


1. INTRODUCTION

Massless spinor electrodynamics in two space—time dimensi-
ons, usually identified with the Schwinger model (Schwinger
1962}, has been a subject of numerous investigations. The
great interest of physicists in this model is motivated by
the fact that the electromagnetic field acquires a mass and
that the electric charge is screened’ ¥, It is believed that
this gives an example for both dynamical gemeration of masses
and confinement. Most of the papers provide an analysis of
this situation based on explicit operator solutions of the
model., In order to formulate the purpose of the present paper
we shall sketch briefly the formulation of the two—dimensio—
nal massless spinor electrodynamics. We follow the approach
of Nakanishi’¥ to write down the following system of equations:

idy — g&¢ = 0, (1)
M Fy -0, F =giy: Fu =du Ay -d,8,. (2)
a’“j“= 0, - (3
a*a, +aF =0, . (4)
oF = 0. 5)

Here the metrics is chosen to be g##=(+’_)’ and the ¥ -matri-
ces are defined as follows:
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The above system of equations needs some commentary. The Max—
well equation is written in the ferm (2) so that it could be
considered as an operator valued equation {see, f.i., refs’ %%/,



As for the gauge fixing conditions (4) and (5) they are
written in the above form following Nakanishi’ 78,7 in order to
provide a manifest gauge covariant formulation of the medel
{eq. (5) just fixes the class of possible gauges).

Of course, these equations cannot fix a unique solution.
For the purpose a system of boundary conditions is needed.
In particular, at least some relevant commutators are requi-
red to be local and canonical. In what follows we shall dis-
cuss the rest of the boundary conditions that are related
with the symmetries of the equations and the solution. Besi-
des Poincare invariance they are:

i. Gauge invariance. We must note that not only the equa~
tions, but also the physically relevant quantities (the Max-
well tensor, the current and the charge) should be invariant
under the action of the gauge transformations

U - 0 NPy

A (m-oA (x) -3 A(ﬂ

Here we distinguish between the case when the gauge function
A(x) is specified by the equation

oA() = 0 (6)
or by the equation
DAY = pF(®),  0°A(®) =0. (7)

In the first case (eq. (6))} we remain within one and the same
gauge, while in the second we can move from one gauge to
another, but remaining in the class of gauges determined by
eq. (4). In that second case gauge transformations result in
the change of the pauge fixing parameter a.

ii. Since the Dirac equation {1} is massless, it then fol-
lows that the system of equations exhibits y; -symmetry and
even more — ¥; —gauge invariance. In that case the Maxwell
tensor and the current j,{® (at least on the classical level,
when j, (9= gb(X))’ 11 6.4] is well defined) are also invariant
under the action of the following transformations

() > .e*gA(’”s;p(x).
A, () + 8, (D - ¢ & A,

where the gauge function A(® satisfies the equation

oA(x) =0 : (8)



which is needed for the invariance of ﬂﬂ,ﬁolf one considers
classical field theory, where no regularization problem arises,
yg —invariance leads to the conservation of the quantity

Foy =9 (7 v (B =y, P E® = 4,17 (D )
S f T u

However, in quantum theory & regularization is needed and

eq. (9) is by no means evident. On the contrary all available
solutions do not satisfy it, and therefore spoil yg-inva-
riance. Instead, a less stringent condition is satisfied. Na-
mely, the conservationof the free axial current B

[

 f ot f oy = . v
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where ¥ (¥ denoted the solution of the free massless Dirac
equation. o '

There are two conquering reasons for that choice. The first -
one consists in the observation that eqs. (2) and (9) imply

DF;_W= 0 (10)

and therefore D%A#=(L which in its turn contradicts the result
of Schwinger/V that the electromagnetic potential :A, acqui-
res a mass. o ‘ . ' ‘ )

The second is due to the procedure of quantization and the-
refore of regularization of the current. As is well known in
quantum field theory the current should be defined as the
1imit of the corresponding bilinear form when both arguments
tend to one and the same value. It is clear that such a pro-
cedure is not gauge invariant. Owing to an argument of Schwin-
gefﬂ/ the current in gauge.theories should be defined as

the limit of therfollqwinggﬁ?ju

e e ™ - | ) td(“
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And now it is evident that this expression is mot 7j;-—gauge
{nvariant. Moreover .since the quantity b ‘
te |y M - o
Vs ]{ er:A (tydt
is not gauge invariant, it seems that one cannot think about
a regularization that is compatible with both gauge and ¥g —
gauge invariance. -
However, we have the following possibility. Suppose that
AP(Q can be decomposed into

”Aﬁm=ﬁbn+Aﬁm. A .an

. . ol PN
where AE is yg —gauge invariant longitudinal part, whlle;AL'

is gauge invariant transverse part. Then it is obvious that
thé following expression : ' ' B
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is both pauge and y_-gauge invariant, and therefore presents
a good ground for a regularization that is compatible with
both symmetries. :

The aim of the present paper is to prove that one can car-
ry out a consistent quantization of massless spinor electro-
dynamics in two space~time dimensions and construct an expli-
cit operator solution that is both gauge and y; —gauge inva-
riant. Such a solution we call a non-Schwinger solution of
‘the two-dimetisional massless electrodynamics. We are interes-—
ted in it because of its more direct formal analogy with the
four~dimensional massless spinor electrodynamics.

2. THE BYILDING BLOCK FIELDS

In this section we fix the set of building block fields
that. are necessary to construct our operator solution. Since
both current and pseudocurrent are conserved and related by
eq. (9), then following the analysis of Johnson’® _we must
introduce a couple of dual scalar fields $(x) and &(¥) satis-
fying

p =
G B(Y +5,, 0 $(% = 0.
Then the current and the pseudocurrent are expressed as
- - by v
Iy =0, 80 iy =3, E(® e, 3" B0, (13)

Now having in wind eg. {11}, we can write down for the elect—
romagnetic potential the following general repregentation:

! _ - f v = = L. .”
'Aﬂ(x)_l?u D) + wa (x .A# {:¢+.A#(x). (14)

Then eq. (4) and the definition of the Mawell tensor imply
that the fields ®{® and (X satisfy the following equations:

o(®) =-aF(3) , ‘ (15)

bz = *F(0, : (16)
where - :

*p(x) = _;__ff‘” va ®, FFV X = ~t *Nx . {an

Having in mind egs. {5) and (i0) we see that we are left with
two. Froissart” 1/ (1959) systems of equations for the massless

~

dipcle ghost fields ®(® and ¥z.
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It is easy to show that F(x), *F(z) and ¢(x) cannot be com-
pletely independent, since the Maxwell equation (2}, in view
of egs. (13) and €17}, can be rewritten in the form

a‘t (F(x) + g& () —e#va"*l"“(x} =0. (18)

It is obvious that one can satisfy eq. (I8) in many different
ways. This arbitrariness can result in the type of behaviour
of the solution at g +0%as well as in the set of independent
fields involved in the solution. In what follows we confine
ourselves to the very simple case when

G(®= L Fx), *F(D) = ~(1+-5)F(@D = -, (i9)
Ep &

where gg#0 is an arbitrary comstant with mass dimension, and
F(x) is the dual field of F(x). With this choice we restrict
ourselves to the case of a minimal set of building block fi-
elds, and at the same time our system of equations exactly
coincides with that considered in a previous paper/1l.The
latter makes it possible to use all the results of this paper
without any modification. At the same time, we do not make
any hypothesis about the behaviour of the fields F(x),*F(x¥) and
&%) at g+0. Thus we leave some room for further speculations
on this point.

Now we go further and discuss the solution of the Dirac
equation. For the purpose we shall make use of the represen—
tation of a spinor field in two space-time dimensions by me-
ans of non-linear scalar fields/1513:.1% yhich is now tradi-
tionally called bozonization. The latter proved to be extre-
mely convenient in two-dimensional models. 5o, we write down

—— - + =4
JE (@Y K (0 IR (0 K (1%

Y%= u, (20)

where u,, @ =1,2 are two complex numbers. Substituting the
Ansatz (20) into the Dirac equation (1) and having in mind
the representation (14} and t@g properties of the y -matrices,
we can identify the fields K7(%) and K (%) in the following
way:

¥Remark. We must note that whatever the differences in the
behaviour at g-0 are, one cannot expect to obtain the usual
perturbation theory limit, since it is well knowm that there
is a perturbation theory anomaly which gives rise to a mass
term for the electromagnetic field., The latter contradicts the
main idea of our present solution.



K5 ~ 2F i) - 0™ (9,
Q

E* = 3 Ftw- o8 Yw,
By

where F 't(x)l _ﬁi(x), ‘Dt(x) -and ® i(x) are -the positive and ne-
gative frequency parts of the corresponding fields, 4 is an
arbitrary real constant, and g, and g are necessary'in order
to make K- (x} and K (¥dimensionless *. Since, as we have al-
ready noted, the quantum problem for the fields F (%), FXx),
o%(x) and $%xn is solved in a previous paper’/1V, we have the-
refore found a solution of the two-dimensional massless spi-
nor electrodynamics, that does not contain a massive electro-
magnetic potential. This is true iff a regularization of the
type (12) exists and leads to the expression (13). The latter
will be treated in the following section.

Now we must briefly discuss the gauge transformation pro=
perties. It is obvious that since the Maxwell tensor and the
current are both gauge and y,-gauge invariants, then the.
scalar fields F(¥) and F(® (eq. (19) is implicit) are ‘inva-
riants of these transformations too. Having in mind that the
longitudinal part of Ay is yp—-gauge invariant, while its
transverse part is gauge invariant, we see that the only field
that should suffer gauge transformations is the dipole ghost
®(x),while y; -transformations should act on the dipole ghost
field ®(» only. Now it is not difficult to see that the equa-
tions (13), (16) and (18) are compatible with these transfor-
mations provided eqs. (6) and (8) hold (in the case of eq.

(7) the parameter @ is replaced by a + p). Thus, we see that
the representation (14) of the electromagnetic potential has
the proper gauge and y¥5-gauge transformation properties that
are necessary in order to make use of the definition (12) for
the current,

3. CORRECT REGULARIZATION PROCEDURE

In this section we shall prove that the regularization pro-
cedure based on formula (i2) is self-consistent. For the pur-

*Remark, We write g; in the denominator of the first term in
order to avoid irregularity at g +0;at the same time we write
g in the numerator of the second term in order that at g+ 0
we obtain a solution of the free massless Dirac equation wi-
thout any reference to the behaviour of the field P‘i(ﬂ N
Fr@®, ®*(® and $3(x at g-0.
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pose we use the modification of the Johnson's’? definition
of the currert 1ntroduced by Aneva et al. 157 a11 necessary
commutators of Ft (), F (@ +(ﬂ and ¢+(m are listed in the
Appendix.

We start con51der1ng the follow1ng gauge 1nvarlant quantl—
ties:

160 (), - g¢+)—'" g
Tusre 92 €% Py, 0 T O e T O
2.2 2 2,2 2
£A%x g?\
(= (=) P BAA-Drg Bo g ST IDt (xmp+ B
= -1y e 27 % (21)
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x i :]

— + : Y +
-igP (» ~1g® (‘x) 5D (» - ig® (n
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2)2,2 22,2
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. e

xe e

where A=1+g/ggand the functions D~ (m andD (ﬂ are defined in

the Appendix. It is obvious that the above quantities still
are not y,—gauge invariant. That is why we go further defining

1
2 2R -1 +g%e ]-—2-
Ts0 = 3 ?) T
=

xie

i ._ r H'— — ) — " I' 5"‘ “5+ oL
ig-10" (@ (z+er- P (x)‘.J#. I(X+e; e ig=1) (@ (x+e)-P () |

(23)

1BD @R (x=) 7
[’ o
Having in mind the exp11c1t expre551ons (21) and (22), it is
evident that the above quantity is both gauge and g -gauge
invariant. Thus it can be used to defime a proper current. The

‘ I I DRI ;
(mx- c}ei_g{ b)) (‘D (n—~® (x e)).‘ ;.
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1 - [T |
factor (12)35-(2@\{1 Dretep-x is needed in order
that the singularity of each term of eq. (23)becomes a first
order pole (this is easﬂy seen from eqs. {(21) and (22) and
the explicit expressions for the functions D' (D and D*(x).
Next, following Johnson’/® we introduce the quantities

3B = lxm {x,e)
€ =0 .
€s0

J (x) lunJ {%e) = ime#(x;f)
€ =0 €°=0

elagp elag

where E;ﬁcp €y .In order to eliminate the dependence.on the
dimensional parameter # that appears in the function D™(® we
choose the comstant u, to be
- iead-1 +g%,1
) 2 o 2 i 2 47 d,\( =D g cl .
1“1& ='1112 | = ""'"(I"' )

Then taking the correspondlng limits, we have the following
exp11c1t expressions:

NA-p it
. - 4 : ~
o8 ==l e rmea Fayeen U @ Fm-a, Fo),
Aa-1 ) A=

arr 47

I =- Eié-os(-l) (6 F(® +3 (F)~ (=) ©1F(-3y F(),

- 1
Iy (D= .g:;ao F®) ,
- 0 -

I, (%= —g‘aao F(x).

It is evident that in order to make J (X to be a real function
it is necessary to fix the arbitrary constant d by means of
the following condition:

- = A%k + N, k=0, £1,22, .,

Then we can finally define the regularized current by means
of the following expression:

P U g1
o= 503, D-e,, 7V = g_o_a" (),



which exactly coincides with expression (13) Thus, we have
proved that our regularlzatton procedure is compatible with
both gauge and yz-gauge invariance and lead to the standard
relation between the regularized current “and pseudocurrent,
that are both conserved. In fact, this proves the self-con-
sistency of our formulation of the problem. :

At the end of this section we must note that both currents
imply the existence of the correspoanding charge and pseudo-
charge operators. Namely, -

ot - J axlit =§_1‘.)..._£ a3, F= (0, |
~t Jal I 0® 1. mt, (24)
Q 2_\,{ dx gso(x)m-g—gﬂi.dx 6{) Fo(®.

in fact this is a direct corollary from the properties of the
infrared regularization of the fields F°(x) and F7Y® that
follow from the analysis of Hadjiiwvanov and Stoyanov’® and
Mikhov’ 1V, However, despite of the existence of the charge
operator {(24), quite a peculiar situvation arises when one
looks for the charge of the solution of the pirac equation
{1). For the purpose we consider the commtators of the charge
operators and the operator solution for the Dirac field and
the electromagnetic potential. Having in mind eqs. (14), {(20)
and the formulae from the Appendix, we obtain the following
commatators: :

45 (9, Q¥1 =459, 371 =0,

2A1-X 5

(%), Q% ] = Y@,

(25)
o, @¥1 = 24000
=

The first two of the above commutators seem quite matural
and need not any comment. As for the last one, it might seem
at first, that we have obtained the eigenvalue of the charge
operator, but this is not the case. The quantity « is the
gauge fixing parameter, and therefore the last commutator
depends on the pauge. The situation is even worse, since in
the Landau gauge (a =o) we have in fact a zero "charge". So
we are forced to conclude that either the charge of the solu-
tion is zero or the charge operator Q*does not in fact define
the electric charge of the obtained solution. This can be



a manifestation of the charge screenlng mechanlsm, that is
known to take place in the Schw:.nger model

&, COMTATION AND WIGHTMAN FUNCTIONS

" In this section we discuss briefly some of the relevant
commutation and Wightman functions, which gwes the poSSlbl—
lity to-fix the arbitrary constants c, and ¢y ‘that appear in
the commutators of the fields ®~(x) and ¢b‘(x) The necessary
functions are simply evaluated by using the formulae from the
Appendix and having in mind the explicit expressions (14)
and (10) for the solutions.

Let us first consider the commutation functlon of two
electromagnetic potentials

(A, (0. 8,01 -

 AZoaZ . (@NE
=g, =3 D(x).—1_2 -{x,d,

+ xy.é)pt +— 6‘ ID(K) +

R | (26)

A o
+ =28 ey = gadd, 3, D(X) .

It is evident that function has a gauge independent term -con—-
tributing to its transverse part and therefore it is.not tri-

vial. The expression (26) is local provided the followmg
equation

e A-cpa =0 ‘ (27)
holds. Under that condition the Wightman function of two elect—
romagnetic potentials has the following form:

<0| A”(x)A,,(O)i 0> =[4}, (%), A (0] =

(a )\) _fa —)t)

D()—

_g’_w [x” +xV6 ]D+(x) =

aZ )? 2.' i O (c::—)t)2 1 (a-—-)\)
= 1 0
g,w[ n(—,u x_ +30x9) - . + o x2—10x

At the same tipe we have trivial Wightman functions of two
currents, - since FA%)  commute tr1v1a11y. This is a quite unu-
sual feature of our-solution. It is clear that even if we com-
sider a larger set of building block fields (in order to avoid

9. (19)), the same situation would appear provided eqs. (15),
(16), (18} and translational invariance hold. However, the
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commutator of the current and the Dirac field is almost
standard

(2 (9, ¢ = i1-Nlad, D7) + 170y ﬁ*(x)lvp(oy . (28)

The only difference of this expression and the correspondin;
standard commutator, obtained after the analysis of Johnson 9
(we remind that in our formulation both current and pseudo-
current are conserved and obey eq. (13) as it is in the :
Thirring model), consists in the coefficients 2 (1-A) and M1-})
that are present in eq. (28). This results in the pathologi-
cal gauge dependence of the commutator of the charge. Here
again we must note that the introduction of a large set of
building block fields would not affect the general features
of eq. (28). '

At the end of this section we write down the Wightman func-
tion of two Dirac fields

a+r+1 2

+ (-1 A Hix

2
x expll £-(2n (2K + 1) + gg“"")(a sept A)+—-—-—~(a A A (o k

2 2.2 -
xexp;[“;* (27 (2k+ 1) + g;z) + “"j X =1 —(-n*1D Y (1.

Tt is evident that apart from the nonstandard diagonal terms
(a result of the bosonization) the off-diagonal terms are also
unusual. However in the Landau gauge (a =0) fixing the cons-
tant ¢, by the condition

02=——§—2—(4k+3) | (29>

we can write down the standard matrix form for the off-diago-
nal terms. Namely we have
gzr\zxzxp. i
<O{yr, (D9 @0, £ =ieluy | ex pym Y, g2A2 2
(-u®x2+10x%)

We conclude this section with the observation that eqs. (27)
and (29) completely fix the constantscy and ¢y .50 in fact
our solution depends on the initial parameters a and A only.
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APPENDIX

In this Appendlx we list the necessajy commutaters, as
they are obtained in a previous paper/V.We, first of all,
have the triviazl commutators

[F(), F&) = [F(x), Fl = [F(8), Fy)l =0 ".
Then we have the following nomtrivial commutators:

Lio* @, Frel =L . FF i =- D x-
Lio* @, F i = -}\-{6*(:{). F¥@l=-D"(x-y),

[@" (9, 2 (s ~a®H] (x-3) + oD (x-y),
@%, 8 ¥ (50 = ATHE (- y) + c, Dicx- »,

tooZF 4 1
[&°(0, @7 (] = edHg(x~ M)+ 5lc =+ K)D *z- 9,

~ -
where the functions D (x), B (), H§<x) and H_ (Yare defined
as follows:

D=7 Z%xn(ﬂzx? * 10x%),

i X0+31i10
H=t—1ln———
() 4” x0-x1IiO

H(X)=~—(D() )

. x° o+
‘ Ha (%X} = TD. (=) .
‘At the end for the charges @% andQ% defined by egs. (24) we
have the following nontrivial commutators

* ’ Q: == 2ja— L3
(Q (=] =

~+ TF 21
Q7 ¢*@= == .
VEr
The formulae listed above are suffucient in order to carry out
all necessary calculations in the present paper.
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