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1. The non-linear SchrOdinger Equation (NLS) which appears 

in the condensed matter theory describes a great body of va­

rious physical phenomena: from water waves and spin waves in 

ferromagnets up to vortices in superfluids and laser beams in 
glass fibres 111. 

There are by now a great amount of papers devoted to it of 
both physical and mathematical nature 12/, For the simplest ver­

sion of U (1) synnnetry NLS has been studied in detail on the 
classical level12/ as well as on the quantum one 13/, In the quan­

tum case it describes Bose gas with 0 -function pair interac­

tion, the problem that was considered in ref / 41 • Ultimatel;t: 

the complete integrability of U(1) NLS was shown in ref.· 51 • 

The vector generalization of NLS is less studied so far, 

despite it has a richer internal structure and conserves the 

integrability. Two-component version (with ucm isosymmetry) 

of NLS was also discussed on both the classical161 and quan­
tum/7/ levels. In the first case we have elliptically p~la­
rized wave in nonlinear media with dispersion (V=k2-2K[E\ 2 , 

in the latter a gas of Bose particles possessing an internal 

degree of freedom. It should be noted that particles may at­
tract or repel one another. 

Recently in ref. /S/ a new integrable version of NLS was 

discussed with non-compac-t isogroup U( 1 ,l).This equation for 

example describes one-dimensional Hubbard model in long-wave 

approximation 19/ and also the system of two interacting Bose 

gases "gravitating" and "anti-gravitating" 1101. The properties 

of such a system are considerably richer even in_ this simplest 

variant. 
In this note we discuss a generalized vector version of 

NLS with isogroup U(p,q) which includes all the variants stu­

died as particular cases. 

2. Consider column-vector if; of n complex junctions (1/J)a=I/J(a)(x,t) 

(a-=-1, ... , n) and Dirac conjugate row-vector if; =l/J+y 0 • where 

y 0 = diag(+1, .•. ,+1, -1, ... , -1) . .....___, ~ 
p q 

Defining inner product 

p p+q ( 2 
(;j</Jl~ :£ 1</JCal 12 - :£ l</1 alI , 

a=l a=p+1 

(I) 
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we write the equation 1n question 

(2) 

In terms of canonically conjugate variableS 1/J(a) and ;j;(a) the 
Hamiltonian of system (2) assumes the form: 

00 - - 2 
H = f dx[(Y, if< ) -K(Y,Y,) l (3) 

X X 
-oo 

and Hamil-tonian equations 

y(a) ={II,Y,(a) l=-i 8H 
t 8<fr (a) 

(4) 

coincide with the system (2) and the conjugate one. The Pois­
son brackets are defined through the canonical variables in 
the conventional ~anner. 

Corresponding linear problem is the couple of (n+l) -compo-
nent equations fx ""U 0 r, ft =Vo f with their compatibili-
ty condition being equivalent to system (2)*.Using the vari­
ables 

f(x,t)=exp(-i /.ax )T¢(x,t), 
1- s 2 

tfr(a) = (1-s2) 1/2 q<•) (x, t), 

where 

we come to the following linear problem 

-)' 
*The linear problem in the Lax form has been constructed 

earlier for the system (2) by the authors and Makhaldiani in 
ref.' 181 • 

2 



where q® q is the direct (Kronecker) product of the n -com­

ponent column q and row Q, In is the unit (nxn) matrjx. 

The parameter a was chosen to satisfy the c,.ondj.ti_2n SpU = 0 
and we use the freedom in defining matrix V : V -4- V + c 1 . 

Our (n+l) x(n+l} linear problem governed by the operator fi is 
the n-fold degenerated one, which is connected with nontri­

vial isotopic properties of system (2)*, 

3. Linear transformations 1/J ~=Rt/r when conserve the inner 

product (1) generate pseudounitary matrix grOUQ uw.~. Mat­

rices R~U(p,q)are subjected to condition RR=f.whereR""YoR+Yo· 
Whence the linear problem is transfo-rmed with the help of the 

matrix 5L.\ ~ ~)and the operator 6 is transformed as follows 

U 4 U '~ :RU :R. But the last condition is hold only if RR~'i, 
i.e., R E U (p,q). Therefore, the n -fold degeneracy of the opera­

tor U implies as isotopic symmetry to be inherent in the sys­
tem. 

The number of independent parameters of U(p,q) group equals 
(p+ q) 2 and there are relatively n2(n,p+q) conserving local cur­

rents J:k LJ-t = 0,1) with components 

ik -i k ik . - i k - i k 
J0 -q q J1 ~1(qxq -q qx), i,k=l, ... ,n, 

ik 
so that ifp.Jp. ~o. . = 

The elements of matrix Q
1
k = f dx(i 1 q k are the integrals 

of motion (IM) and commute wi th""the Hami 1 toni an, ! Q ik , Hl :>:: 0. 

They satisfy the commutation relations of the Lie algebra 

gl(p+q,R)Lla'•,aJ1 1=8•.Q11 -a.
1 

QJk as well as the conjugate 

conditions: (Q 1J)*=E" 1 . 1 Qji~ 1 

.1 

at l:Si, j:;:p or p+l ~i, i:SP+ q 

in all other cases. 

Whereby they form the Lie algebra of Uw.~ group. Using them 
one can construct n2 Hermitian generators of the same algebra. 
(See paper 1121 for details), 

*The analogous fact was stated inde)iendently for the parti­

cular case of U ( 2) symmetry in ref. 11 . 
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Diagonal 11 charges" Qii = jqiqi dx are the numbers of type 
• • -~ . 1i "i.':' part~cles. Be1ng pos1t1ve when l_sl::;;·p, Q are related to 

the particles attracting one another and otherwise when 
P+l ~iS p+q-n. 

Nondiagonal elements generate transformations that mix 
different "pure" states. They belong to subgroup SU(p, q) and 
allow us to construct the whole class of solutions to system 
(2) using a definite particular solution*. 

For example, consider single-soliton solution to U(l) NLS: 

f(x,t) =ae18 sechaX, X= x- vt -x 0 , O=:::!.....x-wt, w =~ -a2, 
2 4 

making an isotopic rotation we get single-soliton solution ·to 
U(p, q)NLS: 

P. 2 p+ q 2 
and (cc) ~k lc1 I - l !c. I ~1. 

i=l i=p+l 1 

For the case p=2, q = 0 we recover the solution which was ob­
tained earlier by Manakov in ref. 161 • The vanishing boundary 
conditions, t/1-+ 0 at X-+± oo, which the above solution should sa­
tisfy are the simplest of the whole set of possible boundary 
conditions for system (2). 

Let matriX Jost solutions 
system¢ =U¢ be defined by 

X 

¢<x. () ~ exp(-i(f x), 
</J(x, () ~ exp(-ifl x), 

¢<x. () and J;(x, () 
their asyrnptotics: 

and 

to linear 

' (1 0 ) where I= 1 .then one may introduce a transition matrix 
0 --1 
nn.~.~- . 

with the relation ¢(x,()~</J(x,;)S((). It satisfies the unl-
~odularity condition det'S(~) ...:1 and that of pseudounitarity 

SS~Iaswell. 
Uatrix SCO Nay be shown 112 1 to ~ive n2 +1 conserving ele­

ments 8
11

, Saf3(o:,{J=2, ... ,n+l).Remainin~ eleme~ts8al and 81(3 
alter in time very simply. The conserv1ng elements generate 
infinite series of conServation laws (CL). Only 8 11 generates 
local series. Those conservation laws which are generated 
by the block 8af3 are nonlocal, barringn 2 local CL associated 

. h J ik 
Wl t J.L • (k) 

Local integrals of motion I 11 (k=l, ... ) form a nu~erable 
set. They are in involution with each other Ui\), I{l) l=O and 

. (k) (f)l 
with all nonlocal 1ntegrals: flu, I ap =0. Nonlocal integ-

*It means that such transformations (preserving the term 
(qq) ) as though linearize system (2) since certain linear 

combination of solutions is again the solution to system (2). 



rals of motion are not involutative but generate a complex 

algebraic structure, e.g., 
k 
2: \lck+ 1-m), I(m) l ~ ikl(k3) k ~ 1, .... 

m=l 22 2'3 2 

Only for k::d we have the commutation relations of SU(p,q) 

isogroup: !Q1 1'Q12~2 ,remainders include higher IM's. Infinite 

sets of involutative integrals of motion form an infinite-pa­

rameter Abelian group. Their existence implies the integrabi­

lity of system (2) considered. 
The role of uncommuting IMS generating more complex non­

Abelian transformations remains .to underStand·. Remind only 

that for the quantum nonlinear a -inodel they gave rise to the 

factorization of scattering matrix ' 13-'. 
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