


1. INTRODUCTION

In the previous paper’Y (referred to as I) it has been
shown that the three-dimensional two-particle relativistic
equation of Logunov-Tavkhelidze’?’ can be generalized also
to the supersymmetric case. Remember that the equation of
Logunov-Tavkhelidze can be found from the Bethe-Salpeter equa-
tion for vanishing the nomphysical relative-time in the cen-
ter-of-mass system. Because of noninvariance with respect to
the supertransformations of the "equal-time" operatiomn, this
is made in a fixed reference frame in the superspace (see I).
As it is kmown, there exist also other methods for finding
the three-dimensional two-particle relativistic equation, for
instance: vanishing the relative energy in the center—of-mass
system (Markov~Yukawa contion)’®5%/or one of the variables of
the light-front/®9%/ as well as on a hyperboloid in the momen-
tum space /104,

The object of the present paper is to obtain the super-
symmetric two-particle equation on the light-front. For sim-
plicity the explicit form of these equations is given only
for simple chiral superfields. However, without difficulties,
these equations can be written also for the case of extended
supersymmetry. From theories of such a kind of a special in-
terest is the supersymmetric N=4 Yang-Mills theory/1}12/ ;5
a possible theory with the "confinement". As is well known, °
the quasipotential approach is a natural scheme for solving
the bound-state problem. Moreover, the quasipotential equa-~
tions on the light-front are a convenient tcol for investi-
gation of the form-factors and other high energy processes.

2. SUPERSYMMETRIC "TWO-TIME" GREEN FUNCTION
ON THE LIGHT-FRONT

Consider a massless chiral superfields'¢+IxAﬂ and its her-
mitian conjugated field 'Q‘Tx,é}’ﬁsl(see also’Y ), Here the
notation of paper /1 is used. Recall, that the two-component
spinor formalism is used. As in paper’/1/every possible four—
point Green functioms for the chiral superfields can be com-
bined in the following matrix



a 44yt G++;—+ G ++,~+ G++|——
G—+,++ G-—+,—+ q —_t gyt G-+,——

G= +—,++ +—y =+ ot Rl oy P21
G L] G ’ (o] ’ G ’

G"“l++ G_—’_+ G--v+“ G~
where

a®P¥? _colmce%(z, 008, 6,007 (x,.0,0%,,0,) (2.2)

(0, B, %8 = +~)

are the four-point Green functions for chiral superfields.
In an analogous way the two-particle B-S amplitude can be re-
presented also in the matrix form

v 6,,6,) |
v (@6,,0,)
L pfq_ 172 (2.3)
Fpg (@ 6y, 0g)
| Y@ 0. 6p) |
where

‘l’::gz‘CO&T('(Dn (xl, 61 )‘dJB(xg ,62 ))lp, ¢=> y (d, .8= + _) (2.4)

is the B-S amplitude for chiral superfields.

Transition to the three-dimensional formalism for the Green
function (2.1) and B-5 amplitude (2.3) is achieved by making
the relative coordinate on the light-front (seeJe/ ) to vanish

x 12 = -21;(1012 + x._;a) =0, (2.5)

where
812 = 21- 82 -

As has been pointed out :i.n"‘“/, the condition (2.5) is
not invariant with respect to supertransformations. Therefo~
re the condition (2.5) is applied to the Green function (2.1)

or to the B-S amplitude (2.3) in a fixed reference frame on
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light-front in the superspace, i.e., for which the parame-
ters of the supertransformations are zero. This reference
frame is called the supersystem on the light-front. In an
arbitrary reference frame the coundition (2.5) can be written
in an invariant foxrm

n# (x:fn?y# 8% = o, (2.6)
where Xjp=Xi~%, O1p=01-6, 1 (n =0) is a light-like four-
vector, components of which in the supersystem on the light-
front are given by

n =(1,0,0,-1)
and ¢ is an anticommuting spinor parameter of the supertrans-
formations.

Then, in an arbitrary reference frame the 'equal-time"
operation is given by:

12 i2 .— L, 12
=_fdx+8[nIu (x# +leyy g (X, 2 5,00, 05), 2.7
= j'dxigdx"iﬂ'a[n“ { x;2+ie_yu912 NEIC (x.34+ieyvt934)] %

(2.8)
X G(X' Y. xlg, xm, 91 yrevey 64)9

where
X —“‘(31‘“’2) Y = —(x3+x4)

are the corresponding center-of-mass coordinates for the equ-
al mass case. In the momentum space from (2.7) and (2. 8) in
the supersystem on the light-front, we have

¥, (2.0,,6) =_qu__rpp @ 6,8, (2.9)
and

'6( P, 9 4°) = fdq_dq7 G, @ Q"5 0, yiuer s 0,) (2.10)
where

1 N PR
P=p,+P,=Py+P,= @+ .0, 2= 5~ 4 = 50y-0) -
9=0(9,,9,). 4;= 59 *93), 9, =(q,,9,7-

Then the quasipotential V is determined from the equation

—_ —_— 1
gt-"at - v,
L (2.11)
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where G, 1is the "two-time' disconnected two-particle Green
function.

3. SUPERSYMMETRIC QUASIPOTENTIAL EQUATION
ON THE LIGHT-FRONT FOR MASSLESS CHIRAL SUPERFIELDS

In the free case the disconnected Green function is
aB,y8 _Lay . Bé )
G =Dy (%, -x,:6,,8,)Dg (x,~x,;6,.6, ),
(3.1)
(ayﬁr}’,a =+7—);

where

Dy, 0y,05) =md | (6,8 (% -m%+i07",

3.2
DT (p, @ 9)—1e (26, p6_) @2 -m 2+ ie)~1 -2
o Wby Ug) =5-elal PO, tiel

are propagators for the free chiral superfields. Here g==p”a#,
o9 =1 is the identity matrix and o; (j=12,3)are the Pauli
matrices. It is evident that in the massless case D**=D——=0
and, consequently, the corresponding four-point disconnected
Green function in the free fields case has the simple form,
i.e.,

[0 0 0 ot ]
0 0 Go 't oo (3.3)
%=1 o cFt o 0
G, 't o 0 0 |

For this reason, consider first the massless case. Substi-

tuting (3.3) into (2.10) and taking into account (3.2) for
m=0 we have

1 - — — — —
Gy = om0, P8 +6,Q0,)F,+20,0,0, +6,0, 60T, +

— el 2H
+2(8 o [} +622+94) 32],
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—_—_ _ 1 - - = — A -
g+t =74"exl’(91p93 +92_g94)[10+2(610+q3+62g+6_4)11 +

(3.4)
+2(612+6‘3+92 (14_6‘4) J211
with the following notation
P(p,9) =(p, +2¢,. P, P, +24, ).
Q(pr‘l) =P(P-—‘1_) =(p+ —'2Q+sp_spJ_"2qJ_)’ (3'5)
?:P#o; , ;# =c-1g;c , € =1las ,
and
3, = fda_aip®+2pa+ a®-ie) ™ [p° -2pa+a®+ie] T (3.6)

In view of that q2=2q+q_—-qf it is evident that the integ-
rals J,(k=12) are divergent. The integral ¥, is the corres-
ponding "two-time" free two-particle Green function on light-
front for scalar particles/®/, On the massless case Jp is gi-
ven by

To=0(081-97, . (3.7)
where
4rib(q, Q)8 @ (a,~a;)
p, [x(1-x)p% -q 2]

I, @ q,.9,97,,49]) =

(3.8)
=T (®,q,,9,)8(_-a’ )8, -a; ).
[+ Bt St Y + + 1 1.
Variable ¥ in (3.7) and (3.8) denotes
2=1/2 +q,/p, . (3.9)

Because of the @ -functions in (3.7), G, is nonvanishing
only in the interval

0<x<i or -p, /2<4q,<p, /2. (3.10)

Following paper‘/g/ the terms in the "two-time" Green finec-
tion (3.4) containing divergent integrals camncel out by the



projection operators. To be found such projection operators
peint out that the structures, which coefficients are diver-—
gent integrals T (k= 1,2}, have the following form:

91{{+9u3v 9234-9_4' 60, 0y, 6p0.,0, (3.11)

and their products. Here

" 00
2+==%420+23) = (g ¢ q_=—400+03)u~(0 1)

and, consequently, .
010,65 =(8,),(83); . 8, 6,04=00)%0)%=(8,); 16y,
Then, using the anticommutation (n11potent) properties

of 6, i.e., «6,)1)=0 the following projection operators are
introduced

EANRIKA
(0,610, 85)

o _ (3.12)
(.8 Nz Fp)

| : (@,8 Mo, 05) |

which cancel the structures of divergent integrals Ji (k=1,2)
in the "two-time" Green function (3.4), The projected wave
function is denoted by

X, (.05, 0) = 11d(6,),)0d0y) ,1 7T, (0,0,,6,) » (3.13)

where [dfy] denoted integration over ¢; or f; for - or +
components of the wave function, respectively. Consequently,
the wave function depends only on 0y and 6; components of

the anticommuting spinor variables 8. From (3.4) for the matrix
elements of the "two-time"™ Green function after projection

Gy = fae, )1 ld(e,) 1#G = (3.14)

we have
+4,- 1

Gy =—expiP, 6, 0_03+Q,050. 8,13y,

(3.15)



The inverse Green function'GElcan be found from the fol-
lowing conditiom

p./2
2 d -
fa@:); Naws),1 [ da% fdayG (0.9,07,0,05605,07) x
3’1 41_p+/2 + - ) (3.16)

- 2 . 1 .
f G5 107, 0%, 05,6 105,040 = 340 =008 (4, -8 ’(631—6231 x
x5V eF-03%).
where [dfy] denotes integration over g__é' or ¢_6, and 5D (7. 0)=
=5 (9,;)=04 is the one-dimensional Grassman & ~function /1%,

Substituting the free "two-time" Green funection (3.14) in
(3.16) we find

GHT"TT —emp(PL 0,90 + Q0,96 4)A,
{3.17)
fGEl)'+,+— mexp(P+6_10~_9-3 +Q, 0, g_6 A,
where
_ _ q2
Amot e p® - —]. (3.18)
PQ,Jg 4mp . x(1-x)

Then, we have the following equation for the wave function

p/2 0
(G ¥, ) (e ,a .0y;02) = [ da [d7a (V¥p), (3.19)
v —p+/2 M

where v denotes the integration over the intermediate Grass-
mannian variables ¢. The quasipotential V can be found within
QFT. Because of a cumbersome structure eq. (3.19) is not given
here for the components of the superwave function. It can be
pointed out that the corresponding equation for the scalar com-
ponent of the wave function coincides with the equation found
in paper‘/e’ for the massless case.

4, SUPERSYMMETRIC QUASIPOTENTIAL EQUATION
FOR MASSIVE CHIRAL FIELDS

From (3.1) and (3.2) it follows that the four-point free-
field Green functions, when the mass of particles is nonzero,
have the general form (2.1)}. Applying to this functionm the
"two-time" operation (2.10) and projection operation (3.14)
we have .

C‘0=g‘Jg(D-qvm); (4-1)
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where g 1is a 4x4 antidiagonal matrix with matrix elements

Fty - -
gt =exp(P 6,0 0,+Q,60,0_0,),
o - (4.2)

and Jg is the corresponding "two~time" Green function for the
free scalar particles with masses m; and rnz’e/,i.e.,

1, =8(x) 8(1-x), (4.3)

and
. 4ni(e,-97)6® (q, -q7)
V.TO = "' (4-4)
p,x1-0[p* ~(¢2+mPH/x ~(aZ+nd)H1-9]

Note that by the projection (3.14) which cancels down the
divergent terms all elements of G, containing the Grassmanian
§-function vanish. The latter is a consequence of the follow-
ing identity

0,8,5(0 —8) = 0,0, (-6c0 ~ BcD +2060) =

=0, 8, [050, +0,81+ 0,0,-6,8,1=0.

Then, the inverse "two-time' Green function determined by
the condition (3.16) has the following matrix elements

@77 —emiP, 8, g 0, +Q 0,0 0, lAmym,),

- - - (4.5)
(‘Ec‘;l)_“‘ﬂ'" = expr+61 0_6.3 + 6+62 a_.ﬁé }:A(m 1'm2) .
where
Af 9 4
m 1* m = - =
PQ J,(m,,m,) )
(4.6
i 2 Qf_,+mf qf + r1:|22 .
=~ (p* - - 1.
4”p+ X 1-x

Substutiting my=my=0 in (4.5) and (4.6) we get the free in-

"verse "two-time" Green function for the massless cases (3.6)
and (3.8). Then the supersymmetric equation for the two-par-
ticle wave function, has the following form

8



(4.7)

'<[_’E*

where the integration over the intermediate momentum and Grass-
mann variables is taken into account. The quasipotential V
can be determined within the quantum field theory.

In conclusion it can be pointed out that since the scalar
component of the free "two-time" Green function coincides with
the propagator in the free parton model’ af,then by using(4.1)
the supersymmetric extension of the parton model can be found.
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