


The inverse scattering method (ISM)/l/allows one to describe
a whole class of exactly soluble nonlinear evolution equa-
tions (NLEE)/2~8/These NLEE are generated by operators A, con~
structed from the auxiliary linear problem L; in some impor-
tant cases A are known explicitly. Let us briefly list those
aspects of studies of NLEE, for which the operator A is impor—
tant; i) the description of the NLEE and the interpretation of
the ISM as a generalized Fourier transform/ﬁﬁ-dﬂf;ii) the con-
struction of a hierarchy of Hamiltonian structures/10“13@ii)
the calculation of action-angle variables 9,10/. iv) the con-
struction of the Lagrangian manifold for the NLEE / 10:14/ The
operator A naturally appears also in the abstract algebraical
approach to the Lax’s scheme/5+15:12:13/,

In the present paper, following the ideas i/ 19/ we outline
the construction of the spectral theory of the operator A re-
lated to the first order matrix linear problem:

rA(L—A)ws(—i%+q(x)—m)¢(x.r\)=0. B=diag(a, 2y b (1)
qii=0. qij(x)m-:mo; a >8> —> B, trA=0.

This allows for better understanding of why the appreoaches
in/2—4ﬂ/6‘8/and/5/are equivalent, see 12/ physically important
NLEE, related to the problem (1) for n > -3have. been studied
in/lB/. ‘

The author is grateful to P.P.Kulish, E.Kh.Khristov and
M.A.Semenov-Tian-Shanski for numerous usefull discussions.

Considering the linear problem (1) let us assume for sim—
plicity, that: i) the complex-valued functions q ;;(x) e8(C)
are of Schwartz type; ii) the domain Dy of the operator L (1)
is the space of vector—valued functioms . of Schwartz type,
D=8 C"); iii) the discrete spectrum of the operator L is
finite and simple.

The corresponding A -o erator, related to (1) is defined
by the formal expression 6—8/;
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where.i;,z_land X:Xr is a matrix-valued function. As a domain
Dy of the operators Ai we choose the space of pon—-diagonal
matrix-valued functions of Schwartz type,DA='§‘(Cn(n_l ; obvious-—
ly if XeDp, then AyX¥ cDy .

. In the following it will be crucial to use such solutions
X" (x,4) of the problem (1), which are analytic in A for ImA 2z 0,
- respectively. Such solutions are constructed in/17/(see also/1/)

and are related to the Jost solutions of (1)

iA Az

L-M) s xA) =0, limgimae 2% (3)
x=+ T oo
by
X+=¢.+S+=¢_S_ .y T - 67T *, “

where $'(A) ,TH(» , (8°(\), T™(V) are upper-(lower-) triangular
matrices satisfying S*= 8(A)S~ , T =S(A)T+ , B(A}  being the
transition matrix, S(A)= ¢~ (%, A). The simplicity and finite-
ness of the discrete spectrum of L required above means that
the solutions yx (X, A) may be degenerate only for Acg=otug™

+ + + ~
o =iA, , Ay 20 | e=1,...N} and x%(x, A) have for Ace
simple pole singularities. In that case ¥ Hx,A) may be repre-
sented as:

x i(x,z\)=u§(x. Mot T 05 2 ), u A=+ c;”(,\)Pa‘—”(x)),

- , A, AT
P(x)= 1-P7(x), of.l2a""a
a o 1\ —1\.+
a

where ;i(xn\) are non—degenerate for all A solutions of a type
(1) problem without discrete spectrum. The projectors Pai(x)
and ¥ (X A) are constructed from a minimal set of scattering
data, which allows also to recover uniquely both the transi-
tion matrix 8(A) and the potential q(x) of (1), see 1’3/_From
the estimates for the solutions x %(x,A)/17 and from the
explicit form of the projectors Py(x) there follows, that
Pg(x) are uniformly bound for all x and therefore v JA) sa-—
tisfy estimates analogous to those for x Xz, \).

Let us introduce now in the space Dp the usual scalar pro-

duct (X,Y) = FJ dxtr{ X T(x)Y(x)) and the skew-scalar product

-0
'S X

o T -~
[X, Y] dxtr(X (x), A * Y(x), X, Y ¢ Dy, {6)
where the notation !E *Y was introduc_ed in (2).

9



Lemma 1. The operators Ny and A_ are adjoint to each other
with respect to the skew-scalar product{, 1, 1i.e.:

[A_X, Y] =(X,A,Y]. (7
Proof. Perform integration by parts. '

Lemma 2. If q(xy in (1) is a function of Schwartz type, then

the corresponding scattering data S{n-1 S -1, TXA)~1 are
also functions of Schwartz type.

Proof follows from (5), from the uniform boundedness of
the projectors P (%) and from the estimates in 11/,

Remark 1. Below for comvenience we shall write down the
elements X &Dp  as n(n—Y-component vectors X- XTe.

o Gr O
I LI SRRV SYe S RS S PHBNE WD

o | X X }:
X =(X 21:X31u-"- nl" ngv‘-'s l'lIl--l *

the corresponding expressions for the operators Ay as n(h—l)x
xn{n—1) matrix operators will be denoted by }‘t'
Let us introduce the systems of functions

3

& 4 —_—

o% . . -
W(t).x_{xip (x, 1) X5 mA), AR Xg 4 ®., X, &
Xt (%) $7 . (®, a=l.aNy 1S 1P g
a,ip 4 a ,pi ’ Tt T o(p<i) !
s . + it A
X;.ip(x)ghhl;:i (A=A ip(K- ) (8)

a .
3 . d .3t
B2, @ tm o GoapR, (b
[24
-+ 4 .
where the vectors X -,'p(x,)\) are constructed according to re-
mark 1 from the off-diagonal elements of the meatrices Xi—p(x,,\)=
= yii_(x.)\);( Hxn) , x ti(x. A) being the i-th column of the so-
~ . ' -~ !

lution x X% A) and ¥ li)(x, A) -the DP-th row of X (% M.

~ Lemma 3. The elements of the syst;‘em*w_i_(W_) are eigen— and
adjoint functions of the operator ‘A_’_(A_),i.e.,

> 4+ -+ + 3 =+ j<p
A - ] = vt - =
( & MX (% N=0, A€ RV ("\(t) Aa)ga.ip Zap i>p)
) - (9
> -7 R > i <P
“‘;_‘ NEp; (£A)=0, AERV g ’(A(;Aa)xa.pizxa.pi :

) - i>p)



Proof foll_?ws directly from (1), (2) and from the asympto-~
tics (4) of ¥ (xA) for X+ *oeo .,

Theorem 1. (About the completeness of W_,_/Sf ). For every
vector-function g(x)GDK the following expansion holds

-

- 1 a3 EeniEy R el En-
N (10)
24 + - - — i S
- 2 pzqf RX G (MR ,gl)zg(x ip(% X 5 'g]}')\=rﬂ‘

ks 3
where -[i.:’g’]E[ng] and the operation % is defined by
+ +
RETWYTN, 5= im L a-aE)2xT vy,
)\mi\a A-a)t't d,\ @
a

Idea of the proof. Apply the contour integration method to
the integral {2zi)-1 6ydAG(g:,’)\), where the contour Y=y, Yy
is shown on the figure and G(g 1) is given by
4 o . s G*(xy.A),  Imas 0
G(g )= [dyG(xy,a)g(y), G(ry, A)= { -

—oo G (xy,A), Ima<O

-D(+ 5t o5 *
Gy, a)=i 1 2SSty eay - 5 6Dk aegont,

. pgi Pi 11
(p<i) (r21) an
5 4 + - 3, ¢ -d
EN _ - = = T I
G pi {x:YI'\)—‘gpi (x- ‘\-)X ip{y-}\). X = X N !A = ( 3 0 ) ’

e d .
a=d1ag(a1—az.al—a3 send -8, 29—8y ,.m, 8y~ a,).

Remark 2. The vectors Zi(kkx) and Raii(x) ‘related by remark i
to{q(x),Tik)y1, O (k)=djag(1,...}‘,0..o) and 'Ax8q(x)’ may be expanded
over the system W, (W_). These expansions and also points i)
and ii) (see the introduction) for the NLEE related to the
system (1) are accomplished in 78/,

Lemma 4, The function é(g, Ay: i) is analytic with respect
to A , AL RVge and has poles of second order for AGgr; ii) is
a function of Schwartz type with respect to x for AZR ;iii)

for fixed A¢ R G(xy,A) is uniformly bound with respect to x
and y .

Proof follows from the estimates in/17/ for ¥ ¥(x,A) and
from the definition (11).
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Theorem 2. The function a(x,y,u) is the operator A, resol-
—_— . .

vents kernel, 1l.e., ‘

(A~ G(Ew=C(R ~wEw=km.  EWeDdp . (12)

First proof. Let the potential g(x) be on compact support.

Then qsi(x,/\),'S(A)- 1 ,Si()\)—l s Ti()\)—l' are integer functions of
% and relations (4) hold for allA.Then using (4), {11) and
(2) we directly obtain (12}. For potentials q(x) of Schwartz
type (12) is obtained by limiting procedure.

Below we shall give another proof of theorem 2, based on
the following.

Theorem 3 (about the spectral decomposition for C@E.p) ).
If the discrege spectrum of the operator L (1) is simple and
finite, then G(g,u) for u€ Rus , geDjmay be represented in
the form:

di

KL %5 NICIVE MRt RIS R b

—é(gvﬂ) = él;

2

p
i<p

=

(13)

N -» - >
-1 X RiL-x* ¢ D L 2- .
i2 3 Rish 2, M Xy .g}):{\=)\+a+ R - SRR C VTS JUY:3) §'\“"; .

For u SR (13) holds if 6(%,;;):-%-(6"’-6") and the integral in the

r.h.s. of (13) is understood in a semse of principal value.



Idea of the proof. Apply the gontotir integration method to
the integral (271)-1 q;d,\(u_,\)“’e(g,x).

Second proof of theorem 2 follows directly from (I13) ap~
plying the operator fx’+_—,u and using (9).
Just like in/8/ we prove

Theorem 4. Let the poles of the rational function h(A)
lie outside the spectrum RV g of the operator L.Then the ac-
tion of the operator h(K_}) on g(X)¢ DK is defined by:

hABE =L faanen s1R La 3. 8-55 wordy 8-

7 i pi

N (14)
X+ ¢ F+ - 2 >

"o 12, FROMX LR 'g])'ae»; +ROWX S ENE DI,

a

Proof follews d}rg’ctly from theorem 1| and lemmas 3 and 1,
Wh]‘.ch give [g;i;h(A+)gI=Eh(A_)X;i.‘g']?-h(A){X;i .g]-- i< p, etc.

‘ L
© Let us introduce the function R(xy,\)=R{-)Xx,y, 1) for
ImA>90 (ImA<0),

+ s + ~ 4
R (x,y,,\)z tl)( (X, ‘\)G (i(x_y)))( "(yn .\):A, (]5)

8 (2) = diag(9(2),.... GK(Z) sere= G (~E},0ee,—0 (- 2)),

where « is the number of the positive elements in A, i.e.,
8> w2, >0>a, ., >u>a .

Lemma 5. The function R(xy,A) is the operator L resolvent”s
kernei, i.e.,

(L-2)R(g,A)=R({(L-A)g, A)=g(x), g(®eD, , (16)
where R(g, A)= de Rixy, A) g(y). Besides: i)R(g,A) is an ana-

lytic function of A for A €RVg, having first order pole singu~
larities for A€o ;ii) R(g.A) is a Schwartz type function with
re'spect to x for A€ R ;iii) for fixed ACR R(zy,A) is uniform-
ly bounded for all x,y.

Proof of (16) follows directly from (1) and (15). Feature
i) 1s obvious from (15) and ii)} and iii) are consegquences of
the estimates for y3(x,A\).

Let us define the diagonal of the resolvent’s kernel as

'R(%,A) = _;(R(xaro, %, X) + R(X, 240, A)).
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Lemma 6. The diagonal of the resonvent’ s kernel R (x4 sa-
tisfies the equation

- i.;lgx_R(x,)\)LE +[a(x), R(x,)g):g]- A[:A,R(x,)\):g 1=0. (17}

Proof follows directly from (1).
Remark 3. Equation (17) is satisfied also by Rp(xA) =

= ix(-tIx. AP Q-t)(x,)\)!A for ImA™>0 (ImA<0), P being constant dia-
gonal matrix.

Lemma 7. For the diagonal and off-diagonal parts of RP(x.A),
A - the following representations hold: .

RLayh =1(Ay 07" &« [4,P), A (18)
~ i"“ = K
Rg(x,.\)aA =iP- f dy[q(y),,(}\t -A) 1:A *[q,P]}'d . (i9)
b 4

The same is true also for A€ R if one puts RP(x.h)=-%(R;—R-P)(X.A)-
Proof. Applying the contour iategration method to the integ-
ral I= (21'ri)—1 qi.ydu(u-,\)l"l Rp(zp) we obtain an expansion for

f . .
R,(x,A) over the system W, (or W_), which coincides with the
expansion for the r.h.s. of (18), see /8/ Relation (19) follows
from (18}, (i7) and from lim+RP(x.,\)=iP.

I Tou

The analyticity properties of RgxA) enable one to expand
the r.h.s. of (18) and (19) in Taylor series, e.g., in powers
of A~1.Thus we obtain compact expressions for the coefficients

k)
R
RP(x,A)-A" =k§1n(:) (x))\—k +iP, (20)

through @(X) and the operators As.

Now let us show, that RgxA) may be considered as a generat-
‘ing functional of the M-operators, taking part in the Lax re-
presentation

1AL, =[A(L-2), M] 21
for the NLEE, related to (1).

Theorem 5. If we choose M({x,A) in the form

N () N-k n
My=2 Rp @A , Fa 3 ¢ o (22)
k=0 83=0



(s) . . .
where €5 =31j Bjs’ then the Lax equation (21} is.satis-

fied identically w.r. to A and is equivalent to the NLEE
A % q + AyA+ [ q,Fl=0. : | (23)

The corresponding time dependence of the scattering data of
(1} is given by

8 _ (o) S(uDT. F = AVF . N (28)

’ k f
Proof. Rote that from (17) and (20) there follows R(P+l2x)=

Kt .
= ;\iR(ll;)r (%) and “i'Ed; R(Il:)d X+ [q,R(P) d=0. Now insert (23)
and (1) in the r.h.s. of (21). This immediately gives ['A(L~A) Myl=

N+1 . . '
=[:A,R(F )]. At last using the compact expression for R(;Hm

which follows from (18) and (20) we obtain the equivalence of
(21) and (23). The equivalence of (23) and (24) has been pro—
ved earlier (see /6-3/),.

k .
Theorem 6. The quantities R,H(k)(x,,\) with n® _ b3 e(s ) satis—
5=

fy the relations =1
InA~ _(A), ImA>0
] n-k
Y (& ) o (k s
TaxuR g, -0 8- L%y, 0= ¢ 1/2mA7, 787, Iz

—lnA;()\), Imx <0
(25)

where A;(,\)(A‘;()\)) is the upper (lower) principal minor of $()
of order k. Besides, if q{xt) is a solution of any NLEE of the
type (23), then -dc%.n“‘)(,\)go. .

Proof. Let us use eq. (1) and the following from (1) equa-

tions for $ -4y T (x2) and ¥ix, A). This shows that the 1.h.s.
of (25) is equal to tr(-ixfy*0®,. 0™ ax)1® | 1o prove (25)
X =5 =—po

it is enough to use the zisympt:otics (4) of x¥% for x» +o and the
relations between $% » T- and 8(A) (for details see/8,1/ ),
The fact that .éit_D(k)(A) =0 follows readily from (24).

Remark 4. The general form of the M-operators and the con-
servation laws of the NLEE has been obtained earlier in/5/ by
studying rhe formal expression for the resolvent of (1). A re-
current procedure for the comstruction of M has been propesed
in/2/ based on the fact, that M satisfies eq.(17) withiAq,



in the r.h.s. (insert (1) into (21)). The considerations given
above in constructing M and the comservation laws show the
equlvalence of both Jpproaches. The same conclusion has been

obtained in/1% and /18

by different methods.
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