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I . INTRODUCTION 

In the previous paper.ftl (referred to as I) it has been 
shown that the three-dimensional _two-particle relativistic 
equation of Logunov-Tavkhelidze·121 can be generalized also 
to the supersymmetric case. Remember that the equation of 
Logunov-Tavkhelidze can be found from the Bethe-Salpeter equa­
tion for vanishing the nonphysical relative-time in the cen­
ter-of~ass system. Because of noninvariance with respect to 
the supertransformations of the "equal-time" operation, this 
is made in a fixed reference frame in the superspace (see I). 
As it is known, there exist also other methods for finding 
the three-dimensional two-particle relativistic equation, for 
instance: vanishing the relative energy in the center-of-mass 
system (Markov-Yukawa contion)Ji,.5(or one of the variables of 
the light-front1~9/, as well as on a hyperboloid in the momen­
tum space :/10( 

The object of the present paper is to obtain the super­
symmetric two-particle equation on the light-front. For sim­
plicity the explicit form of these equations is given only 
for simple chiral superfields. However, without difficulties, 
these equations can be written also for the case of extended 
supersymmetry. From theories of such a kind of a special in­
terest is t'he supersynunetric N=-4 Yang-Mills theoryJ11,121, as 
a possible theory with the "confinement". As is well known, · 
the quasipotential approach is a natural scheme for solving 
the bound-state problem. Moreover, the quasipotential equa­
tions on the light-front are a convenient tool for investi­
gation of the form-factors and other high energy processes. 

2. SUPERSYMMETRIC "TWO-TIME" GREEN FUNCTION 
ON THE LIGHT-FRONT 

Consider a massless chiral superfields ·w+(x,O) and its her­
mitian conjugated field <1)-(x. 0)/U/ (see also/!/ ) • Here the 
notation of paper:/1/ is used. Recall, that the two-component 
spinor formalism is used. As in paper 111every possible four­
point Green functions for the chiral superfields can be com­
bined in the following matrix 
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0 ++,++ a++,-+ 0 ++,-+ G ++,--

o-+,++ a-+,-+ a-+,+- o-+,--

0= G +-,++ ·o +-,-+ G +-,+- G +-,--

o--,++ G -- ,-+ a--,+- a--,--

where 

G a,(3,yp =<0:1 T(~a(x 1' e 
1

) ~(3(x2 , 9
2 
)~ Y(x

3
, 9

3
) ~ 8(z4 , 94 ) 

(a,(3,}18 = +-) 

(2. I) 

(2.2) 

are the four-point Green functions for chiral superfields. 
In an analogous way the two-particle B-S amplitude can be re­
presented also in the matrix form 

(2.3) 

where 

(2.4) 

is the B-S amplitude for chiral superfields. 
Transition to the three-dimensional formalism for the Green 

function (2.1) and B-S amplitude (2.3) is achieved by making 
the relative coordinate on the light-front (see:!&/ ) to vanish 

X ~2 = ; (xl2 
+X ~2 ) = 0 o 

where 

x12 = J:l- x2 

(2.5) 

As has been pointed out in1 i 1, the condition (2.5) is 
not invariant with respect ·to supertrattsformations. Therefo­
re the condition (2.5) is applied to the Green function (2.1) 
or to the B-S amplitude (2.3) in a fixed reference frame on 
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light-front in the superspace, i.e., for which the parame­
ters of the supertransformations are zero. This reference 
frame is called the supersystem on the light-front. In an 
arbitrary reference frame the condition (2.5) can be written 
in an invariant form 

~ 12 .- 12 
n (x ~ + 1<y~ 0 ) = 0, (2.6) 

where x12 =x1-"2, 012 =0 1-02, n (n 2= 0) is a light-like four­
vector, components of which in the supersystem on the light­
front are given by 

n = (1,0, 0, -1) 
and l is an anticommuting spinor parameter of the supertrans-
formations. 

Then, in an arbitrary reference frame the "equal-time" 
operation is given by: 

(2.7) 

(2.8) 

where 
1 1 

X = :r<• 1 + '\! ). Y = :r<•:a + x4) 

are the corresponding center-of~ass coordinates for the equ­
al mass case. In the momentum space from (2.7) and (2.8) in 
the supersystem on the light-front, we have 

"'p <.'!· o 
1 

• o 2 > = r dq_ "'p c q, o1 • o2 > (2. 9) -
and 
~ 

G(p, '!: <!_') = fdq_dq:_ G(p,q,q', 0
1 

;,;;. ,04), (2. 10) 

where 

P=P1 +P2 =P3 +p 4 =(P±,O), Q= i(P1-P2), q'= ~(P,8 -P4 ) • 

1 
'!:_-(q+,q~), q±=:r(CJo±qsl• q~=(q1,q2). 

Then the quasipotential V is determined from the equation 

(i-1 = 'Q-1 - _1_y 
0 2"1 (2.11) 
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where G0 is the "two-time" disconnected two-particle Green 
function. 

3. SUPERSYMMETRIC QUASIPOTENTIAL EQUATION 
ON THE LIGHT-FRONT FOR MASSLESS CHIRAL SUPERFIELDS 

In the free case the disconnected Green function is 

oaf3,y6 -Day( . " 0 )Df36(x . " " ) 0 -o xt-x;a'ul'3 0 2-x4.v2' 0 4' 
(3. I) 

(a,fJ, y, lJ = +,-)' 

where 

++ r > 2 2 -1 D 0 (p, 8 1 ,82 ) = m6 (81- q3 (p -m + !<) 

D~- (p, 8
1

, ~3 ) =: exp(28
1 
£e-

3
) (p 2-m2+ ;<)-1 , 

(3.2) 

are propagators for the free chiral superfields. Here E = p"uiL' 
u0 ='I is the identity matrix and aj (j =1,2,3)are the Pauli 

matrices. It is evident that in the massless case n++=o--= 0 
and, consequently, the corresponding four-point disconnected 
Green function in the free fields case has the simple form, 
i.e.' 

0 0 0 
++,--

Go 

0 0 ao+,+- 0 (3.3) 
0= a+-,-+ 0 0 0 0 0 

a--,++ 
0 0 0 0 

For this reason, consider first the massless case. Substi­
tuting (3.3) into (2.10) and taking into account (3.2) for 
m =0 we have 

a~+,--= ~exp(81\':fl3 + 82~8-4)[Jo+2(81~+ii"3 +82~+84)J1 + 

- - 2 
+2(81~+83+82~+84) J2], 
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with the following notation 

and 

- ~-P ~P a~ 
-1 + 

up. = ( £' P. ( , l = ia2 , 

~(d k [ 2 2 1-1 [ 2 2 0 1-1 ' 
. q_q_ p +2pQ+ q -k p -2pQ+Q +1< •o -

(3o5) 

(3 0 6) 

In vi~w of that Q2=2Q+Q_-qf. it is evident that the integ­

rals 'Jk(k=l,2) are divergent. The integral 'J 0 is the corres­

ponding "two-time" free two-particle Green function on light­

front for scalar particles:l6l,. On the massless case Jo is gi­

ven by 

Jo~ El(x)El(l-x)io 

where 

4m8(q+ -q:)a <
2
> (q.L- q~2 ~ 

p+ [ x(l-x) p2 - q.L2 1 

Variable x in (3o7) and (3o8) denotes 

(3o7) 

(3 0 8) 

(3o9) 

Because of the e -functions in (3. 7)' Oo is nonvanishing 
only in the interval 

O.<x.<l (3ol0) 

Following paper' 191 the terms in the "two-time11 Green finc­

tion (3.4) containing divergent integrals cancel out by the 
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projection operators. To be found such projection operators 
point out that the structures, which coefficients are diver­
gent integrals 1' k (k ~ 1,2), have the following form: 

and their products. 

1 "+ ~ -(uo +u3) 
- 2 - -

and, consequently, 
- -

Here 
1 0 

~ ( 0 0 ), 

01 "+ 03 ~ (01) 1 (03 )i 

( 0 0 
0 1 

(3.11) 

Then, using the anticommutation 
of 0, i.e. , ((OJ ) 1) 2~. the following 
introduced 

(nilpotent) properties 
projection operators are 

17~ 

<.7+ e 1 l <.7+e 2l 

(~+0-1)(;+02) 
0 

<i'+ e 1l<~i 2l 
0 - -

<~+e 1l<c;:.+e2 l 

(3. 12) 

which cancel the structures of divergent integrals Jk (k=1,2) 
in the 11 two-time11 Green function (3.4). The projected wave 
function is denoted by 

(3 .13) 

where [d8s] denoted integration over ei or 81 for - or + 
components of the wave function, re2pectively. Consequently, 
the wave function depends only on (} i and 0 1 components of 
the anticommuting spinor variables 8. From (J. 4) for the matrix 
elements of the "two-time" Green function after projection 

(3. 14) 

we have 
++,-- 1 - - ....... 

~0 ~'4expiP+0 1 ~-0 3 +Q+0 2 c;:__0 4 lJ 0 
(3. 15) 

a~+,+-~! exp{P+ 8
1

;;_ e
3 

+Q+ 0 2 u_e-4 fJ
0 
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The inverse Green function GQ1 can be found from the fol­

lowing condition 

p+/2 

([d(O:Jlil[d(e.j )1 ) ( dq~ (d
2
q;2,0(p,q,q',81,8:;8:J,8.jlx 

-p+/2 -- (3.16) 

x a~1 (p, '!."• '!.', e3, e.; ,e3 , e4 l- a(q + -q~ )a<
2
> (q~ -q ~)a< 1~ei-e.~ x 

~ 0 ( 1) (" 2 a 2 )' x a u2 -v 4 " 
- - (1) -

where [d82 ] denotes integration over a_O or u_O, and 8 (a+O)= 

= 8 (1) (Ot )= (} 1 is the one-dimensional G'iassman 0 -function·/13/,. 

Substituting the free 11 two-time" Green function (3.14) in 

(3.16) we find 

where 

Then, we have 

v 

(3.17) 

qi 
--r. (3. 18) 
x(l- x) 

the following equation for the wave function 

p~2 
2 .e ~oe2l- r dq+ fd q <V'I'p l. (3.19) 

-p/2 v 

where v denotes the integration over the intermediate Grass­

mannian variables (},. The quasipotential V can be found within 

QFT. Because of a cumbersome structure eq. (3. 19) is not given 

here for the components of the superwave function. It can be 

pointed out that the corresponding equation for the scalar com­

ponent of the wave function coincides with the equation found 

in paper·/6/ for the massless case. 

4. SUPERSYMMETRIC QUASIPOTENTIAL EQUATION 
FOR MASSIVE CHIRAL FIELDS 

From (3.1) and (3.2) it follows that the four-point free­
field Green functions, when the mass of particles is nonzero, 

have the general form (2.1). Applying to this function the 
"two-time" operation (2.10) and projection operation (3.14) 

we have 
(4. I) 
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where g is a 4x4 antidiagonal matrix with matrix elements 

g ++,-- =exp(P+e_1 ~-e 3 + Q+e2 ~- e 4 l, 
(4.2) 

and 'J o is the corresponding "two-time" Green function for the 
free scalar particles with masses m 1 and m 2:161 , i.e. , 

(4.3) 

and 
4ni8(q -Q'-)8( 2) (q - q' ) + + ~. J. 

(4.4) 

Note that by the projection (3.14) which cancels down the. 
divergent terms all elements of 00 containing the Grassmanian 
8-function vanish. The latter is a consequence of the follow­

ing identity 

1 e.9.a(e -9) =re.e.(-IJ£0- 9,9 +20<9) = 

= e. !Ia [ e2 e 1 + 9 2 9 1+ e 19 2 - e 2 9 11 = o . 

Then, the inverse "two-time" Green function determined by 
the condition (3.16) has the following matrix elements 

(a - 1)++,-- !P e e- Q e e- lAC > ~O = exp + 1 q;- .3 + + 2 ~- 4 · m 1' m 2 • 

~;1 ) -+,+- = exp!P )1
1

;; _ 8
3 

+ 8 +8
2 

u _ 8-
4 

IA(m 1,m2), 
(4.5) 

where 

A(m 1, m ~ 

, qJ.2 + m 2 qJ.2, + m22 
-'- [p 2 - __:_1_ -,----'=-]:. 
4"p+ X 1- X 

(4.6) 

Substutiting m1=m 2=0 in (4.5) and (4.6) we get the free in­
verse "two-time" Green function for the massless cases (3.6) 
and (3.8). Then the supersymmetric equation for the two-par­
ticle wave function, has the following form 
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(4.7) 
v v 

where the integration over the intermediate momentum and Grass­
mann variables is taken into account. The quasipotential V 
can be determined within the quantum field theory. 

In conclusion it can be pointed out that since the scalar 

component of the free "two-timeu Green function coincides with 
the propagator in the free par ton model :lSI, then by using (4. 1) 

the supersymmetric extension of the parton model can be found. 
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