


1. The non-linear Schridinger Equation (NLS) which appears
in the condensed matter theory describes a great body of va-
rious physical phenomena: from water waves and spin waves in
ferromagnets up to vortices in superfluids #nd laser beams in
glass fibres /1,

There are by now a great amount of papers devoted to it of
both physical and mathematical nature’?’/, For the simplest ver-
sion of U (1) symmetry NLS has been studied in detail on the
classical level’?’ as well as on the quantum one’¥, In the quan-
tum case it describes Bose gas with & —function pair interac-
tion, the problem that was considered in ref./4’. Ultimatel
the complete integrability of U(l} NLS was shown in ref. ’»/.

The vector generalization of NLS is less studied so far,
despite it has a richer internal structure and conserves the
integrability. Two-component version (with U(2) isosymmetry)
of NLS was also discussed on both the classical’® and quan-
tum’?’ levels. In the first case we have elliptically pgla-
rized wave in monlinear media with dispersion w=k2-2|E|%,
in the latter a gas of Bose particles possessing an internal
degree of freedom. It should be moted that particles may at-
tract or repel one another.

Recently in ref, '® a new integrable version of NLS was
discussed with non-compact isogroup U(1,1),This equatiom for
example describes one-dimensional Hubbard model in long-wave
approximation’®’ and also the system of two interacting Bose
gases '"gravitating" and "anti-gravitating"/10{The properties
of such a system are considerably richer even in this simplest
variant. . i

In this note we discuss a generalized vector version of
NLS with isogroup U(p,q) which includes all the variants stu-
died as particular cases.
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2. Consider column-vector  of n complex functioms (¢ =¢ (xt)
(a=1,..,n) and Dirac conjugate row-vector ¥ =y*yy, where
o= diag(r e, +1, =1L, =1),
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we write the equation in question
W, +iby, +2xlgdly =0 (2)

In terms of canonically conjugate variables ¢(m and J{a)the
Hamiltonian of system (2) assumes the form:

He [ dx{(@x v, ) — k) ? (3)
and Hamiltonian equations
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coincide with the system (2) and the conjugate one. The Pois-
son brackets are defined through the canonical variables in
the conventional manner.

Corresponding linear problem is the couple of (n+l) —compo-
nent equations f, =Uyf, f, =Vyf with their compatibili-
ty condition being equivalent to system (2)*.Using the vari-
ables
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we come to the following linear problem
¢ =Ug, ¢, =V¢
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* The linear problem in the Lax form has been constructed
earligr for the system (2) by the authors and Makhaldiani in
ref,’™.

2



I
t
i

n+l 2 o |-i , -
e L e e Twot ) fH@e; T,
LT B e Rd Rt il £ s B F
0 0.1, —iFEq 1 0.1, -4, '1qe{
' n 1 o

] i

where qe q is the direct (Kronecker) product of the n-com—
ponent column g and row g, 1, 1is the unit (nxn) matrix.

The parameter « was chosen to satisfy the condition SpU=0
and we use the freedom in defining matrix V: V-V +cl.

Our (n+1) x(m+1) linear problem governed by the operater i} is
the n-fold degenerated one, which is connected with nentri-
vial isotopic properties of system {2)*.

3. Linear transformations y =Ry when conserve the inner
product (1) generate pseudounitary matrix group U({p,q). Mat-
rices Re U(p,q) are subjected to condition RR =I, where R=yR'y.
Whence the linear problem is transformed with the help of the

matrix (A‘g&é g} and the operator U is transformed as follows

A

- ROR. But the last condition is hold only if RR-T,
i.e., RGU(pq) Therefore, the p-fold degeneracy of the opera-
tor U implies as isotopic symmetry to be inherent in the sys-—
tem,

The number of independent pararneters of U(p,q) group equals
(p+q)? and there are relatively n (n= p+q) conserving local cur-
rents J k(y =0,1) with components

tk =ik ik _..—1 k =ik .

Jo =a g, J=ila,q -qq;) Lk=1l..n
50 that 8#.}# =0, oe
The elements of matrix Q —-fdxqiqk are the integrals

of motion (IM) and commute with the Hamiltonian, {Qik, Hi =0.
They satisfy the commutation relatioms of the Lie algebra

gl(p+q, R) Lig™ QJEI o qi® as well as the conjugate
conditions: (Qu)*ze Qj
o 1 at 151, j<p o p+l <i, jgp+q

i

13 T
’ -1 in all other cases.
Whereby they form the Lie algebra of U(p,q) group. Using them
one can construct n? Hermitian generators of the same algebra.
(See paper’1®/ for details).

* The analogous fact was stated inde}iendently for the parti-
: 1/
cular case of U(2 symretry in ref,



Diagonal “charges" @'i= fT'q' dx are the numbers of type

P

i.”” particles. Being positive when I <i<p, Q! are related to
the particles attracting one another and otherwise when -
p+1<i<p+4¢=n. . :

Nondiagonal elements generate transformationms that mix
different "pure" states. They belong to subgroup SU(p,q) and
allow us to construct the whole class of solutions to system
(2) using a definite particular solution®.

For example, consider single-soliton solution to U(1) NLS:

2
o’ 9,__..2‘1_;(_&“«,, m=VT —a?,

1!7(1_{.1:) ~ael? secha®, X =%X— vt -x
making an isotopic rotation we get single-soliton sclution to
U(p, q) NLS: :

- _ _ Pt+q
qf:_i=aciei€ sechax, (i=1,...,n) and (cc¢) =E fe, }2 - X Ici|2=1.
j=1 i=p+1

For the case p=2, q=0 we recover the solution which was ob~
tained earlier by Manakov in ref.’® . The vanishing boundary
conditions, ¥ -0 at X+t , which the above solution should sa-
tisfy are the simplest of the whole set of possible boundary
conditions for system (2). . .

Let matrix Jost solutions #{x, £) and ¢(x,£) to linear
system ¢ =Ug be defined by their asymptotics:

;S(xv g) nd eXp(—-lfi K), X9 - and
¥ (x, rf)aexp(—iéfg x), Xotoo, '

- 1
where E=(0 1 \,then one may introduce a transition matrix
-1 o - ‘
with the relation ¢(x, &)=y (x,£)S(£). It satisfies the uni-
modularity condition detS({)=1 and that of pseudounitarity

88-1 as well. ‘

Matrix $(¢£) may be shown’12/to give n®+1 conserving ele-
ments 8,4, 8.4 a, B =2,...,n+1), Remaining elements 8 g1 and 5,8
alter in time very simply. The conserving elements generate
infinite series of conservation laws (CL}. Only S, generates
local series. Those conservation laws which are generated
by the block Sa,B are nonlocal, barring n? local CL associated
with J,}k.

Local integrals of motion 1(11‘1) k=1,...) formka m.}r&u;_rable
set, They are in involution with each other {Igl), Ify7$=0 and

with all nonlocal integrals: {I(lf)l, I(a%}=0. Nonlocal integ-

*+ It means that such transformations (preserving.the'term
(gq) ) as though linearize system (2) since certain linear
combination of solutions is again the solution to system (2}).

4



rals of motion are not iuvolutative but generate a complex
algebraic structure, e.g.,

k

s gt 1-m) J{m) (KD :

mii{lzz ,123 }=11§I23 . S k=1,...

Only for k=1 we have the commutation relations of SU(p,q}
isogroup: 1Qy;. Q;pk s, remainders include higher IM’s. Infinite
sets of involutative integrals of motion form an infinite-pa-
rameter Abelian group. Their existence implies the integrabi-
1ity of system (2) considered. ' :

The role of uncommuting IM§ generating more complex non-
Abelian transformations remains to understand. Remind only
that for the gquantum nonlinear '¢-model they gave rise to the
factorization of scattering matrix **
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