


1. INTRODUCTION

In the last two vears the Wilson functional in QCBH W(C) =
-—<Pexp1g(§A dx*> has attracted considerable interest. Being
gauge 1nvar1ant it is a distinguished object suited not only
for construction of composite operators but also for discus-—
sing confinement in a gauge invariant manner. The first step
in the study of W(C) was to investigate its renormalizatiom
properties. Now this problem can be considered to be complete-
1y understood, both for simple smooth contours’ Y, and for com-
tours with cusps or double po1nts/3/

More involved and not yet clarified is the case of field
theoretic functional equations which have been derived wit
the intention to obtain non—-perturbative solutions forW(C)Bi%?/
These equations appear in two forms which, albeit equivalent
in regularized theory, may differ with respect to removing
the regularization:
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In our earlier papers/67/ we have studied the flrst equatlon
restricted to the disjoint case 747" Besides an estimation of
the short-distance behaviour <UgFUgFlk>~1q 2174 log|n~n"11"
(obtained from RG, OPE and asymptotic freedom) we noticed,
that for smooth contours without double points the operator
insertion on r.h.s. of equ. (1) needs no additional Z factors
for renormalization. In other words, one obtains

i : ; . Jen
<UgF‘Wx UgF xAL>=<UgFWxVUgFW\xAU, . 7€ '

at least at one—loop level, i.e., up to ovder g4



In the present paper we want to extend the investigation
of equ. (1) to all values of 7.7" not excluding coincident
points. The appearence of singularities like|np-p’|~% or
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with respect to the contour parameter. This will be outlined

in section 2. Then, provided that renormalization of W has
already been performed® the question about the validity of
equ. (1) for remormalized Green's functions is reduced to that
of existenrce of r.h.s. of (1) as a distribution. Applyving in
section 3 the method of OPE to dxmens1ona11y regularized
field theory we show in order g% how the r.h.s. of (1) con—
stitutes itself as a distribution without any need for addi-
tional subtractions. When, however, looking on the second
term of r.h.s. (1) separately, we will observe an infinity
~1/¢g® (section 4).
Since it appears to be almost evident that starting from

a renormalized W one gets well-defined functiomal derivatives
5%w
3x(p)ox(n”)
of infinities among the first and the second term of equ. (1)
beginning with order g% (of course, this hypothesis has not
been proven here). Because there is no possibility for such
cancellations in equ. (2) this equation needs additional sub~
tractions besides those guaranteeing a finite W. One should
mention, however, that equ. (2) in most cases has been applied
to the regularized theory omnly.

we conclude that there should be cancellations

2. GENERAL ARGUMENTS

As usual we consider functional derivatives as distribu-
tions expressing the response of a functional ¥ defined over
smooth simple contours to variations within the space of such
contours. We start, e.g., with a closed contour x (y)
0y £ 1, x(®)=x(1), add a small variation ay,(n) retain-
ing the resulting contour in the basic space chosen and de-
fine the functlonal derivatives by
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* For smooth contours without double points to which we
always restrict our consideration this is achieved simply by
performing renormalization of the coupling constant/V,
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Now for closed smooth simple contours x(y) the dimensionally

regularized Wilson functional W reguires no overall Z factox

for renormalization/1V, The limit ‘

lim W _(g_,x(m))= Wig.x(n)

20 , . . e/2
exists in the sense of analytic continuation (here B, =u .Zgg

denotes the regularized bare coupling comstant, compare equ.
(12), and ¢=4~d }, With respect to derivatives of the renor-

malized W(g,x(»)) the questions arise, whether
——— 9 .
dW(g,x+ay) | and d Wg,x+ay). i exist
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and whetger the relation
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is fulfilled (together with an analogous relation for the
first detivative, of course).

" Although we have no thorough mathematical proof of (4),
this relation is almost obvious since the point a=0 is in no
respect distinguished from other ones in the space of smooth
simple closed contours. From general experience the singular
case of an upnallowed interchange of limits would be a reflec-
tion of some distinguished situation in loop space.

This line of arguments also exhibits the striking differen-
ce to the area derivative used.in equ. (2). There the varia-
tion is defined by adding to a given contour a small loop.
Then the limiting case is distinguished since it even corres—
ponds to a change of the topology of the contour,

Applying now these general arguments to We(ge,xuﬁﬁ+a8uvy(q»
we get
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In writing down equations (5) and (6) we turned to the very
useful formalism of auxiliary z field/3/where W is given by



W=<z(1)Z(0)>, Furthermore 2,(n)=gZ{n) FAp (@D z(n) i-p(ﬁ)- t,
are generators of the SUN} gauge group, < >€ denotes regula-
rized Green's functions, éf)(u@=é;§r;%::— the dimensionally
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regularized & -function and Xu=dxu0$/dq.

From (5) we conclude that the composite operator 0, (n) re-
quires no Z factor, a point checked by explicit one-loop cal-
culations/6/ already. Equ. (6) gives the z formalism version
of the r.h.s. of (1) integrated over with smooth test functi-
ons ¥{y). Its limit must exist in the course of removing the
regularization. This yields highly non trivial constraints
on the uv divergencies and short distance (-3”) singulariti-
es of r.h.s. of equ. (1).

As will be shown in section 4 the second term in equ. (I)
has no pole up to orderg% Then the existence of the limit (6)
gives a restriction on the possible short distance singulari-
ties in <z()Q,(7Q,GH")Z0)> . The limit ¢+ 0 of the
integrated regularized expressiom should exist, or put in
other words, the short distance singularities of the renorma-
lized expression must be well defined as one-dimensional dis-
tributions over the n-parameter space without any additional
subtraction. In general such additional subtractions are neces-—
sary to define insertions of more than one composite operator.
A well-known example is the two-point function of a conserved
current where the product of two propagators - 1 _ i
) . . (x=y)® (z-y)2
requires subtractions to be defined as a distribution in Ry.
As further shown in section 4 the second term developes a pole
1/e in orderg®Equ. (6) then demands a conspiracy between this
divergency and the short distance singularity of the first
term. i

3. OPERATOR PRODUCT EXPANSION OF LR n7)
The short distance singularity of‘<z(D(l”(n)ﬂﬁ(q’)ﬂ0I> will
be studied with the help of the OPE
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Let us start with listing all the gauge invariant operators
0 of canonical dimension from zero up to three giving rise
to coefficient functions with short distance singularities,
To simplify notation we use the special parametrization defi-
ned by %% =] and

: | (8)
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dimension 0: zz compa.re , dimension 1: 2Dz, 2Dz

. . - (3)
dimension 2: 2D7z, zD z zDDz ,22¥%, ZZix

(8)

dimension 3: zD3%z etc., Z2¥x® | Zaxx®, ZF,, 2% &, D, F zx
pvt Cptur v

When putting the OPE into the Green's functioms under consi-
deration the operators containing Dz or ZD vield a vanishing
contribution for closed contours due to the equation of motiom
for the z field. Thus we get rid of terms like

| g~n" €8 < z(l)(zD z) 20> . The coefficient functions
for the remaining operators are either even or odd functions
of n=%. This symmetry can in each case be seen by lowest order
calculations or in general by the use of the following sym~
metry transformation. Let us choose the parametrization of the
contour in such a way that instead of (7) we have an expan-
sion in the form

2, /22 w2= 2 ' @o® . ‘ "

The r.h.s. as well as the Lagrangian of the theory [ dxf,+
+[dpzDz are invariant with respect to

7 =7, Z(n)= i#-7),  2(y)~+ iz(-p),

T (9}
gA ()~ —gA, (x)
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Under this transformatron zzxx( ) and zzxx("‘) are odd, but
zz,22¥%, 22xx3) |, ZF zx x . zD Fuu are even. There-
fore the short dlstance s:.ngularltles have the structure

In=al <4, In=nlT", 9ol and [g=3i"! sgar-n). (10)

Now n=nl<% | |p=ni*® and in'-ni‘"l sgn(g-n)  are well
defined one-dimensional distributions including the limit
£=0 The critical case is ]n—ni" multiplying the operators
z¥ x and zD Fu . A rather lengthy explicit cal-
cufatlon partly reported J.n the appendlx gives zero for the
expansion coefficient of zF,, zX, ¥, up to total order g*.
Te illustrate the non tr1v1al nature of this result we mention
that one must take into account not oq_ly zF " X x, but also
some operators building up 2D%z and D%z (see appendix). The
expansion coefficient of ZD,F,, zkX, starts with order g3,
Using the equation of motion

<z(1}(zDH sz(n)i 20>, =

——ig [ drk(nE() 8. (Xm-Xr)< 2(1) (Bt , Z()E b, AN EO)>,



we find the contribution of total order g% multiplied by
[dr XU)X(W)54 (x(n) - X(TD which is zero for dimensi-
onally regularlzed 3 (x) and smooth 51mp1e contours /4

Tiil now we only con31dered the gauge invariant operators
listed in (8). Of course, there appear also noninvariant ope-
rators on the r.h.s. of (7). The study of BRS invariance ana-
logous to/7/ shows that noninvariant renormalization mixing
partners either contain ghosts or the substructures Dy and
ZD. The relevant matrix elements for ghost contributions start
beyond order g* . Operators with Dz or z[) represent o
problems as = already discussed. Thus we have proved that the
limit e+ 0’ of the first term on r.h.s. of equ. (6) exists in
order gt '

4, UV PROPERTIES OF THE MAKEENKO-MIGDAL TERM

The Green function involved in the second term of equ. (1)
or (6) is the expectation Vvalue of threé¢ composite operators.
(For closed contours za(l)za(O) has to be handled as a com-
posite operator with anomalous d1mens1on zéro). For the 2
factor of zt a we find

Z=1+1(3-a)C, 8% + O(")] (16 72¢)™ 4 [ C g Yoz 3/2a-13/21 O(g"))(256:% 21

i1
(CA=N, e gauge parameter). This expression results from oée-)
loop calculation and using the general relations between
the coefficients of single and double poles in dimensional
regulatization (see, e.g., ref, /8/y, With the same type of
relations and the well known one-loop expression for the B
function one further gets By, = Z -y

= 1-[11C,g%+ 0 (gh)] (48 % )~ 1+[12ICAg LoE®lssend 2yt (12)

Therefore we f1nd for the second term of r.h.s. of equ. (6)
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This is zero in ordér g~ finite and nonzero 1n order g4/9/but
yields a pole term im .order g8:
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One comment should be added to this result. The rencrmalized
Green function in (13) contains logarithmic short distance
singularities. Do they introduce additional divergencies?

The integration has to be performed before taking ¢~ 0, howe-
ver. Hence the relevant parts in the regularized expression
describing both the Z factor contribution and the terms pro-—
ducing the logarithms are proportiomal to <= 7l* or
—%lnﬁ.n}“ ., This modification does not influence the result
%), since it gives only an irrelevant shift of the exponent
from 4—¢ to d—ce with ¢ determined by the unspecified num-
bers a,b.

Due to (4) and {(6) the pole term (14) has to be canceled
by a pole term arising in order g8 by the (in contrast to
order g4 ) nonvanishing coefficients in frent of the indefi-
ned distribution in=#nlc* . Of course an explicit check of
this statement is beyond of the scope of this paper.

Closing this section we will add a remark which shows con-
spiracy between the first and the second terms even at a
pure formal level. Looking carefully at the structure of the
expansion coefficient ¢® (n=-7n) multiplying zz in equ. {(7)
we find

0 ’ 2.or2 (d - . .
¢(n=n)=C g 11 % Vxy )—x(q))+(2—d)(xa)(xa)D€(d) wex)+ 0@,
2 (a) d (15)
where we have used -3 D, " (x)= 8, (X} d, space—time di-
mension. Hence the first term in (6) has a contribution

1 N
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Forgetting now the regularization and writing & *(x(n")-x(n)) =
= 5(r%~m)83 () . formally, this term will cancel the Make—
enko-Migdal term for simple contours totally. Since in 2
space-time dimensions due to (15) the &-type singularity is
the only short distance singularity in lowest order, this
mechanism is a reflection of the formal arguments given in
ref/19/ for the two-dimensional case. Of course this consi-
deration beeing in contrast to our main conclusions based
on well behaved regularized perturbation theory should serve
as an amusing i1llustration only.

. These conclusions are: ,
The equation (1) does not develop 1/¢ poles when removing
the regularization. There are cancellations of the ultra vio-
let divergencies of the second term against subtractions :
necessary for defining the short distance singularities of the
first term as distributions over the parameter space. ‘

We gratefully acknowledge discussions wi;h'D.RBHaschik.



APPENDIX

We want to calculate the OPE coefficient of zF zx“x in
lowest oxrder, that means g for the coefficient 1tself and
gtfor the resultlng product with the matrix element

<z(l) zFu zi'#x z(0)> . In this order only the Abelian
part of Fiu Can be detected. Defining
0,=%%, xaA z, 0y= zx#xaA#z (a1
we find
. 3
1g CF L e=1
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4. graph= —5—;—-——]1}—1} ] (3 1= 0g)+us (A2)
3
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where poss:.ble other operator structures different from01,0
have not been written down. This gives a total contribution
ig 'Cp
2q°
Now among the operators of dimension 3 listed in (8) there
are two other operators containing O, and Oy, namely

P (0p+20, ). (A3)

ED32=—ig(02+2Oi Yens
. (AL)
D% = ~ig(0,+ 20 Do

Looking for contributjons to gauge invariant operators we
therefore have to express am arbitrary combination of 01 and
O as a linear combination of 04+20 and 040 =2F,, 2% %, .
Now from (A3) it is obvious all the graphs contnbute to the
expansion coefficient of the operators zD 3z and zD3z only.
These however pose no problem as argued in the text.



To all of the following graphs a contribution with n-7" has
to be added:
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