

объединенный инетитут Ядерных

 исследованиядубна

$1280 / 2-81$

V.G.Makhankov, O.K.Pashaev

ON PROPERTIES
OF THE NONLINEAR SCHRÖIIINGER EQUATION
WITH U(p, q) INTERNAL SYMMETRY

Submitted to "Письма в ЖЭТф"

1. The non-1inear Schrödinger Equation (NLS) which appears in the condensed matter theory describes a great body of various physical phenomena: from water waves and spin waves in ferromagnets up to vortices in superfluids and laser beams in glass fibres $/ 1 /$.

There are by now a great amount of papers devoted to it of both physical and mathematical nature ${ }^{/ 2 /}$. For the simplest version of U (1) symmetry NLS has been studied in detail on the classical level $1^{/ 2 /}$ as well as on the quantum one ${ }^{/ 3 /}$. In the quantum case it describes Bose gas with δ-function pair interaction, the problem that was considered in ref. ${ }^{/ 4 /}$. Ultimately the complete integrability of $U(1)$ NLS was shown in ref. $/ 5 /$.

The vector generalization of NLS is less studied so far, despite it has a richer internal structure and conserves the integrability. Two-component version (with $\mathrm{U}(2)$ isosymmetry) of NLS was also discussed on both the classical ${ }^{/ 6 /}$ and quantum ${ }^{17 /}$ levels. In the first case we have elliptically polarized wave in nonlinear media with dispersion $\omega=k^{2}-2 \kappa|\vec{E}|^{2}$, in the latter a gas of Bose particles possessing an internal degree of freedom. It should be noted that particles may attract or repel one another.

Recently in ref. ${ }^{18 /}$ a new integrable version of NLS was discussed with non-compact isogroup $\mathrm{U}(1,1)$. This equation for example describes one-dimensional Hubbard model in long-wave approximation ${ }^{\prime 9 /}$ and also the system of two interacting Bose gases "gravitating" and "anti-gravitating"/10/.The properties of such a system are considerably richer even in this simplest variant.

In this note we discuss a generalized vector version of NLS with isogroup $U(p, q)$ which includes all the variants studied as particular cases.
2. Consider column-vector ψ of n complex functions $(\psi)_{\mathrm{a}}=\psi^{(\mathrm{a})}(\mathrm{x}, \mathrm{t})$ $(a=1, \ldots, \mathrm{n})$ and Dirac conjugate row-vector $\bar{\psi}=\psi^{+} \gamma_{0}$, where $\gamma_{0}=\operatorname{diag}(+\underbrace{1, \ldots,+1}_{p}, \underbrace{-1, \ldots,-1}_{q})$.

Defining inner product

$$
\begin{equation*}
(\bar{\psi} \psi)=\sum_{a=1}^{p}\left|\psi^{(a)}\right|^{2}-\sum_{a=p+1}^{p+q}\left|\psi^{(a)}\right|^{2}, \quad p+q=n \tag{1}
\end{equation*}
$$

we write the equation in question

$$
\begin{equation*}
\mathrm{i} \psi_{\mathbf{t}}+\psi_{\mathrm{xx}}+2 \kappa(\bar{\psi} \psi) \psi=0 . \tag{2}
\end{equation*}
$$

In terms of canonically conjugate variables $\psi^{(a)}$ and $\bar{\psi}^{(a)}$ the Hamiltonian of system (2) assumes the form:

$$
\begin{equation*}
\mathrm{H}=\int_{-\infty}^{\infty} \operatorname{dx}\left[\left(\bar{\psi}_{\mathrm{x}} \psi_{\mathrm{x}}\right)-\kappa(\bar{\psi} \psi)^{2}\right] \tag{3}
\end{equation*}
$$

and Hamiltonian equations

$$
\begin{equation*}
\psi_{t}^{(\mathrm{a})}=\left\{\mathrm{H}, \psi^{(\mathrm{a})}\right\}=-\mathrm{i} \frac{\delta \mathrm{H}}{\delta \bar{\psi}^{(\mathrm{a})}}, \bar{\psi}_{\mathrm{t}}^{(\mathrm{a})}=\left\{\mathrm{H}, \bar{\psi}^{(\mathrm{a})}\right\}=\mathrm{i} \frac{\delta \mathrm{H}}{\delta \psi^{(\mathrm{a})}} \tag{4}
\end{equation*}
$$

coincide with the system (2) and the conjugate one. The Poisson brackets are defined through the canonical variables in the conventional manner.

Corresponding linear problem is the couple of ($n+1$) -component equations $\hat{f}_{x}=\hat{U}_{0} f, \quad f_{t}=\hat{V}_{0} f \quad$ with their compatibility condition being equivalent to system (2)*. Using the variables

$$
\begin{aligned}
& f(x, t)=\exp \left(-i \frac{\lambda a x}{1-s^{2}}\right) \hat{T} \phi(x, t), \\
& \psi^{(a)}=\left(1-s^{2}\right)^{1 / 2} q^{(a)}(x, t), \quad \xi=-\frac{2 n}{n+1}\left(\frac{\lambda s}{1-s^{2}}\right), \kappa=\left(1-s^{2}\right)^{-1},
\end{aligned}
$$

where

$$
\hat{\mathrm{T}}=\left(\begin{array}{c:c}
(1-s)^{1 / 2} & 0 \\
\hdashline 0 & 1 \\
\hdashline & (1+s)^{1 / 2} \\
I_{n}
\end{array}\right)
$$

we come to the following linear problem

$$
\phi_{\mathrm{z}}=\hat{\mathrm{U}}_{\phi}, \quad \phi_{\mathrm{t}}=\hat{\mathrm{V}} \phi
$$

and

$$
\hat{U}(x, t ; \xi)=\left(\begin{array}{c:c}
-i \xi & i \bar{q} \\
\hdashline i q & i \frac{{ }_{\mathrm{E}}^{n}}{} I_{n}
\end{array}\right),
$$

[^0]where $q \otimes \bar{q}$ is the direct (Kronecker) product of the n-component column q and row \bar{q}, I_{n} is the unit ($n \times n$) matrix. The parameter a was chosen to satisfy the condition $\operatorname{Sp} \hat{U}=0$ and we use the freedom in defining matrix $\hat{\mathrm{V}}: \hat{\mathrm{V}} \rightarrow \hat{\mathrm{V}}+\mathrm{c} \hat{\mathrm{I}}$. Our $(n+1) \times(n+1)$ linear problem governed by the operator \hat{U} is the n-fold degenerated one, which is connected with nontrivial isotopic properties of system (2)*.

3. Linear transformations $\psi^{\prime}=R \psi^{\prime}$ when conserve the inner product (1) generate pseudounitary matrix group $U(p, q)$. Matrices $R \in U(p, q)$ are subjected to condition $\bar{R} R=\hat{I}$, where $\bar{R}=\gamma_{0} R^{+} y_{0}$. Whence the linear problem is transformed with the help of the matrix $R=\left(\begin{array}{ll}1 & 0 \\ 0 & R\end{array}\right)$ and the operator \hat{U} is transformed as follows $\hat{\mathrm{U}} \rightarrow \hat{\mathrm{U}}=\hat{R} \hat{\mathrm{U}} R$. But the last condition is hold only if $\overline{\mathrm{R}} \mathrm{R}=\hat{\mathrm{I}}$, i.e., $R \in U(p, q)$. Therefore, the n-fold degeneracy of the operator \hat{U} implies as isotopic symmetry to be inherent in the system.

The number of independent parameters of $U(p, q)$ group equals $(\mathrm{p}+\mathrm{q})^{2}$ and there are relatively $\mathrm{n}^{2}(\mathrm{n}=\mathrm{p}+\mathrm{q})$ conserving local currents $J_{\mu}^{\text {ik }}(\mu=0,1)$ with components

$$
J_{0}^{i k}=\bar{q}^{-i} q^{k}, \quad J_{1}^{i k}=i\left(\bar{q}_{x}^{i} q^{k}-\bar{q}^{i} q_{x}^{k}\right), \quad i_{2} k=1, \ldots, n,
$$

so that $\partial_{\mu} \mathrm{J}_{\mu}{ }^{\text {ik }}=0$.
The elements of matrix $Q^{i k}=\int_{-\infty}^{\infty} d \bar{q}^{-1} q^{k} \quad$ are the integrals of motion (IM) and commute with the Hamiltonian, $\left\{Q^{-\infty}, \mathrm{H}\right\}=0$. They satisfy the commutation relations of the Lie algebra $\mathrm{gl}(\mathrm{p}+\mathrm{q}, \mathrm{R}) \mathrm{L}\left\{Q^{i k}, Q^{j \ell}\right\}=\delta_{k j} Q^{i \ell}-\delta_{i \ell} Q^{j k} \quad$ as well as the conjugate conditions: $\left(Q^{1 j}\right)^{*}=\epsilon_{\mathrm{ij},} \mathrm{Q}^{j 1}$,

$$
\epsilon_{i j}=\left\{\begin{array}{l}
1 \text { at } 1 \leq i, \quad j \leq p \text { or } p+1 \leq i, \quad j \leq p+q \\
-1 \text { in all other cases. }
\end{array}\right.
$$

Whereby they form the Lie algebra of $U(p, q)$ group. Using them one can construct n^{2} Hermitian generators of the same algebra. (See paper ${ }^{12 /}$ for details).

[^1]Diagonal "charges" $Q^{i i}=\int^{\infty} \bar{q}^{i} q^{i} d x$ are the numbers of type " i " particles. Being positive when $I \leq i \leq p, Q^{-\infty}$ are related to the particles attracting one another and otherwise when $\mathrm{p}+\mathrm{i} \leq \mathrm{i} \leq \mathrm{p}+\mathrm{q}=\mathrm{n}$.

Nondiagonal elements generate transformations that mix different "pure" states. They belong to subgroup $\operatorname{SU}(\mathrm{p}, \mathrm{q})$ and allow us to construct the whole class of solutions to system (2) using a definite particular solution*.

For example, consider single-soliton solution to U(1) NLS:

$$
\widetilde{\psi}(\mathrm{x}, \mathrm{t})=a \mathrm{e}^{\mathrm{t} \theta} \operatorname{sech} \mathrm{a} \overline{\mathrm{x}}, \overline{\mathrm{x}}=\mathrm{x}-\mathrm{vt}-\mathrm{x}_{0}, \quad \theta=\frac{\mathrm{v}}{2} \mathrm{x}-\omega \mathrm{t}, \omega=\frac{\mathrm{v}^{2}}{4}-\mathrm{a}^{2},
$$

making an isotopic rotation we get single-soliton solution to $\mathrm{U}(\mathrm{p}, \mathrm{q}) \mathrm{NLS}$:
$\tilde{\psi}_{i}=a c_{i} e^{i \theta} \operatorname{sech} a \bar{x},(i=1, \ldots, n) \quad$ and $(\bar{c} c)=\sum_{i=1}^{p}\left|c_{i}\right|^{2} \sum_{i=p+1}^{p+q}\left|c_{i}\right|^{2}=1$. For the case $p=2, q=0$ we recover the solution which was obtained earlier by Manakov in ref.' ${ }^{16 /}$. The vanishing boundary conditions, $\psi \rightarrow 0$ at $x \rightarrow \pm \infty$, which the above solution should satisfy are the simplest of the whole set of possible boundary conditions for system (2).

Let matrix Jost solutions $\hat{\phi}(x, \xi)$ and $\hat{\psi}(x, \xi)$ to linear system $\hat{\phi}_{\mathrm{x}}=\hat{\mathrm{U}} \hat{\phi}$ be defined by their asymptotics:

$$
\begin{array}{ll}
\hat{\phi}(x, \xi) \rightarrow \exp (-i \xi \hat{\Sigma} x), & x \rightarrow-\infty \\
\hat{\psi}(x, \xi) \rightarrow \exp (-i \xi \hat{\Sigma} x), & x \rightarrow+\infty,
\end{array}
$$

where $\hat{\Sigma}=\left(\begin{array}{cc}1 & 0 \\ 0 & -\frac{1}{n} I_{n}\end{array}\right)$, then one may introduce a transition matrix with the relation $\tilde{\phi}(\mathrm{x}, \xi)=\tilde{\psi}(\mathrm{x}, \xi) \hat{\mathrm{S}}(\xi)$. It satisfies the unimodularity condition $\operatorname{det} \hat{S}(\xi)=1$ and that of pseudounitarity $\hat{\bar{S}} \hat{S}=I$ as well.

Matrix $\hat{\mathbf{S}}(\xi)$ may be shown ${ }^{12 /}$ to give $\mathrm{n}^{2}+1$ conserving elements $\mathrm{S}_{11}, \mathrm{~S}_{\alpha \beta}(a, \beta=2, \ldots, \mathrm{n}+1)$. Remaining elements $\mathrm{S}_{\alpha 1}$ and $\mathrm{S}_{1 \beta}$ alter in time very simply. The conserving elements generate infinite series of conservation laws (CL). Only S ${ }_{11}$ generates local series. Those conservation laws which are generated by the block $\mathrm{S}_{\alpha \beta}$ are nonlocal, barring n^{2} local CL associated with $J_{\mu}{ }^{1 \mathrm{k}}$.

Local integrals of motion $I_{11}^{(\mathrm{k})}(\mathrm{k}=1, \ldots)$ form a numerable set. They are in involution with each other $\left\{\mathrm{I}_{11}^{(\mathrm{k})}, \mathrm{I}_{11}^{(\mathcal{R})}\right\}=0$ and with all nonlocal integrals: $\left\{\mathrm{I}_{11}^{(\mathrm{k})}, \mathrm{I}_{\alpha \beta}^{(\mathbb{\ell})}\right\}=0$. Nonlocal integ-

* It means that such transformations (preserving the term ($\bar{q} q$)) as though linearize system (2) since certain linear combination of solutions is again the solution to system (2).
rals of motion are not involutative but generate a complex algebraic structure, e.g.,

$$
\sum_{m=1}^{k}\left\{I_{22}^{(k+1-m)}, I_{23}^{(m)}\right\}=i k I_{23}^{(k)}, \quad k=1, \ldots
$$

Only for $k=1$ we have the commutation relations of $\operatorname{SU}(p, q)$ isogroup: $\left\{Q_{11}, Q_{12}\right\}=Q_{12}$, remainders include higher IM's. Infinite sets of involutative integrals of motion form an infinite-parameter Abelian group. Their existence implies the integrabi1ity of system (2) considered.

The role of uncommuting IMśs generating more complex nonAbelian transformations remains to understand. Remind only that for the quantum nonlinear σ-model they gave rise to the factorization of scattering matrix ${ }^{\prime 13 /}$.

REFERENCES

1. Ter Haar D. University of Oxford, 54/77, Oxford, 1977.
2. Teoriya solitonov, ed. by S.P.Novikov. "Nauka", Moscow, 1980 (in Russian).
3. Faddeev L.D. In: Problemy kvantovoi teorii polya. JINR, P2-12462, Dubna, 1979, p. 249.
4. Beresin F.A., Pokhil G.P., Finkelberg V.M. Vestnik MGU, seria 1, 1964, No.1, p.21; Mc Guire J.B. Journ.Math.Phys., 1964, vo1.5, No.5, p.439; Lieb E.H., Liniger W. Phys.Rev., 1963, vol.130, No.4, p.1605.
5. Zakharov V.E., Manakov S.V. Teor.Mat.Fiz., 1974, vol.19, No.13, p. 332 .
6. Manakov S.V. Zhetr, 1973, vol.65, No.2, p. 505.
7. Kulish P.P. Preprint LOMI P-3-79, Leningrad 1979 (in Russian).
8. Makhankov V.G., Makhaldiani N.V., Pashaev O.K. Phys.Lett., 1981, vol.81A, No.2, p. 166.
9. Lindner U., Fedyanin V.K. phys.stat.sol.(b), 1978, vol.89, p. 123.
10. Makhankov V.G. Phys.Lett., 1981, vo1.81A, No.2, p.3,156.
11. Alberty J.M., Koikawa T., Sasaki R. Preprint Utrecht, November, 1980.
12. Makhankov V.G., Pashaev O.K. JINR, E2-80-214, Dubna, 1980. 13. Lüscher M. Nucl.Phys., 1978, B135, No.1, p.1.

[^0]: * The linear problem in the Lax form has been constructed earlier for the system (2) by the authors and Makhaldiani in ref. ${ }^{1 / 8 /}$.

[^1]: * The analogous fact was stated independently for the particular case of $U(2)$ symmetry in ref. ${ }^{11 / .}$.

