t,O) exists 1t must be a partial isometry. With ome
additional assumption, UE(.,O)r P& is even s strongly continuocus
unitary group similarly as in the finite-dimensionsl case {6}

Theorem 1 : Assume that (5) holds with P being an orthopro-
jection on & . Let H be a semibounded self-adjoint operator
on # with D(H) dense in P¥ , and let exist an antiunite-
ry operator @ such that

-iHt iHt
e

-1 -1
gre =7 , 8 0 = for esch te® . (8)

Suppcse that Up(t,0} exists for te¢ {C,b] , b>0 , then the-
re i6 a self-adjoint H, > PHP such that

UE(t,O) = exp(-iHPt)P for 11 t20 . (9)



Proof : The asssumption (%) implies UE(t.O)=UE(t+‘t,Y:) S0
UE(t,O) existi for each 420 due to {(3c). It. further implies
existepce of UE(t,O)zUE(t,O) for t20 . The function F :
F(t) = Pexp(~iHt)P  F& 1s obviocusly contraction-valued und
strongly continuous with F(0)=F , and such that the strong deri-
vative F(+0) D ~iPHP 1is densely defined in P% . Thus Theo-
rem 2.1 of Ref.9 may be appiied according to whiech T(.) £

B EE(.,O)P P is a continucus con?ractive semigroup and ite ge-
nerator il is an extension of -F(+0) D iPHP . Continuity of
T(.) ‘together with semiboundednsss of H and (&) mske it possib-
le to use the mentioned thecrem of Misrs and Sudarshan[3], whieh
agserts that T(.) 1is restriction to [0,«). of 8 strongly con-
tinuous unitary group, i.e., that HP is self-sdjoint. a

Let us pass now to the cause of non-constant epparatus func-
tion ; for the sake of simplicity we limit ourselves to the simp-
lest possibility when dim %(.)} = 1

Ikheorem 2 : Let H be u self-adjoint operator on . % , and
let #(t) for each tg [0,b] be cne-dimensionsl projection
corresponding to a unit vector ‘%GD(H) « Assume that te» y/t
is ¢! on (0,b} and that t+ Hy, is ¢ on f0,b] , then
the operator UE(t,O) exists and

t

g, = Ug(t,00p = exp{i({ L(t) dr} B @y (10a)
LOEY = -1y, P,) - (g HY,) (10b)
for a1l t&[0,b) and Pe,?’{ . Moreover, UE(.,O}sc? obeys the
equation
e [iB()ECE) + BOOEE()] ()
at ~ ot = Peo -

Remark : UE{t,O) depends actuallyﬂPn E(.) only, not on the
representing vector-function i if y% =‘wt exp{ix{t)) with &
absoiytely continuous, then L(t) = L(t) - &(t) , and consequent-
W oPe= -

Yroof : For an erbitrary partition & of [0,t] and (PEJ( we
have Up(4,036) = £(£,0;6)(yy.p)Y, , where

ni -iH(r~s)
£(t,036) = jDO 8(Ty,92T)) , glrys) = (Y, Yg)



By standard limit arguments, the smpothness assumptions of the
theorem imply that g(.,.) is continuously differentiable in
both arguments and that

dg(r,t)
[T Rl
ar

Lo L{t) =~ et

is continuous in {0,b] . Since glt,t) =1 , we have also

L) = _ialn glr,t)
or

ret

Purther we express 1n £(t,03¢) with the help of Lugrange remain-
der theorem for the reul and imaginery purts of 1in g{r,s)
n-of

in £(t,0;86) = 2, 1n g(T'al’EZ)
= 17

=1 . s
=1J§O[He 1§,y 1 1a g S

with some fj,fafe('t1,T1+1) , 4=0y1,..0,no1 . Ext Re L{.} and
Jm L{.) ware continuous and therefore kiemsnn inteprable in [O,bJ
50 we obiain

%

t
Ciim ln £(%,036) = i/ Re L(z) dv - J Im L{z)dr =
d(g)=»>0 0 <

t
=1 f L(r)de H
0
it proves {(10). Verification of (11) is straightforward. [ |

. d 1 | .
Gorollary 1 @ Let y,ejﬂﬁ Yo xge C [,0)sR ] end Yy
y%(x) = y(x-—xO(t)) . Let further H be & self-adjoint opera-
tor on # = L2(&%) such that D) 2 P@&%) and trs Hy, 1s
continuous on [O,bj , then

t d .
P = exp{i éf [é'ak{r)?k(t)—f(-r)] dfc}(%,?)% (128)
for all t €& {0,b) &nd 5069? , where
EC0) = () o Pple) = (BB @y (8) = (P Q). O20)

Proof : One has just to specify the first term on the rhsdof (1Cb).
Using continuity of x, and the fact that ¥ ef(ﬁd) c N bip) ,
¢ t x=1 k



(Pky%)(x) :—i(9y/3yk) togethor with sinple estimates

R T 1
kD § XO( )
one finds the d(?]"i\fﬂtj\“;’

- {j' -
Ve i 2 kg g
Ve &

it is continuous due to continuity of io and of tranzlations 1im
LY &%) . since a,(t) = iOk(t) v the assertion followe, [ ]

Corpollary 2 : Theorem 2 and Corellery 1 remasin valid if

B 1is assumed to be w psevdo-Hamiltonian, i.e., a closed oOpG~
rater on % sueh that iH  generetes g continuous contrective
semigroup [14].

. IS - o - 4] -
L]

It is desirable 1o genergzlize Theorem 2 for more general
apparatus functions including infinite-dimensional ones. The fol-
lowing case is of particular interest : IE:HO +V iz & Schfbdinger
operator on ¥ = 1Yk®) andg L(t) dis the projection en LE(Mt)C

<&, vhere N < ®® . Ir H=HO:—%A , then
fufn
W, 0 (x) = K, 00 P gy, (13}
Pim, =)

where Feynmen integrsl on the rhe of (13} i= uﬁderstooﬁ in the
sense ol Ref. 16 uand F{M,xY corsists of continucus raths A
[0,t] —> g4 with g4t)==x and Yitle M, ,7e[0,t] . Thus the
operator-velued functions UE can replace in a8 sence the non-exi-
sting Feynman messure (cf£.[2] ; compare to the éralogous prcblem
for the Wiener measure : [13], temma 7.10 and Sec.22).

It would be useful to obtain U _(.,0) » 88y, by solving a
differential equation inpteud of caléulating the limit (2)., This
rroblen remsins in genersl open for non-constaniy E(.) . One pos-
8ibility is represented by the eq.(11) which was firat cbtainegd
formally by Bloch and Burba i3], hetuslly, such gn equation holds
Tor fi = UE(t,O;G) whenever its rhe mukes sense ; 80 it applies
to t if the interchange of the derivative with the limit
HE)Y > 0 can be justified. On the other hend, in the above menti-
oned case with permsnent localizaticn of a Schré#dinger particle
te Mt {when ﬁ(t) in generel does not exist), Priedman Propo-
sed[2] the equation



A’
i = Hooohfy o (14)

where HE(t) Is a suitaeble extension of E(t)HE(L) (multiple of
the lLapluce-Dirichlet operatur for smeothly varying interval

Mtc: R considered in Ref.2) . FHe exhibited some conditions under
which solution of (14) would exist, however, he geve no proof
that it would obey Py :.UE(t,O)f .

The last remurk concerns the situation when H 1is a peseudo-
Hamiltonian, i.e., when the undisturbed motion of the system is
dissipative. Corollary 2 suggests that the Feynman dynamical for-
nula might hold,e.g., for Schrddinger Hamiltonieéns with complex
absorptive potentials too j; this fact was already established for
some particular classes of potentials within variocus definitions
of the Feynman integrel [16-18].
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