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1. INTRODUCTION 
The discovery of new solutions of the classical Yang-Mills 

equation certainly leads to deeper understanding of gauge 
theories. In the last few years various methods for solving 
these equations, both in Minkowski and Euclidean space, have 
been obtained (many of them are reviewed in ref/1'' ). Most of 
the methods impose symmetry conditions on the gauge potentials 
or fields which simplify the solution. The requirement of 
a sufficiently large invariance group of the potentials redu­
ces in some cases the problem of solving the Yang-Mills equa­
tion to the problem of solving one nonlinear differential 
equation for a function of one variable. In this way many of 
the well-known solutions have been obtained, for instance, 
the famous one-instanton solution / 3' in Euclidean space, whose 
invariance group is 0(5) (see ref. ) and the 0(4)-invariant 
solutions in Minkowski space found in refs. ' by means of 
the hypertoroidal conformal formalism. 

The group of invariance R of the Yang-Mills equation con­
sists of the conformal space-time transformations and the lo­
cal gauge transformations. In paper'6' the possible (nonlinear) 
representations of a given compact group G, contained in R,in 
the space of solutions of the Yang-Mills equation have been 
studied and the general notion for a G-invariant gauge field 
has been introduced. In ref. all translationally invariant 
gauge potentials have been found. 

Here we consider the noncompact Lorentz group as an inva­
riance group G and find some invariant (with respect to G ) 
solutions of the pure SU(2) Yang-Mills equation in Minkowski 
space. 

2. GAUGE REPRESENTATIONS OF THE LORENTZ GROUP 
Let us fix the notation.' The potentials 
A^x) = A*(x)-J-, a = 1,2,3, 

where o% are the Pauli matrices and A* (x) are real, deter­
mine the covariant derivative 
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and the Yang-Mills f i e ld 

V = f l D" , D" 3 = *"*" " a"A"+ i f A"'A" ''• 
The Yang-Mills equation is 

[D(z,P'"']=apF'»' + i[A/(,P'',']=0. (1) 

The metric tensor g„v in the Minkowski space M* is defined 
by (s„,Jhdi*&Ll?-U-U-lT; andthe three-dimensional fully antisym­
metric tensor е у к , by i ига3*- Irreducible representations of 
the Lorentz group will be denoted by pairs (to.t ^), where 2f 0CZ, 
«tG С (see ref. / 8 /). 

We shall define the vector gauge representation of the Lo­
rentz group through the equality 

(Т.А) С (x) = Л(В) ''„Щ&Х) А" (Л"1 (g)x) U -4g.*) * 
(2) 

+ i^Ufcx) V~\g,*) , gС SL(2. C) , 

where A(g) i s the matrix of the four-dimensional vector re­
presentation (0,2) and U(g,x) are two-dimensional unitary uni-
modular matrices defined, in general, locally in M 4 which 
satisfy the conditions 

U(g,g2.«) = U(g1,x)U(g2.A~1(ej)x) , 
(3) 

U(e, x) = 1., 

It can be easily seen that if A (x) is a solution of equation 
(1), then (TgA)'I(x) is also a solution of the same equation. 
To prove this, it is sufficient to note that the transforma­
tion (2) results from the Lorentz transformation 

A' p(x) = A(g) ''„A" (A-1(g)x). g e SL(2. C) (4) 

followed by the gauge transformation 

A"'i(x) =U(g,x)A'''(x)U~1(g,x)-iU(g,x)a'1U~1(g.*) (5) 

and the Yang-Mills equation (1) is invariant both with respect 
to (4) and (5). Thus, one can consider the representation (2) 
in the space of solutions of equation (1). Among these there 
are some which satisfy the invariance equation 

(T f A)*1 (x) - A ''(x) Vg 6 SL(2, С ) . (6) 
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The potentials A*\x)obeying (6), i.e., invariant with res­
pect to the gauge representation Tg,play the same role as the 
spherical harmonics do with respect to the corresponding repre­
sentation of the rotation group. 

Throughout the paper representations of the type' (2) will 
be referred to as gauge representations of the Lorentz group. 
Different gauge representations are those for which the cor­
responding matrix functions U(f, x) are different. The neces­
sary and sufficient condition for two gauge representations 
T ( (defined by U(g,x) ) and G g (defined by V(g,x)) ) to be gauge 
equivalent, that is, for a matrix function Щх) GSU(2) to 
exist, such that 

(Tg A ) M (x) -W~1(x)(egA)''(x)W(x) - n ' W d ^ x ) , (7) 

as can be verified directly, is 

U(g.x) =W-1(")V(g.x)W(A-1(rt«. (8) 

If A^x) is a solution of equation (6) for a fixed T g (i.e., 
for a given function U(g, x)), then from (2) it follows that 

A t e ^ A ^ A - 1 ^ ) =U' 1(g.x)A" (x)U(e.x)-«r1(e.x)d''U(g,x) . (9) 

In other words, every Lorentz transformation of the type 
(4) on AP (x) can be compensated by an appropriate gauge trans­
formation of the type (5). Let us fix the point xo€ M and 
consider a smooth curve y(t) «A(g(t))x 0 , g(0) » e, through it. 
Obviously, y(t)' will lie entirely on the orbit N(xQ) of the 
Lorentz group through x 0. Respectively, u(t) *U(g(t) ,x0) 
will be a smooth curve passing through the identity element e 
of the group SU(2). We would like to get a solution of (3) for 
which the curves u(t) are nontrivial, i.e., are not reduced 
to a point. The reason is that for the known nontrivial inva­
riant classical solutions space-time and gauge transformations 
are mixed in a nontrivial way (see refs.'**' ). We may conjec­
ture that nontrivial solutions of (3), for instance 6(8. >) that 
depend essentially on x, will lead to equations of the type 
(9) with nontrivial solutions for A„(x). 

3. INVARIANT SOLUTIONS OF THE YANG-MILLS EQUATION 
The two-dimensional representation of the Wigner rotations 

(see, for instance,/9/ ) provides us with a solution of equa­
tion (3) which is defined for all x€ V+ = ly €M 4, y*> 0, y°> 0}.. 
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Let V(g) be the two-dimensional irreducible representation 
(p|' ) o f t h e g r o u p Я Д 2 , С > : 

«We^VW-A»"^,, (10) 
and let us define for any vector x € V + the two-dimensional 
hermitean unimodular positive definite boost matrix V-(s) by 

VB<»> "o V | (x) = V«(x) = ~ ^ L a .. (11) 
Vx 8 

Then 
V B{A - itg) x) » 0 V * <A-1(g) ж) = A - 1 (g) ''„—~L- a = 

V X 2 (12) 
= V(g _ 1) a„ V ( g _ 1 ) * - £ = = V(g - 1)V B<x) <r0 V*(x) V ( g - 1 ) * 

i/x" 
and, obviously, the matrix 

U(g.x} * V~S(X) V(g) VB (A~1(g)x> (13) 
belongs to the two-dimensional representation of SU(2).The con­
dition (3) is fulfilled, as it can be easily checked. 

From (11) for the boost matrix we have 

VB(x)=a''(x)ff(t , (14) 
where 

/5Ж, 
2ух* 

a *(x) = - - - T . ?,-.., , i- 1,2,3 . 
V,Sv/«8(X0 + \/ir8") 

Of course, «**(*) n(x) =detVB(x) = 1. The matrix elements of 
the four-dimensional representation of the boosts A(i)P v, 

V B<*)«V v u < x > - * « " , , * „ 06) 
are: 

»° A(x)° 
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Л(х)\=8 + - _ _ ~ = r - . (17) 
v

/xB(x° + v '« 8 ) If g xe-SL(2, C) i s defined by 

VB(x) =V(g x ) (18) 

and the vector (v^8,dieV+is denoted by x 0=x 0(x) (it is clear 
that * 0 is the same for all the vectors of the orbit N(x) ), 
the formulae 

Л(8ж>хо = A W I o ' = * • 

0(gx.x) = I, V x e V + , (19) 

VB(xJ - ? 

can be verified. 
Now we have to solve the equation (9). Putting in it Л=Л(х), 

we obtain 

A^Cx) =A(x)''vA,/(x0)+i(a'tU)(g1,x) . (20) 

where we have used the simplifications provided by (19). 
The use of the representation (20) is obvious. The only 

arbitrary quantities in the r.h.s. (for a given t)(g, x) ) are 
the components of the invariant potential at the standard 
points x 0 = x0(x), and these depend only on X й. Denoting A(JJV*) -
= i((?„U)(gx.«) and using (13)-(15) we obtain 

A ( 0 ,
0(x) =0. 

2 v
/x«(x°+/* 8) 

It is easy to see that x,A(fV*> - ^ A ^ x ) =0. Because 
(x„) =0, we i 

A o ( x 0 ) =0, 

(21) 

A (x0) =0, we can put, for example, 

A,(x 0) = 0 jf(x*). 
(22) 

From (!9)-(22) we obtain the full expression for the inva­
riant potential: 
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: A j W - J a L ! £ L ^ v ( x « ) + , . * " «.»). ( 2 3 > 

where the function f(x ) has to be determined from the requi­
rement for A„(x) to be a solution of the Yang-Hills equations. 

It turns out that one can arrive at the same expression 
for A„(x) by quite a different way. One starts with the ob­
servation that 

B^(«)=W | JV B(x)V- 1(x) (24) 

with VB(x) defined by (14), (15), satisfies the invariance con­
dition (9). Unfortunately, BJ^TTB^ITJ are not real (they 
would have been real if V_(x) were unitary). To obtain a re­
al potential, we shall maKe the following trick. If V B (x) is 
in the (infinite-dimensional irreducible) unitary representa­
tion of ЗЦ2.С) with («0,f1)-(K,ip).pe'J(see ref/ e / ), then 
the two-dimensional matrix in the upper left corner (in cano­
nical basis) of В (x) transforms irreducibly with respect 
to the subgroup SU(2). The hermitean generators of the repre­
sentation (H, lp) have the form 

. J 'Л- •) 
Then 

( V x ) * ^ v*> = v . ./ (26) 

where f or A (x) one obtains the expression (23) with f(x^ = • 
But if one adds the general solution of the homogeneous inva­
riance equation 

Л(Й^С"(Л~ 1(ЙХ) -U" 1(g,x)C" <x)U(g,x) , (27) 

one obtains once more the full expression (23). 
Inserting А (ж), given by (23), in the Yang-Mills equa­

tion leads to the following nonlinear second-order differen­
tial equation for f'» f(t)': 

4t 8f" + 8tf + 8f + 8tf'8- 0. (28) 
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This equation is simplified (see '0 by the substitution 

f(t) . JEfflU, t > 0 . (29) 
From (2%), (29) one obtains 

8 " + l . + 2 8 : 8 - 0 (30) 

(31) 
where V(z) is the symmetric anharmonic oscillator potential 

V(« =-L(2£ B+l). (32) 
Equation (30) has only one real constant solution, s = 0, 

which leads to f(t) .0 and Ар(ж)~АОДх). The general solution 
of (31) with E >0 is expressed in terns of Jacobi elliptic 
functions (see ' W ) : 

/—г z(u) = V D - 4" on(V2Du+c). (33) 4 
where en(a) is defined by 

cn(a) *, 
•- f • (34) 

с is an arbitrary constant and 
.VG7X>JL. . t . ^ о л к - — — — .. (35) 

16 4 2D V ' 
The so obtained invariant solutions of the Yang-Mills equa­

tion are defined only for x > 0, i.e., inside the light cone. 
On the cone they have singularities, and for ж <0 are not 
real. Despite this fact they are of some interest because they 
illustrate the methods for solving the invariance equations. 
There are good reasons tn believe that these methods can be 
used without great modifications also for obtaining invariant 
solutions of the SU(n) Yang-Mills equations forn>2. 
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