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The inverse scattering method (ISM)/ 1/ allows one to describe 

a whole class of exactly soluble nonlinear evolution equa­

tions (NLEE)/2-8/These NLEE are generated by operators A, con­

structed from the auxiliary linear problem L'; in some i~por­

tant cases A are known explicitly. Let us briefly list those 

aspects of studies of NLEE, for which the operator A is impor­

tant; i) the description of the NLEE and the interpretation of 

the ISM as a generalized Fourier transform/B,S-10/ ;ii) the con­

struction of a hierarchy of Hamiltonian structures/10-134ii) 

the calculation of action-angle variables/9,10/; iv) the con­

struction of the Lagrangian manifold for the NLEE/10,14/, The 

operator A naturally appears also in the abstract algebraical 

approach to the Lax's scheme/5.15•12,13/. 

In the present paper, following the ideas in/to/ we outline 

the construction of the spectral theory of the operator /\,re­

lated to the first order matrix linear problem: 

A(L-1\)~=(-i :x +q(x)-/\A)~(x,/\)=0, 'A=diag(a 1 , ••• ,an), (I) 

qii=O, qij(x) 1~-:"0<)0; a 1>a 2>-.>an, tr·A,.Q. 

This allows for better understanding of why the approaches 

in/2-4/,/6-8/ and /5/ are equivalent, see 1!2( Physically important 

NLEE, related to the problem (1) for n ~-3have_ been studied 

in/16/. 
The author is grateful to P.P.Kulish, E.Kh.Khristov and 

M.A. Semenov-Tian-Shanski for nUmerous· usefull discussions. 

Considering the linear problem (1) let us assume for s'im­

plicity, that: i) the complex-valued functions q ij(x) ~'S(C) 

are of Schwartz type; ii) the domain D Lof the 9perator L (1) 

is the space of vector-valued funct_ions ~of Schwartz type, 

DL'= S( en}; iii) the discrete spectrum of the operator L is 

finite and simple. 
The corresponding A -oP.erator, related to (1) is defined 

by t_he formal expression /6-8/.: 

"' d r ±co d 

A+x=,A• li-X-[q,X] -i[q(x), f dy[q(y),X(y)] 11. 
- dx X 

d r d . ,.. r zij 
Z = Z + Z , Z = diag (Z 11,. .. , Z nnl; (A * Z ) .. = -.!L.­

lJ ai-aj 

(2) 
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where .Zo=_z- 1and X= X r is a matrix-valued function. As a domain DA of the operators A± we choose the space of non-diagonal matrix-valued functions of Schwartz type, D A""·StCn(n-lJ: obvious­ly if X~DJI, then A±X ~DA • 
In the following it will be crucial to use such solutions )/ (x,A) of the problem (I), which are analytic in A for lm A~ 0, respectively. Such solutions are constructed in/17/(see alsoll/) and are related to the Jost solutions of (J) 

+ + ~Ab (L-A)¢-(x,A)=O, lim¢-'(x,A)e =I (3) 
x-+±oo 

by 

( 4) 

whereS\A) ,T+(A) , (8-(A),T-(A)) are upper-(lower-) triangular matrices satisfying s•= S(A)S-, T-=S(A)T+, S(A) being the transition .matrix, S(A) = (j;+.p-(x,A). The simplicity and finite­ness of the discrete spectrum of L required above means that the solutions x (X.. A) may be degenerate only for ,\ ~a=a+u a-± { ± ± > "'+ a~ Aa, hnAa .<0 , a=l, ... ,Nj and x-(x,A) have for A~a simple pole singularities. In that case x~x.A) may be repre­sented as: 

+ + + .... + x -(x,A)=U ;;(x, A) ... u 1 (x,A))( -(x, A), u ±(x, A)= ( I + c ±(A) p± \x)), a a a 

(5) 

-+ where x-(x, A) are non-degenerate for all ,\ solutions of a type (I) problem without discrete spectrum. The projectors P;(x) and ;± (x, A) are constructed from a minimal set of scattering data, which allows also to recover uniquely both the transi­tion matrix ·s(A) and the potential q(x) of (I), see !t,s/ .From the estimates for the solutions J(±(x,A)/17/ and from the explicit form of the projectors Pi(x) there follows, that P~(x) are uniformly bound for all x and therefore x±(x,A) sa­tisfy estimates analogous to those for .;' :!{x, A). 
Let us introduce now in the space DA the usual scalar pro-

~ T duct (X,Y)= ( dxtr(X (x)Y(x)) and the skew-scalar product [ • J:. -~ 

"" T • [X,Yl= ( dxtr(X (x), A • Y(x)), X, Y ~ DJI (6) -~ 

where the notation !A * Y was introduced in (2). 
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Lemma 1. The operators A+ and A_ are adjoint to each other 

with respect to the skew-scalar Product(.], i.e.: 

(7) 

Proof.· Perform integration by·parts. 

Lennna 2. If q(x) in (I) is a function of Schwartz type, then 

the corresponding scattering data S(l.)-1 ,S:!j:A)- I , T:!j:l.)-1 are 

also functions of Schwartz type. 

Proof follows from (5), from the uniform boundedness of 

the projectors P;(x) and from the estimates in /17/. 

Remark 1. Below for convenience we shall write down the 

elements X~DA as n(n-1)-component vectors X-+ XT=, 

~IJr ( 2) T (})T 

=(X • X ) .. X = (Xt2'x13'"'• X In .x 23'"'• X n-t.n ), 

~2)T X X )·, 
X =(X2rXst•'"'Xnt•''32''"• nn-1 

the corresponding expressions for the operators A± as n(n-1) x 

xn(n-1) matrix operators wil,l be denoted by A+. 
Let us introduce the systems of functions 

-++ -+- -++ x~-. 

V.(~) o!X 1P (x,A), Xp; (x,A), /.<;OR Xa,lp (x), a,p, (x), 

Xa+,ip (x), i ~,pi (x). a= 1 ... ~.N,; 1=
< i.<p < I 

= n ' 
(p<i) 

__,.+ . +-+± 
X- . (X)= hrn+ (A- A~ ) X ip (X, A); 

a ,1p A ..... \t 
(8) 

~ + . 
X-. (x)= hrn+ 

a ,1p 'A-+Aa 

d + -+ + 
-(A-1.-)X.- (x,A), 
dA a lP 

~+ 

where the vectors X ~(x,A) are constructed according to re-

mark 1 from the off-diagonal elements of the m2.trices X.± ~x.A)= 
'P 

+ ... + + . . 
=X\ (X, A))( "\x,A) , x j(X, A) be1ng the t-th column of .the so-

+ ~ 
·+ 

lution X "\x, A) and X P(x, A) -the P-th row of X- (x, A). 

Lermna 3. The elements of the system W+(W_) are eigen- and 

adjoint functions of the operator A+(!)_), i.e., 

i .< p 

(i > p) 

~ - -+ - .... _ ..... _ 
(9) 

(/1+- !.) x-. (x, A)=O, 
(-) P• 

A " R u a ; (A+ -A )X . =X . 
(-) a a,p1 a,p1 

(i > p) 
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Proof follows directly from (1), (2) and from the asympto--- + tics (4) of x-(x,,\) for X 4 ± oo • 

/8/ Theorem L (A~out the completeness of W + ) • For every vector function g (x) G D A the following expansion holds 
-+ 1 0() -+ + -++ -+ -+- wi'- -+ g(x)-- [ dA ~.IXP1 (x,A)[X 1 P ,g]-X1P (x,A)[.II pi ,g]l-2" -oo p.<-t 

N -++ ~+ -+ -+- -+ -+ - ~ ~ .1 :R (X pi (x, A)[ .ll;p ,g])l + :R(X ;p(x,A)[ X pi ,g]) I A-A- I a=l p<t A.::A+ - a a 
where [X,g]=(X~ g] and the operation .'R is defined by 
-!R{X±(A)Y±(A))IA=>.±- lim+ :A ((>.->.!)

2
X±(>.)Y±(A)). 

a A-+A-a 

(10) 

Idea of the proof. Apply the contour integration method to the integral (2"i) 1 'ydAG(g_,.A), where the contour y-y+ u y_ is shown on the figure and G(&A) is given by 
4 

4 
oo 4 

4 
4 { ~+(x,y,A), lm A> 0 G(g,A)- (dyG(x,y,A)g(y), G(x,y,A)= __ 

G (x,y,A), lmA.<O 

-+t) -+ + 
G '{x,y,A)- i f ~ a<-:{x.y,A)e(x-y)-

p> i pl 
(p<i) 

-:) 

Remark 2. The vectors <j<k{x) and f8q(x) ·related by remark to (q(X),fl(k) ], ll (k)-diag(t., ••• l,0-0) and :A,8q(x) may be expanded over the system W +(W_) .. Tliese expansions and also points i) and ii) (see the introduction) for the NLEE related to the system (I) are accomplished in Is!. 

(J I) 

Lemma 4. The functionG(~A): i) is analytic with respect to A , A~ R. Ua and ha-s poles of second order for A~~; ii) is a function of Schwartz type with respect to x for A~ R ; iii) for fixed A<; R d(x,y,A) is uniformly bound with respect to x andy. 

Proof follows from the estimates in/17/ for x ±(x, A) and from the definition ( ll). 
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Theorem 2. The function G(x,y.~) is the operator A+ resol­

vents kernel, i.e., 

ihxJ <;; D A (12) 

First proof. Let the potential q(x) be on compact support. 

Then¢ ±(x, A), S(A)- I , S ±(A) -I , T ±(A)- I are integer functions of 

A and relations "(4) hold for all A. Then using (4), (II) and 

(2) we directly obtain (12). For potentials q(x) of Schwartz 

type (12) is obtained by limiting procedure. 

Below we shall give another proof of theorem 2, based on 

the following. 

Theorem 3 (abo~t the spectral decomposition f?r Gc~L p.) ) • 

If the discrete spectrum of the operator L (I) lS simple and 

finite, then 0(g'",p.) for p. ~ Rua, gc;DA may be represented in 

the form: 

( 13) 

. N m_L 4 + -->+-+ 1 .. -t ...... _ ...... 

-1 i _i !"'(A X 1p(x,A)[XP1 ,g])l ++91(--.11.;;(x,A)[X 1
P,g])ll,_,_ 

a=lt<p -11 A=Xa A-f.L """'1\a 

-'> 1 -++ _,. 
Forg<;R (13) holds if G(g,g)=:r<G -G-) and the integral in the 

r.h.s. of (13) is understood in a sense of principal value. 
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Idea of the proof. Apply the ~onto4r integration method to 
the integral (Zni)-1 rp dA(~-A)- 1 C(i(,!t). y 

Second proof of theorem 2 follows directly from (13} ap­
plying the operator li .-~ and using (9). 

Just like in/8/ we+ prove 

Theorem 4. Let the poles of the rational function h (A) 
lie outside the spectrum RV u of the operator L.Then the ac­
tion of the operator h(A..J on !i{x)~ D X is defined by: 

... _ loo -++ --++-+ -+ h(A..Jg(x) ~- f dAb (A) l f X ;p(lt,A)[ X pi, g] -X;, (x, A)[ Xi;, , g] 1-2" -')() 1.< p 
N (14) 

- l l !:R(h(A)x:.<x.A)[.X + .!dJI + +:il(h(A)x.~(x,A)[x~ •• g])!l _ a=l i<p PI 1\.=.\a 1 A,;,,\a 

Proof follows directly from theorem 1 and lemmas 3 and 1, 
which give [x;,.h(A+Iiil~lh(A_)x;,.gJ~h(A)lXp'; ,gJ. i < p, etc. 

+ Let us introduce the function R(x,y,A),;R(-)(x,y,lt) for 
lm A> 0 (lm A.< 0), 

(15) 

S(z)~ diag(e(z), ... ,e (z), ... -e(-z) ..... -e(-z)), 
K 

where K is the number of the positive elements in :A, i.e., 
a 1> .. .a>aK>O>aK+l> •.. >an. 

Lennna 5. The function R(x.y,A) is the operator L resolvent"s kernel, i.e., 

(L-A) R(g,A)~ R ((L-A)g, A)~ g(x), 

where R(g,A)= fdyR(x,y,A)g(y). 

g(x)~DL , (16) 

Besides: i)R(g,A)'is an ana-
lytic functio;o of A for A~ Rua, having first order pole singu-
larities for A"a ;ii) R(g,lt) 
re"spect to x for A~ R ; iii) 
ly bounded for all x,y. 

is a Schwartz type function with 
for fixed It" R R(x,y,A) is uniform-

Proof of (16) follows directly from (I) and (15). Feature 
i) is obvious from (J5) and ii) alld iii) are consequences of 
the estimates for x±(x, A). 

Let us define the diagonal of the resolvent~s kernel as 
1 1 R (x, A)= 2 (R (x+O, x, A)+ R (x, X+ 0, A)). 
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Lemma 6. The diagonal of the resonvent' s kernel R (X. A) sa­

tisfies the equation 

(17) 

Proof follows directly from (!). 

Remark 3. Equation (17) is satisfied also by Rp(x,A) = 

+ A+ 
= ix<-Xx..>.)Pf-l(x.-'<)'A for Im>.-->G(lm,\<O),P being constant dia-

gonal matrix. 

Lemma 7. For the diagonal and off-diagonal parts of Rtx,>.), 

A~ "the following representations hold: 

! A ' -1 A 

Rp(x.A}A =I(JI± -A) ·A* (q,PJ. 
(18) 

d ,.. ±oo -1... d 

Rp(x,.\),A =iP- f dy[q(y),(JI± -A) ,A .[q,P]J 

• 
(19) 

The same is true also for Ac; R if one puts Rp(x,A)= ~ (R;-IfpXx,A). 

Proof. Applying the contour integration method to the integ-

ral I= (2rri)-l. d~( .. -A)- 1 R p(x,~) we obtain an expansion for 
•Y ~ , 

R~ (X. A) over the system W + (or W _), which coincides with the 

expansion for the r.h.s. of (18), seels( Relation (19) follows 

from (18), (17) and from lim Rp(x,A)=iP. 
:1-P ±oo 

The analyticity properties of Rf(x,.A) enable one to expand 

the r.h.s. of (18) and (19) in Taylor series, e.g., in powers 

of A- 1.Thus we obtain compact expressions for the coefficients 

F~)(x) 

(20) 

through q(x) and the operators Jl ±. 

Now let us show, that Rf(x,..\) may be considered as a generat­

·ing functional of the M -operators, taking part in the Lax re­

presentation 

HL, ~[:A(L-A), M] 
(21) 

for the NLEE, related to (1). 

Theorem 5. If we choose M(x,A) in the form 

n 
"' (s) 
~ c 

8
e 

s•O 

(22) 
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( s) 
where eij =0 1j0js' 
fied identically w.r. 

then the Lax equation (21) is.satis­
to A and is equivalent to the NLEE 

(23) 

The corresponding time dependence of the scattering data of 
(I) is given by 

dS ] -~[F(A), 8(.\,t) , 
dt 

N F (A)~ A F • (24) 

Proof. Note that from (17) and (20) there follows R(~+~i)~ 
(k)f d (k)d (k)l d A ±R P (x) and -idx R P (x)+ [ q, R P ] ~ Q. Now insert (23) 

and (I) in the r.h.s. of (21). This immediately gives [!A(L-A),MN]~ 

[ A (N+ I)] . h . f R(N+ I) I = : ,R F . At last us1ng t e compact express1on or F 
which follows from (18) and (20) we obtain the equivalence of 
(21) and (23). The equivalence of (23) and (24) has been pro­
ved earlier (see /6,8/). 

Theorem 6. The quantities R,n(k)(x,A) with n (k) 
fy the relations 

k (' ) 
= I e satis-

s=t 

00 • (k) d (k) (k) 
(dxtr(R (k) (x,A)-1U Ar---D (A), D (A)~ -oo n dA 

Int.- (A), lmA>O 
n-k 

. + 
1/2ln(t.~-k /I'> k), Imol.,~.o 

-ln t. ;ell), Im .1 < o 

(25) 

where t.;;-(.I)(I'.~(A)) is the upper (lower) principal minor of 'S(A) 
of order k. Besides, if q(x,t) is a solution of any NLEE of the 
type (23), then ft- D (k) (.1)~0. 

Proof. Let us use eq. (I) and the following from (I) equa­

tions for i.e ±~~:x ±(x,A) and J(±(x,A). This shows that the l.h.s. 
of (25) is equaT to tr(-i x±J( ± n<kl+rfkJ •Ax) Joo • To prove (25) 

x=-oo 
it is enough to use the asymptotics (4) of )(± for X-+ ± oo and the 
relations between s±, T± andS(A) (for details see/8,1/ ). 
The fact that _g__ o(k)(A) ~0 follows readily from (24). 

dt 
Remark 4. The general form of the M-operators and the con­

servation laws of the NLEE has been obtained earlier in/5/ by 
studying the formal expression for the resolvent of (1). Are­
current procedure for the construction of M has been proposed 
in/2/ based on the fact, that M sat·isfies eq. (17) withi!Aq, 
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in the r. h. s. (insert ( 1) into (21)). The considerations given 

above in constructing M and the conservation laws show the 

equivalence of both jPproaches. The same conclusion has been 

obtained in/12/ audits by .different methods. 
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