


I. INTRODUCTION

Usually, when we are dealing with the relativistic two—'
particle problem in the framework of QFT it is comvenient to
use the Bethe-Salpeter equation. However, in this case there
arise some difficulties because of the nondefinite sign of
the norm of the two-particle amplitude. The origin of these
difficulties is the existence in the theory of one nonphysi-—
cal parameter, relative time or its conjugate, relative ener-
gy. An extremely useful procedure for removing these diffi-
culties has been suggested by Logunov and Tavkhelidze/1/. The
main idea of Logunov-Tavkhelidze is the equality of times of
both particles in the center-of-mass system, i.e., the rela-
tive time is put to be zero/V. The theory developed on the-.
base of this idea as well as its manifestly covariant modifi-
cations/2-8/ constituté a powerful method for studying the two-
particle problem irn QFT/Tﬁ/.‘ )

On the other hand, in the last years supersymmetric quan-
tum field theories are intensively developed. Essential cha-
racteristic of such theories is the unification of the bosonic
and fermionic fields on one multiplet. For this reason some
of divergences from the bosonic sector are cancelled with the
ones from the fermionic sector. On the whole supersymmetric
QFT”s have less divergences than the ordinary theories. There
is a promise that in some case of extended supersymmetric
theories the divergences do not exist. As an example we can
point out the supersymmetric SU(4) Yang~Mills theory where
there is no the charge remormalization in the three-lcop ap-
proximation/QJU/.There is a hope that these renormalizations
do exist in any order of perturbation theory as well. In that
case the supersymmetric SU(4) Yang-Mills theory is a good can-—
didate for the theory which is able to describe the quark con—
finement phenomenon.

In this sequal of papers we make an attempt to construct
the supersymmetric quasipotential equatioms. In the first pa—
per a supersymmetric extension of the Logunov-Tavkhelidze ap-
proach is considered. In the second and third papers the same
is made in the case of light-cone variables/11And for the ap-
proach in which the Markov-Yukawa condition is used 2,56/ 1In
all the cases, for simplicity, we restrict ourselves only to



simple scalar supermultiplets, i.e., superfields describing
one scalar, one pseudoscalar, and one spinor particles. As in
the usual case, the guasipotential can be found from perturba-
tion theory. . '

With the help of these equations the bound states in the
case of supersymmetric theories can be found.

2. SUPERSYMMETRIC BETHE-SALPETER EQUATION

Consider the supersymmetriec four-point Green function

G(zl,ig.zs,zdr');.<01_T(¢(zgqa(ze)@*(zg)qa*{zg)t_m, T @

where 2=(x,,® ) @ is, in general, the four-compoment anti-

commuting Majorana spinor variable and ® are superfields.. It
is supposed that G'is invariant with respect to the super-Po-
incare transformations. For the Green function G the follow-
ing supersymmetric Bethe-Salpeter equation/12/ can be written

8,
G(z pZgiW i.vifz)-.= Go-(zrz S W W dt [du 1-d By ztisvlt:ls\{2
| : (2.2)
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where Do(zl_,z-z} is the supersymmetric free-particle propagator

D242 5)= < 0] T® (2,)9(z,))1 0 > (2.3)

and K is the invariant Bethe-Salpeter kernel.

Ag in. the usual case, we can introduce a complete system
of intermediate states. Then G can be represented in the follow-
ing form :

f:.=§.< 01 T( B(z )0(z,)|n>< 0 T(D*(w )d*(w, )] 0>

£ (2.4)
=§ Vo(zpz )¥ (%, .w,),
where by
P, (zy2,) =<0| T(® (z ) E(z )){n> (2.5)

the Bethe-Salpeter amplitude is denoted and x%> y: (a,b=1,2)
is assumed. Then, substituting (2.4) im (2.2) we obtain the
corresponding homogeneous supersymmetric Bethe-Salpeter egqua-~
tion for the two-particle amplitude
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X Du(zi,n.l)Do(z gtd 2)K;(u1.u 2,vl,vz)'l'n {v 1"’2)‘ (2.6)

In eqs. (2.2) and (2.6} it is convenient to introduce the col-
lective coordinates. In the equal-mass case, we restrict our-—
selves to

.Z=-32;(z1+52)=-1§(x;+xﬁ.®; +®§) 2.7)
and
Z=%Z,-2 =(xl—x2 01-.62) ' (2.8)7
1 2 [ u ' a a

are the super—center—of-mass coordinate and the super-relative

coordinates, respectively. It is easy to see that with respect

to the supertransformations the center—of-mass coordinate(2.7)

is transformed as a coordinate in the superspace but the trans-
formation law of the relative coordinate (2.8) is -

#+

“ _ 1_ 2 i 1__ 2
z a2 =1 x.‘1 2, +ley, (' -89} , (2.9)

where ¢ is the antico&muting spinor parameter of the super-
transformations. :

Transition te the momentum space, with respect to X is per-
formed as in the ordinary case. Then the Bethe-Salpeter edq. '
(2.2) can be written symbolically in the following way:

G= .
G0+GQ/KVG, . ‘ (2.10)

where Cg is the two-particle supersymmetric disconnected Green
function, and by the integration over intermediate spinor va-
riables is denoted by V. ,the integration over intermediate.
momentum variables alsc being taken into account. The solution
of eq. (2.10) can be found by iteration, 1.e.,

G=GO+G%&?0+63K§%K§0 At oaee s (2.11)

In the supersymmetric case in (2.11) there are, in general,
less singular terms than in the ordinary case. However, there
also exist unphysical parameters: the relative coordinate or
its conjugate relative emnergy.

3. SUPERSYMMETRIC TWO-TIME GREEN FUNCTION

To make free the theory from the difficulties caused by
the relative time (energy), we following Logunov-Tavkhelid-
ze/lfput the relative time in (2.1) and (2.5) to be zero in
the c.m.s., l.€., .



1 2

xof-x0=0. ‘ (3.1}
However, from (2.8) it follows that this operation is not in-
variant with respect to the supertransformations. As is well
known, the equal-time operation also is not invariant with
respect to the Lorentz transformations; the operation (3.1)
can be made meaningful in a fixed reference frame, i.e.,
c.m.s. In the supersymmetric case the operation (3.1) also
has sense in the fixed reference frame in the superspace.
Such supercenter-of-mass system is introduced by the condi-
tions Pu.0 and

Fy,(0 ,~6,)=0. | G.2)

The last equation is satisfied if:
. a)e=0,"1,e., the parameter of the supertransformations is
zero. ’ S . - :
b) 64-6,=0, 1i.e., the Grassman s$pinor variables coincide,
and . : :
)€ =A (8- 8,). .
- The case b) annihilates some of the spin-states in the B-§
amplitude, and we do not consider it herée. The cases a) and-

c) in some sense are equivalent. For definiteness here the su—
percenter~of-mass will be fixed by the conditions (%;0,‘5=0 ).
In an arbitrary reference frame the equal-time condition

(3.1) can be written in the following invariant form

@ply (XL =22 4 15y (0,- 0] =0, ' (3.3)

. Ial S
where GJP): are matrix elements of the boost operator, for
which

. 3
(LP); =0 £, n2.1.

Here Pis the center-of-mass momentum of the two-particle sys-
tem. Note that the momentum P is invariant with respect to
the supertransformations.

Transition from the four-time Green functioms to the two-
time ones and from the two-time B-S amplitudes to the one-time
wave function can be made in a covariant mammer according to
the formulas ‘

a(zl,zgg:w 1,w2)=fdxgdy§8{n“[x‘:-xf+ 15}_#_(81—02)]3
” (3.4)
- i . I i_ 2 i 8.0 ) ’
x Glzyzylowy, w810 [y, —y  +ley, (8,-8,)1)

and
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¥ (2,2, [ dxgoln®l x-x/ +-i\?y#(61-92)]l‘1‘n(z1.22)- (3.5)

. ) .
Going to the momentum space frofm (3.4) and (3.5) in the super-
center—of-mass system we have

G(qu-a’f61I02191052)= r qudqz) G(EDqtq‘lelieziel’ee) (3'6)
and

¥ (6.0,,0)= [ dagP(E.q 10,.6,). (3.7

Consequently in the momentum space the "equal-time" operatiom
(3.1) is replaced by the integration over the relative ener-
gies, as in the ordinary case’/!/.

For the two-time Green function (3.4) or (3.6) we have the
following equation

G =Gy+ GyKG, (3.8)
vV

which can be found from the B-§ eq. (2.10) by the "equal-time"
operation (3.1). Then, as in the ordinary case, in the super-
symmetrical case the quasipotential is determined from the
equation

ma-1 o oq-1 1 .
(6171 (81 7' v (3.9)

Here the inverse operator is determined by the following con-
dition
o 4 e "o g e ey ”»
[a%-a*e7a'ey GE.3.4.0,.65:07.03)
(3.10)
. P PRIy P ’ 3) > >, . .
<G (E,370%8] .87 :01,05)=6"" @-38(6,-0{)5(8,-05).

where §(§) is the Grassmannian 5 ~function/13/,

4, QUASIPOTENTIAL EQUATIOﬁ FOR SCALAR CHIRAL SUPERMULTIPLETS

In this section we restrict our consideratiom to scalar
chiral superfields (see Appendix A). The four-particle Green
function for these fields can be represented in the following
form



f Gt gt gttt G++.——-
—+ b+ - - ~+ = -+,
c. | G G Gt g (4.1)
gttt Gt gt G+¥.~— '
[ g™t e R « Y ¢ M
where
Ga;ﬁ.y.a <0|T ,ma ﬁ Y 5 ! (& 2)
- (X0 DB (%5.0 )7 (25,0, )8 (x,, 6, ))] 0> :

are the four-point Green functions (4.2) for the chiral scalar
superfields. Here the following notation is used:

o¥(x,0)= ®(x,0) and @ (X.G)stffx;g)). H

where - is the complex conjugation. For the two—particle
wave function we have

-

++ .
W (xl,xz ,91.@)2)

S ¥V (x,x,:0,,0,)
9 (%% 5:0,,00)= r¥g ¥y

. . {4.3)
'’ _(xsz ;0,8 C
P o T(0% (x,0,)05x..0 NERN H
= . 1 2021 Pedidg > RCRLY

Superfields ®" “contain compenents with spin O and 1/2 and con-—
sequently the states Ip.j,ig> have the spin _

p=, 012, rxd, ' (4.5)
where ¢ is the orbital momentum with respect to the. center-of-—
mass system. The transformation law of the states |p,j

N g
. . . ; 3
with respect to the supertransformations is not discussed
here. '

From (3.9) it follows that determination of the quasipoten-
tial requires the inverse Green function G=! to be found.

The corresponding supersymmetric four-particle two-time Green
function according to (3.6) is given by

Go(Elq,lq”ell"u@ 4)*—qu0danO(E.Q-q ’n 81 --“!E) 4)¢ (4'6)

Here G,has a matrix form (4.1) with matrix elements in the
free case
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27 o1} va .8.5 4 »

GU By =Dgy(E-Q-91.93)D0 (EyQ;62|64)6( )(Q—q )9 (4-7)
wl:xere Dy are free supersymmetric propagators given in Appen-
dix A. Substituting (4.7) in (4.6), after integration over

r .
q, and U We have:

- T r 3, - o,

GErvt _m2i 8l (0,-6,)8 (6,-08 (A-T").

q++ m r (82 2 | - _ 2

Gt o BT 0,-0)0 0G4 e (0, 30U +2E 351

. . @ R
Gg*tT - 58 (6,-05)8" (4=4 yexp (8,4 8,)13, +20°7, 1,

e
Go

1 - -, . - - 2
L 5O (G-3)em (8,785 + 0 589,)(Tg+ 2(£+7) T o+ 4672 1,
4 1- 22V4 4] - 4

< (3 - = ‘ - '
g ol 090 (a-aew(d,F 09Tg 428, .

— b=t ‘ o T = = r (£ P 4.8
G - -w?s (B, -0,)8 (9,-000 " (4-9), (4.8)

e R 3 » -7 - - o
Gy et =,_1£.1.5{ )(q__(l )exp(61?93+92C§_Q4)[J0+ _2(<f+n);12+4§?)2-14].

- T -~ -
R LA WL (6 F0,)em (8,8 6,)[3, +2777 51

The remaining elements of 60 can be found from (4.8) by comp-—
lex conjugation of the coefficients of Jg 3 Jp and J,.1In the
formulas (4.8) the following notation 1s used

£=6,0405. n =0y000, o

?-(E,2q), Q=7F(E, -9)=(E,-2)
and

T aq of 1l 2 2. 4-1..1 2 2 . ,-1
Jk__LdQOQO[(-gE+qU) —worie] [(—'éE—qo) —wo+iel 7,

where w=v q®+m? . After integration over qg,, we have



‘ g1
Jo=in[2w(-£1;-E2—w2+u 3o, (4.9
.}'2= in/2w

Consequently,Jy is just the two-time Green function for the
scalar fields/V, -

It can be verified that the two-fermion component of G
coincides with the correspondins two-time Green function for
the free spin 1/2 particles/2:14/ This Green function can be
found from Gy (4.8) as the coefficient of the irst power in
8, ,8, , ®; and 94«However, it is knowr’ *1% that the two-
time fermionic Green function has no inverse in the whole 16~
component spinor space., The resolvent operator can be found
only in the 8-dimensional subspace only with equal sign of
energy of both the particles *.This subspace can be separated
using the projection operator At onto subspaces with the posi-
tive and negative energy. Operators A+ have a simple form in
the Foldy-Worthnysen representation. The transition to the
F-W transformation is made by operators

(0 m+w+zulg . m+ w P g
T (@)= — e (1
vew(m+w) v 2w(m+w) =75 4 m+w
2 m-'-w-y(z) q 1 m+w ‘2(2) -9
T ((l): — —
v 2w(m+w) v 2w(m+m) e® .4 maw

(4.10)

For the matrix Yg We use the representation‘yo=(? é). The

superscripts 1,2 in (4,10) indicate the particle .on which T(q)
acts.

In the supersymmetric case the wave function (4.3) is de-
composed in @, and @,.The corresponding coefficients, the com-
ponents of the superwave functions are denoted by ¥(a,b), where
{3,b=0,1,2).

Then, the Foldy-Wouthuysen transformation in the supersym-—
metric case is defined in the following way

*Which is the case of Majorana spinors.
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¥ @ 1n-17 1" @¥eLn.
iF(q'l’a)=‘T(H(.q.)@(q;lvﬂ)o
. ST (D)
¥ @)= T?@¥ (a1 .

¥ (@0 8)=%@aB) - (a,8=0.2).

The corresponding projection operators on the state with de-,

finite sign of energy in the F.W, represgntation are given by'

L9 |, (1.2
y (1B, (2 1 tag!

(1,
A Z¥ 4
+ — 5 , {4.,12)

taéx;z-) DRl
which act on the fermionic componeuts. For the Majorana spi-.
notr ¥(x) we have A_¥=0 and consequently

o

AR g1y =0, T (4.13)

Then, without loss of invariance with respect to the gpatial
reflections, the following projectiom operators

i ool o 0
=1 ' Iy = y ) . : (‘l - ll&)
S P 2 0 I

can be introduced, where I is a 2x2-identity matrix. Apply_ihg
these operators to the components of the wave function (&.11),
we have :

(1,2 p .
¥ )(‘l'a'b)z iy, ¥p(d.20)- .19
Then the following super—wave functioms can be formed
o
¥ (4,97,8,) .
i - .
Ve (4,9,,0,)= e - (4.16)
Pe (4,9,.8,)
and
¥ (q.9,,8y)
Pe 0= | __ _ _ . 4.17)
- v (tl. 0,.9,)



L]
where components of the super-wave functions ¥¥ are given
by (4.15). Corresponding two-time Green functions are given by

S+ i BFtit+ D, -4
A1 IGOF 1G0F C‘or Gor
G! = il
oF = . (4.18)
R Y e B e
GOF G oF Gopﬁ Ggp
and '
2O+ B4~ e it - A,
- GOF‘ ?ChF Gor GOF
Gor = - : . (4.19)
2G— 20— e e
Gor Cor } Gop Gor

Her.e ng""a can be obtained from (4.8) by the substitution

eXp 26596, » 1+ 4(12{5'1-((9j ) Sr(ak 2
_ (4.20)

r ; .
ms (6 -0, m3' 6,3 +ms’ (8 )+ w6, e, ,

where w=y/q2%n?,i.e., the F.W. transformation is performed.
From the condition (3.10) we can determine the corresponding

to 681':) resolvents. The explicit form of fé'[;lF is given by
~_ g A I T T T T r iy
(100'15,) =—11;—!W[6 @8 (62)+3r(61)8 (04)+8 (6,)8 (9,)+8 (8508 (8,)1+

2 T r T
+ 2005 181 8,) 48 (0))+ m8,e0,15(0)) +
m
570, N-2w z
+8 ( 3) - WG--166382694 ,

R Bt w T T - E2
6o p) =L (=218 (8,08 (0,1 2 [m? 2 - w2 (4.21)

X 5r(g_1)3r(9 3)[3r(92 Y+ Sr(ﬁa)] + —5-925 64

Ew 3 r T .
~ZR G018 (8,)+8 (0,) +E(0;05)0,e6,
E? = |4
+2[mf 4 2(1 ng)legeqi ar(al)ar(e3) B
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Remaining elements of. K%;% _can be found from (4.21) by comp-

lex conjugation of variables 6; and §3.The Green function 266;

can be obtained frmn“’éag by complex conjugation of all va-
riables 8. '

Now we can write a suPersymmetric quasipotential egquation
of the Logunov-Tavkhelidze type for the two-particle super—
wave function. In the super—center-of-mass systen it is given
by ' ' '

: (1-2)6—1 ’ @_I‘(‘I-E)

& {1.2)
0, F ¥

= V(l,g) s o ' (4.22)

where integration over the intermediate momentum and spinor
variableg-® should be taken into account. Here the gquasipo-
tential V can be determined in perturbative way from quantum
field theory, as in the ordinary case. These potentials have
the matrix structure as the Green functions (4.18) and (4.19),
* respectively. The explicit form of the potential depends on
the interaction Lagrangian. Because of a cumbersome structure -
of the equations corresponding to (4.22) for the components of
the super-wave function they are not written here. Note only
that the equations for the scalar and spinor components coin-
cide with the corresponding quasipotential egs. in the ordina-
ry theory/1.2/. ' : '

APPENDIX A

The simplest scalar chiral superfields are detérmined by
the equations ‘

:ﬁ i®+(x|6)=0|

_ (a,a=1,2). (A1)
D, ¢ (x.9)=0.

Here D, ,D; are supercovariant derivatives (see”13/). For
our purposes it is convenient to use the two-component spinor

formalism. In the nonsymmetric represeantations the fields &+
and @~ are given by '

€ 5,0) « LA@-1B@)+ 078, () Lo (F®+1G@)
. - (A.2)
29 = LA@+iBE) + 0, ¢+ LOFFE G,

where A and F are real scalar fields, B and G are real pseudo—

scalar fields and ¢ two—component spinor fields. The corres—
ponding supersymmetric propagators are given by:
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D™ (x 1~x5 i, 05) = <01 T(®" (x,,8,)0%(x,,0,))]0> =

aln8I191-82)Ac(xI-x2-nnL ' )
' (A.3)

- - + - -
DT (2 -%,:60,:8,)=<0! T(® (2107 (2,, 0,0 0> -
-216,38,
=%e 129 A (x -z, im),
where A (x,m) is the Feynman propagator and g- :}g.é“i : is

+ O
an identity 2x2 matrix and o;(J=1,48) are the ?;ﬁli magrices.
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