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I". INTRODUCTION 

Usually,. when we are dealing with the relativistic two­

particle problem in the framework of QFT it is convenient to 

use the Bethe-Salpeter equation. However, in this case there 

arise some difficulties because of the nondefinite sign of 

the norm of the two-partiCle amplitude. The origib. of these 

difficulties is the existence in the theory of one nonphysi­

cal parameter, relative time or its conjugate, relative ener­

gy. An extremely useful procedure for removing these diffi­

culties has been suggested by Logunov and Tavkhelidze/1/. The 

main idea of Logunov-Tavkhelidze is the equality of times of 

both particles in the center-of-mass system, i.e., the rela~ 

tive time is put to be zero It/. The theory developed on the·. 

base of thi~ idea as well as its manifestly covariant modifi­

cations12~61constitute a powerful method for studying the two-

particle problem in QFT h.s!. · 
On the other hand, in the last years supersymmetric quan­

tum field theories ai-e intensively developed. Essential ch~­
racteristic of such theories is the unification of the bosonic 

and fermionic fields on one mUltiplet. For this reason som'e 

of divergences from. the bo~onic sectpr are c~ncelled with ,the 

ones from the fermionic sector. On the whole supersymmetric 

QFT .. s have lesS divergences than'the ordinarY theories. There 

is a promise that' in some caSe of extended super'symmetric 

theories the divergences do not exist. As an example we can 

point out the supersymmetric SU(4) Yang-Mills theory where 

there is no the charge renormalization in the three-loop ap­

proximation/9,10/, There is a hope that these renormalizations 

do exist in any order of perturbation theory as well. In that 

case the supersymmetric SU(4) Yang-Mills theory is a good can­

didate for the theory which is able to describe the quark con­

finement phenomenon. 
In this sequal of papers we make an attempt to construct 

the supersymmetric quasipotential equations. In the first pa­

per a supersymmetric extension of the Logunov-Tavkhelidze ap­

proach is considered. In the second and third papers the same 

is made in the case of light-cone variables/lt~nd fo~ the ·ap­

proach in which the Markov-Yukawa condition is used 12•5•6/. In 

all the cases, for simplicity, we restrict ourselves o~ly to 
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simple scalar supermultiplets, i.e., superfields describing 
one scalar, one pseudoscalar, and one spinor particles. As in 
the usual case, the quasipotential can be found from perturba­
tion theory. 

With the help of these equations -the bound states in the 
case of supersymmetric theories can be found. 

2. SUPERSYMMETRIC BETHE-SALPETER EQUATION 

Consider the supersynmetric ,four.-.point Green function 

(2.1) 

where Z={xu,@ ), 9 is, in general, the four-co~ponent anti­
conmuting Maj~rana spinor variable and $are superfields., It 
is s~pposeEl that: 0 is invariant wLth, respect to the super-Po­
inc-are tr-ansformations. For the -Green function G the follow­
ing supersymmetric Bethe-Salpeter equatien/12/ can be writtet:t 

G(z l'z 2 ;w 1 ,w 2 )=G 0(zrz ::,;w 1,w2 )+ fd
8
u 

1d 8u 
2d 8v

1d 8v
2 

(2.2) 
x D13 (z 1,u 1)Da (z2,u 2JK(u 1,u 2,v1,v 2 )G(vpv2 ;w 1,w 2 ), 

where D0(z 1,z 2) is the supersynunetric free-pa-rticle propa_gator 

and K is -the invariant Bethe-Salpeter kernel. 
As· in the usual case, we can introduce a comple·te 

of intermediate states. Then G can be represented in 
ing form 

D= ~-<OJT{ "4i(z 1)~(z 2 ))Jn>< nJT(~+(w 1)~+(w2 ))JO> 

=}; 'Pn(z 1,z 2 )'P:(w 1 ,w 2 ), 
n 

where by 

(2.3) 

system 
the follow-

(2. 4) 

(2. 5) 

a b the Bethe-Salpeter amplitude is denoted and X 0> y 0 (a, b = 1, 2) 
is assumed. Then, substituting (2.4) in (2.2) we obtain the 
corresponding homogeneous supersymmetric Bethe-Salpeter equa­
tion for the two-particle amplitude 

8 8 . -1 R 8 R 8 r d u I d u 2 G 0 ( z I• z 2• u l'u 2 ) 'I' n (u pll 2) = r d, I d u 2 d -v ld v 2 X 
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x D0 (z 1,u 1 )D0(z 2,u 2)K:(u 1,u 2,v 1,v2 )'Pn (v 
1
,v 2 ), (2.6) 

In eqs. (2. 2) and (2. 6) it is convenient to introduce the col­

lective coordinates. In the equal~ss case, we restrict our-

selves to 

(2.7) 

and 

(2.8) 

are the super-center-of~ass coordinate and the super-relative 

coordinates, respectively. It is easy to see that with respect 

to the supertransformations the center-of-mass coo~dinate(2.7) 

is transformed as a coordinate in the superspace but the trans­

formation law of the relative coordinate (2.8) is 

z~z'=lx 1 -x 2 +'0- (0 1 -8 2)1, (2.9) 
~ ~ ~ 

where £ is the anticocimuting spinor parameter of the super­

transformations. 
Transition to the momentum space, with respect· to x is per­

formed as in the ordinary case. Then the Bethe-Salpeter eq. 

(2.2) can be written symbolically in the following way: 

G=Go+~KvG' 
(2.10) 

where Co is the two-particle supersymmetric disconnected Green 

function, and by the integration over intermediate spinor va­

riables is denoted by v .the integration over intermediate 

momentum variables also being taken into account. The solution 

of eq. (2.10) can be found by iteration, i.e., 

(2.11) 

In the supersymmetric case in (2.11) there are, in general, 

less singular terms than in the ordinary case. However, there 

also exist unphysical parameters: the relative coordinate or 

its conjugate relative energy. 

3. SUPERSYMMETRIC TWO-TIME GREEN FUNCTION 

To make free the theory from the difficulties caused by 

the relative time (energy), we following Logunov-Tavkhelid­

ze/1/put the relative time in (2.1) and (2.5) to be zero in 

the c.m.s., i.e., 
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x~~x~=O· (3.1) 
However, from (2.8) it follows that this operation is not in­
varian-t with respect to the super-transformations. As is well­
known, the equal-time operation also is not invariant with 
respect to the Lorentz transformations; the operation (3~1) 
can be made meaningful in a fixed reference frame, i.e., 
c.m.s. In the supersymmetric case the operation (3.1) also 
has sense in the fixed reference frame in the superspace. 
Such supercenter-of-mass system is introduced by the condi­
tions P=O and 

(3. 2) 

The ras·t equation is satisfied if: 
a) (=;0. i.e., the parameter of the super-transformations is 

zero. 
b)() 1-02 =-o., i..e., the Grassman Spinor ·variables coincide, 

and. 
c)'< =A(01 -0 2 ). 

The case b) annihilat~s some of the spin-states in the B-S 
amplitude, ilnd we do not -consider it here. 'The cases a) and. 
c) in some sense are equivalent. For definiteness here the su­
percenter-of--mass will be fixed by the Conditions { P..,o, -t=O ) • 

In an arbitrary reference frame the equal-time condition 
(3.1) can be written in the following invariant form 

v 1 2 . -(Lp)~ (xv-xv + ''Yv (0 1- E> 2 )] =0, (3. 3) 
v ,, 

where (L p) are matrix elements of the boost operator, for 
which P. 

n 2,. 1. 

Here Pis the center-of-mass momentum of the two-particle sys­
tem. Note that the momentum P is invariant with respect to 
the supertransformations. 

Transition from the four-time Green functions to the two­
time ones and from the two-time B-S amplitudes to the one-time 
wave function can be made in a covariant manner according to 
the formulas 

- . . 2 2 f I'( I 2 1- ( ")]! G(zrz:!,w 1,w 2)=[dx 0dy 0 o n x,.-x,."';_ 'YI' 0 1-v2 

x G(zrz2:,w1,w:)·ofn" (y;-y~ +;;yl' (& 1-&2)ll. 
and 

(3.4) 



.Pn(zl,z2)= r dxgstn~[ ,x:-x: +i<y~(01-02)]}'i'n(zl,z2). (3.5) 

" 
Going to the momentum space fro~ (3.4) and (3.5) in the super-

center-of-mass system we have 

G(E,q,q',01,02,91,e2)= r dqodq~ G(E,q,q',ol.o2,91,92) (3.6) 
-~ 

and 
~ 

oft (q,0 1 ,o 2)= _r~ dq 0'1'(E,q ,0 1.02 ). (3.7} 

Consequently in the momentum space the "equal-time" operation 

(3.1) is replaced by the integration over the relative ener­
gies, as in the ordinary case '11/. 

For the two-time Green function (3.4) or (3.6) we have the 
following equation 

a =Go+ 0 0 K a , (3.8) 
v v 

which can be found from the B-S eq. (2.10) by the "equal-time" 

operation (3.1). Then, as in the ordinary case, in the super­

symmetrical case the quasipotential is determined from the 

equation 

(3.9) 

Here the inverse operator is determined by the following con­

dition 

f d 3-q ''d4 e'; d 
4

9 ~ G (E. Ci. Q'~ e 1 ,o 2' ;o i". e 2) 
(3. 10) 

0--l(E ~., •a" a" oo a•) o(3) (4 ~')O( n')O( n') 
X ,q .Q,ul ,u2;u1'""2 =u q-q uOl-vl u e2-v2. 

where 8(0) is the Grassmannian 0 -function/13/. 

4. QUASIPOTENTIAL EQUATION FOR SCALAR CHIRAL SUPERMULTIPLETS 

In this section we restrict our consideration to scalar 

chiral superfields (see Appendix A). The four-particle Green 

function for these fields can be represented in the following 

form 
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a++.++ a++.-+ a++.+- a++.--

G= 
a-+.++ a-+.-+ a-+,+- a-+,--

( 4. I) 
a+-.++ a+-.-+ G +- • +- a+-.--

G--,++ G--.-+ a·--.+- 0--,--
where 

(4. 2) 

are the four-point Green functions (4.2) for the chiral scalar 
superfields. Here the follow'ing notation is used: 

<1>\x,O)= <l>(x.e) and 

where is the complex conjugation. For the two-particle 
wave function we have 

(4.3) +- -'P (xl'x2;('l,,f<J2) 

where 
'1'-- (x ,x2; e,. 1'>2) 

'l'a,f3 = < 0 I T (~a ( ~ ) ~13( ~ )) I • • > w xl,nl'*' x2,\"J2 .~p,J,J3 • (4.4) 

Superfields ¢+-contain components with spin 0 and I/2 and con­
sequently the states 1 p,j ,j 3 ? have the spin 

j = f • 1 ± 1/2 . 1 ± 1 • ( 4. 5) 
where f is the orbital momentum with resp_ect to· the cent_e~-of­
mass system. The transformation law of the states ! p,j ,j 3 > 
with respect to the supertransforrnations is not _discussed 
here. 

From (3.9) it follows that determination of 
tial requires the inverse Green function GQ 1 
The corresponding supersymmetric four-particle 
function according to (3.6) is given by 

G0(E,q,lf',e 1 ..... e ,J= fdq 0dq~G0(E,q,q ', e1
, ... ,e 4). -

the quasipoten­
to be found. 
two-time Green 

(4.6) 

Here G 0 has a matrix form (4. I) with matrix elements. in the 
free case 
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(4. 7) 

where D0 are free supersymmetric propagators given in Appen­

dix A. Substituting (4.7) in (4.6), after integration over 

qo and qo. we have: 

G++ ++ 2 ·r r (3) ........ ,. 
0 • = m Jo 0 (el-e3)o (82-e,}o (q-q ), 

(4.8) 

The remaining elements of Go can be found from (4.8) by comp­

lex conjugation of the coefficients of J 0 ~ J 2 and J 4 • In the 

formulas (4.8) the following notation is used 

(=e 1a 0 ii3 , ry =8 2a0 ej. 
P=(E,2~), 0= P(E, -~)=(E,-2~) 

and 

Jk= f dq qk (( 1
2

E+q0
) 2 -w 2+id-l ((_!.E-q )

2
-w 2+i.J-I, 

_
00

00 2 o 

where W=V q2+ m2 . After integration over q 0, we have 
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J 1 ~ o. 
. 1 2 .2 . l-1 J0 ~•rr[2w(4 E -w +I<) , (4. 9) 

J
2 • irr/2w 

Consequently,J0 is just the two-time Green function for the scalar fields/1/, 
It can be verified that the two-fermion component of G o coincides with the corresponding two-time Green furiction for the free spin 1/2 particles/2,14/, This Green function can be found from G0 (4.8) as the coefficient of ~he Jirst power in 9 1 ,92 , 9 3 and9 4 ~However, it is known' 2•14 that the two­time fermionic Green function has no inverse in the whole 16-component spinor space. The resolvent operator can be found only in the 8-dimensional subspace only with equal sign of energy of bot-h the particles*.This subspace can be separated using the projection operator A± onto subspaces with the posi­tive and negative energy. Operators A± have a simple form in the Foldy-Worthnysen representation. The transition to the F-W transformation is made by operators 

ffi+W+t(1),'!. 
(m+W 

~(1) • '!.) 'T(1)(3)= 1 

y 2w(m+w) 
( 1) 

ffi+W v2w(m+w) -a q _o -

(2) 

( ffi+W (2) ) 'T(2)(q) = m+w-r -~ 1 -~ ·~ 

v 2w(m+w) v 2w(m+m) a(2) • q ffi+W 

(4. 10) 

For the matrix 'Yo we use the representation y = (0 I ). The 
o I 0 superscripts 1,2 in (4.10) indicate the particle.on which T(~ acts. 

-In the supersymmetric case the wave function (4.3) is de­composed in 8 1 and e 2 . The corresponding coefficients, the com­ponents of the superwave functions are denoted by 'l'(a,b), where 
(a,b=0,1,2). 

Then, the Foldy-Wouthuysen transformation in the supersym­metric case is defined in the following way 

*Which is the case of Majorana spinors. 
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iji (q.1,1) ='I( I) (q)'I(
2
) (q)iii (q,1,1), 

F- -· - -

- . (1) -
'I'F(~,1,a)= 'I ('!)'1'('!,1,a), 

- (2) - . ' 
'IF~, a, 1) ='I (~)'I' ( '!.• a , 1 ), 

(4.11) 

The corresponding projection operators on the state with de-, 

finite sign of em~.rgy in. the F.W •. tepres;ent.ation are given by 

11<
1•2> -Yo = _1 · 1

(1,2) + (1,2) .. [ 1(1,2) ± ao(.1,2)] 

± - . 2 • 2 • {4.12) 

+ (1;2) I ( 1,2) . 
-"o 

which act on the fermionic components. For the Major'a.na spi-:­

nor 'l'(x) we have ~-'P""O and consequently 

l:·2
) 'P (1,1) .o. (4.13) 

Then, without loss of invariance with respect to the spatial 

reflections, the following projection operators 

. [ I 0·] D)= , 
0 0 

(4. 14) 

can be introduced, where I is a 2x2-identity matrix. Applying 

these operators to the comvonents of the wave function (4.11), 

we have 

(4.15) 

(4. 16) 

and 

] . (4.17) 
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and 

[ 

a+-,+- o +- .--] OF OF 

--- +- --.--Gor' Gor 

are given 
are given by 

(4.18) 

(4.19) 

H G
- a,f3,y,O 

e;re OF can be obtained from (4.8) by the substitution 

(4. 20) 

wherew ... \f'q2+m2,i.e., the F.W. transformation is performed. 
From tne condition (3.10) we can determine the corresponding to Q0• 2) resolvents. The explicit form of iQ-t0 F is given by O,F , 

( 16 ~.~ t+ = ~ 1 wlo1(e 1) i/(e 2 ) + 1l(e 1)8~& 4 )+ ar(&
2

) ar (&
3 ) + ar(&3 ) s·r( e 4.ll+ 

IO 

2w 2 r r .·r +- ·e
1,e

3 [8 (&
2)+8 <&,Jl+ me

2 ,e
4 [8 (&

1 ) + m 

(4 .21) 



Remaining elements .of. '<l;-} -can be found from (4.21) by c"'l!P­

lex conjugation of variables 81 and 03 • The Green funct-ion 2G0~1 

can be obtained from · 1 G -; by complex conjugation of all va-

riables e . 0 

Now we can write a supersymmetric quasipotentl.al equation 

of the Logunov-Tavkhelidze type for the two-particle super­

wave function. In the super-cen~er-of~mass systen it is given 

by 

(1,2)<]-1. "(1,2) v "(1.2) 
O,F F,. = (1,2) F • 

(4. 22) 

where integration over the intermediate momentum and spinor 

variable.§. -8 should be taken into account. Here the quasipo­

tential .V can be determined in perturbative way from quantum 

field theory, as in the o-rdinary case. The.se potentials have 

the matrix structure as the Green functions (4. 18) and (4.19), 

respectively. The explicit f-orm. of ·the potential .. depends on 

the interaction Lagrangian. Becaus_e of a cumbersome s-tructure 

of the equations corresponding to (4.22) for the components of 

the super-wave function they are not wri.tten here. Note only 

that the equations for the scalar and spinor c.om.ponen-ts coin­

cide with the corres,ponding quasipotential eqs. in the ordina­

ry the<:>ry/1.2/, 

APPENDIX A 

The simplest scalar chiral superfields are determined -by 

the equations 

{a,i~t,2). (A. I) 

Here D a , Da. are supercovariant deri~atives (see It-s/). For 

our purposes it is convenient to use the -two-component spinor 

formalism. In the nonsymmetric representations the fields ~+ 

and 41- are given by 

·ct+(x.O)= ..l..(A(x)-iB{x))+e"q, (x)+ .!e,e(F{x)+iG(x)) 
2 a 2 

q,-<x.1i)=.!(A(x)+iB(x))+e. ¢ 0 (x)+ ...1.
2

e,e(F(x) -iG(x)), 
· 2 a 

(A. 2) 

where ~A and F are real scalar fields, B and G are real pseudo­

scalar fields and ~ two-component spinor fields. The corres­

ponding supersymmetric propagators are given by: 
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+ .. n++(x cx2 ;91, 82 ) = <0 1 T(<l> ( xt' 81 )<I>+ ( x 2, e2 )) 1 o > 

= m8r(o 1-02)11.(x1-x 2 ;m), 

(A.3) 

where Ac(x,m) is the Feynman propagator and a=·.}(] ;,11- .. , a is an identity 2x2 matrix and uj(j=1.~3) are the P:uli maErices. 
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