
$$!Jfit 

P.Exner 

COOtilllBHMR 
Otib8AMH8HHOrO 

MHCTMTYT8 
RABPHbiX 

MCCJI8AOB8HMI 

AYtiHa 

E2-81-787 

ON THE "FEYNMAN PATHS" 

- ~~ 

e.-

1981 



Let us assume a quantum-mechanical system with state Hilbert 

space Jr and time evolution governed by a self-adjoint Eemilto

nian H . Le~ further 6 = [ 'l"j : 0 = !'0 < 'l"1 < ... < 't'n = t J denote 

some partition of the interval (O,t] with Jj ="l:j+l- 'lj and 
J(~) max Jj . Having a strongly continuous projection-va-

O~j~n-1 
lued function E : [O,b] ~(8(1() we can introduce 

( 1 ) 

This expression has clear physical meaning, if E(~) is inter

preted as a yes-no experiment performed on the system at the ti
me 7: • It seems thus reasonable to accept that 

(2) 

(if it exists} represents the evolution operator of the given 

system subjected during [O,t] to a continual observation charac
terized by the function E(.) • Standard urgumente yield some 
simple properties of UE(. ,. ) : 

0 ~ t ~ b (3a) 

" (Ker UE(t,O)) = E(O).ir (3b) 

( 3c) 



The known resu.lts [t-3] about the evolution operator (2) con
cern mostly the case when the apparatus fUIJ.ction is constant, 
B(t) = P for all tt [O,b] • A special attention has been paid to 
the situation when .l:'.;y represents e state space of some unstable 
system ; the evolution operators (1) have been st~died together 
with 1:10re general ones corr~sponding to randomly distributed mea
surements (see [.5-6 J and references therein). 1rhe peculiar featu
re is that for a semibo~nde:i H continual observation pre
vents decaJ : it was recognized first in Ref.4 and later formu
lated as the so-called Zeno's paradox(3]. It should be mentioned, 
however, that in realistic physical models with large but finite 
density of measurements the paradoxical situation is avoided(7,8]. 

As we shall remark below, "Zeno's theorem<~ of Ref.3 can 
be strengthened if it is combined with the product formula of 
Chernoff [9]. 

Recently, Aharonov and vardi [10] treated the case of conti
nual observation in which the apparatus function is non-constant 
and its values are one-dimensional projections. They argue that 
the observation forces the system to follow the "trajectory 11 in 
~ given by E{.) ; they assigned to it meaning of an operatio-

nally determined "Feynman path". Further they show that if H is 
a Schr6dinger operator in L2(R) and E(.) corresponds to Gaus
sian wavepacket travelling along a given' trajectory x

0
(.) in R , 

then UE(.,O) (.see (4) below) in effect multiplies this wavepac
ket by the familiar factor exp(iS(x0 )) , where S(x0 ) is the 
classical action along x0 . The main purpose of the present let
ter is to show that the results of Aharonov and Verdi can be re
covered rigorously under some mild smoothness assumptions and 
(what is more important) that they are not conditioned by parti
cular asswmptions made in Ref.10 about the measuring device (ro
tating Stern-Gerlach apparatus or reduction to Gaussian wavepac
ket) and the Hamiltonian. Some related problems will be mentioned 
in concluding remarks. 

0 0 0 

We shall start with the following technical remark. Let ~n 
be the equidistant partition of [O,t] , 6j = t/n • The operator
valued function 

s-lim UE(t,O;~n) 
n .. oo 

2 

(4) 



is often studied instead of UE because the limit here cen be 
manipulated more easily. 

Consider first the case of constant l:l.pparatua function 

E(t) = F for all t€ R ( 5) 

Essential characterization of the time evolution is then given by 
the assertion which follows from the Chernoff product formula [11] 
as a direct generalization to Theorem 2.2 of Ref.2 : 

Proposition: Assume (5) with dimP<...c and Pd(c.D(H),then 

~ -iPHP 
UE(t,O) = e F t<R ( 6) 

This assertion generalizes in various ways. The assumption 
about finite dimension of P can be removed, for instance, if 
H is positive with PHP densely defined and t is complex with 
Im t<O (cf. [1] and also [12], [13], theorem I.2); in such a case 
PHP on the rhs of (6) has to be replaced by the self-adjoint ope
rator Hp associated with the quadratic form h : h(f) = /)11

1
/ 2 )011 2 , 

Q(h) = D(H 1/ 2 ) n p)( • As for the physically interesting case of 
real t , the following y,·eaker assertion iS valid (1] under the 
assumptions stated above 

for all If' E dr (7) 

t~nd almost l:lll t t: fl: • 

Thus if UE(t,O) exists it must be a partial isometry. With one 
additional assumption, UE(. ,0) t P~ is even a strongly continuous 
unitary group oimilarly as in the finite-dimensional case (6) : 

Theorem 1 : Assume that (5) holds with P being an orthopro
jection on ~ • Let H be a eemibounded self-adjoint operator 
on ~ with D(H) dense in P~ , and let exist an antiunita
ry operator e such that 

9 P6-l -iHt -1 iHt = p e. e e for each t €" (8) 

Suppose that UE(t,O) exists for t~[O,bJ • b,. 0 • then the-
re is a self-adjoint Hp ::> PHP such that 

for all t?: 0 • (9) 
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l'l:.Q..Q.f : The assumption (5) implies UE(t,O) = UE(t+t,'C') so 
UE(t,O) exists for each t~O due to (3c). It further implies 
existe_nce of UE(t,O):::: UE(t,O) for t ~ 0 • The function F : 
F(t) = Pexp(-iHt)P t Fdc is obviously contraction-valued &nd 
strongly. continuous with }'(0)::: 1' , and such that the strong deri
vative F(.,.Q);:) -iPH.I:' is densely defined in P7"( • 1'hus Theo-
rem 2.1 of Fl:ef.9 may be applied according to which T(.) = 
= UE(. ,0) ~Pdf is a continuous contractive semigroup and ite ge
nerator iH1, is an extension of -F(·tO) :> iPHP . Continuity of 
:r(.) together with semibOtmdedness o.f H and (8) make it possib
le to u.:se the mentioned theorem of ~f:isrfl and Sudarshan [3j, which 
asser-ts thot T(.) is restriction to [O,oO) of a strongly con-
tinuotls unitary group, i.e., that Hp is self-adjoint. D 

Let us pass now to the cEise of non-constant apparatus func
tion ; for the sake of simplicity we limit ourselves to the simp
lest possibility when dimS(.) = 1 . 

Theorem 2 : Let H be 1:1 self-adjoint operator on :If , and 
let E(t) for each t e: [O,b] be one-dimensional projection 
corr.esponding to a unit vector 1ft e: D(H) . .Assume that t H }'t 
is c 1 on (O,b) and that t ,_,. H1ft is c 0 on [O,b] , then 
the operator UE(t,O) ~xists &nd 

l"t • UE(t,o)r = exp { 1 I L('t) d?: J 'l"o·l"l)l.'t (lOa) 

L(t) -i<h•h)- ('f't•H'f't) (lOb) 

for all tE.[O,b) and pe:Jf. Moreover, UE(.,O)f obeys the 
equation 

_dl't • 1 
> dt = [iE(t)E(t) +E(t)HE(t)J)'t (,) 

~ : UE(t,O) depends actually on E(.) only, not on the 
representing vector-function ~ if 1ft= 'Ytt exp(ia(t)) with Ct: 
absolutely continuous, then L<t) = L(t) - ~(t) , and consequent-
ly ~t = 'Pt . 
Proof: For an arbitrary partition ~ of (o,t] and !fE.Jf we 
have UE(t,O;&) = f(t,0;6)(¥0 ,~)~t , where 

n-1 
f(t,o;s-) = n g<"j•''"j) 

j=O 



By ~tandard limit arguments, the smoothness assumption!::l of the 

theorem imply thl:lt g(.,.) is continuously differentiu.ble in 

both arguments and that 

L: L(t) =-iap;(r,~l~ 
a r r=t 

is cont.inuous in [U,b] . ;Jince g(t,t) :;_ 1 , we have also 

a ln 
L( t) = -i g(r, t) I 

(lr r=t 

Further we express ln f(t,O;G) with the help of T,flgrange remain

der theorem for tht"· reel und imc..ginS-ry vu1·ts of ln p;(r,s) 

lr. f(t,0;6') ::= 

r.-1 [ 
= i L. Re 

j=O 

n-o1 

L ln g("tJ."' 1 '!:'J.) -= 
j=-0 

L(Sj) • i Im LCj'jl]<!j 

with some J.,li~E'('L.,'Z:'. 1), j=O,l, ••• ,r:-1. gd Ro::> L(.) 
J J J ,l ,]+ 

lm L(.) tlre continl.lous bond therefor<o> Riewl:l.nn intPf"("bble in 

so we obtain 

lim ln f(t,o;~) 
/l(o)~u 

t 

t 
i IRe 1(-r) d't 

0 

= i f L(~) d< 
0 

t 
f Im 1,(1) d'f 
Cl 

and 

[o, t] 

it proves (10). 1/erification of {11) is straightforward. • 

Corollary 1 : Let 1f E.f\IRd) I XoE. c1[ [O,b) ;ad] and 1ft 
'lft(x) = 1f<x-x0 (t)) . Let further H be a self-adjoint opera

tor on :Jf= L 2 (1t.d) such that D(H) :::tj(f.:d} and t-H¥tt is 

continuous on [O,bJ , then 

'ft = expfi i c3,ak(~)J'k(~)-[(·rl]dr}<1f'o•flh (12a) 

for all t E: (O,b) and !p€Jf , where 

Proof: One has just to specify the first term on the rhsdof (tOb). 

Using continuity of x0 and the fact that "ft€_f{Rd) C n D(Pk) , 
k=1 
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( rk 1ft)< x) = -i {8}' ;ayk);y~--x-xo( t) 
one findo: the <krivr~Uve 

it is conUnuous du.e to t'Ont.inui ty of .x
0 and of trsm:lutions in 

L2 (Rd) . Since Qk(t) ~ i 0 k(t) , the &suertion folluwe. • 

Corollary 2 'i'heoren: 2 and ~oro) hry 1 n:matn valid if 
H is assumed to be b pr.;ct;do-llfllr!iltoniBn, i.e., a closed opr::
rator on f1r such that iH gencrBtf08 u. cor.tinuous r.or.trsctive 
semigroup [14]. 

0 

• 
It is desirable to generel :tze Tbeor'!Il' ? fo~ rnore general 

apparatuG functions i:c:cludlng infirJittc-rlilllt:JiSiunal oneH. The fol
lowing case :i ~ of particular intcre~>t : n = H(~ .f V it: a [;chrOdir.e-er operator on df = L?<Hdl &nd l~(t) is the p;ojection on r/(Mt)c 
C ~ , where lfJt C !ltd . l f H = !-i() = - ~ d , then 

J ufn 
(UE(t,0)1p)(x) = t"t (x) JHJ<<D)) D'fVl (lJ) 

ru~o,x) 

where l<'eynmtm integYa] on the r-J1s of ( 13) iF. understood in the 
sense of Ref, 16 1:1nd r(M,x) cor.bjst.s of continuous paths J' : [O,t]~~d vdth ,r<t)=x. 8nd j'('t)£M, ,'t'c[O,t]. Thus the 
operator-VfJlued function~ UF. G<'<n l":8p)Bce in a senE'.e the no:r::-existing Feynman measure {cf. [2] ; compere to thf~ ur.alogous problem 
for the Wiener measure : [13], Lemma 7. 10 and Sec. ?.2). 

It would be useful to obtain UE(. ,0) , suy, by solving a 
differential equation inot;eu.d of ce.lcull;jting the limit (2). Thie 
problem remains in general or-en for non-constant l~(.) • One possibility is represented by the eq. ( 11) whic}J was first obtei.ned 
formally by Bloch and Burba [15). l>ctually, such an equation holds 
for ~~ = UE(t,0;6) whenever its rhe mHkee sense ; so it applies to ?t if the interchange of the derivative with the limit 
0(6·)--. 0 can be justified. On the other hsnd, in the above mentioned c~se with permanent localization of a Schr~dinger particle 
to Mt (when Ect) in general does not exiet), Friedman proposed (2J the equ.ation 
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( 14) 

where HE(t) is a ~ui!.<:.:ble extension of E(t)I-H;(t) (I:t•J.ltipLe of 

the Laplace-Dirid~ltd overatur for smoothly varying interval 
Mt C (R considered in kef.2). Ee exhibited some conditi.orw under 

which solution of (14) would exist, howevtr, he guve no proof 

that it would obey rt ~ U~(t,O)f 

'Phe last rem&rk conCerns the situation when H L:1 a pseudo

Hamiltonian, i.e., when the undisturbed motion of the system is 
dissipative. Corollary 2 suggests that the Feynman dynamical for
mula might hold, e.g., for Schr~dinger Hamiltonians with complex 
absorptive potentials too ; this fact was already established for 
some particular classes of potentials within various definitions 
of the J.o'eynman integral (16-18]. 
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