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The existence of both the wea.kf1/ and strong 12/ coupling regime 

in SU(N) lattice gauge theories has become a well-known fact. They 

are clearly distinguished by the corresponding branches of the 

~-function, and the continuous transition between these regimes 13/ 

seems to take place over a narrow interval in g. Interesting pheno­

mena seem to happen in the transition region / 4/, but the typical 

relevant field configurations are not yet identified sufficiently. 

Within the continuum Yang-Mills theory so far the only mech­

anism to provide a breakdown of perturbative behaviour of the ~-func­

tion, still at small coupling, is the instanton mechanism, proposed 

by Callan, Dashen and Gross (CDG) /5/. There are however some ingre­

dients in their analysis which look foreign to the usual field theory 

formlllation: the "instanton medium 11 and the "vacuum permeability" }A~ 

are used for renormalizing multiplicatively the fields as well as 

the coupling constant in the following form 

u• 
g,..~(a) =JA-(S',)9'faJ, g'(q) ~ b.f.t(i/aA) , b•s 11Nh, (1) 

fc: represents the usual infrared cutoff for the instanton scale 9 , 

whereas a is the lattice constant of an effective lattice gauge the• 

ory with a coupling gren(a). In order to obtain the latter by con­

strained ftmctional. integration, CDG argued for setting a~ Cfc' the 

only length scale in the game. Apart from the lack of a proof for 

this, it is not clear in what respect eq.(1) reflects correctly re­

normalization group properties as· known from perturbation theory. 

This holds also for other definitionS of a rwnning coupling constant 

with inclusion of instanton effects, e.g.,in Ref./6/. 

In this paper we propose another, more conventional way to esti­

mate the instanton contributions to the ~-function by considering 

leading radiative as well as semiclassical corrections to the gluon 

two- and three-point functions of pure Yang-Mills theory. We define 

the connected Green fllnctions with inclusion of instanton sectors 

via the generating functional W?J) which can be written within the 

dilute gas approximation (DGA) 7/_ without any account of instanton 

interactions and up to corrections of ordar O(g~) - as follows /S/ 
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( 2) 

where W (J) is the generating functional corresponding to the usual 0 inat perturbation theory and D(A ) and D0 are the gluon propagators in 
the one-instanton and A=O background, respectively. Therefore,in the 
leading order in g0 , the nonperturbative sectors contribute to the 
two- and three-point functions only the classical fields 
Ain.st,.,0(1/g

0
), weighted by the inatanton amplitude d(y), given in 

one-loop approximation /9,7/ 

Xo= (3) 

Here g
0 

is understood as the WU'Bnormalized coupling con'stant; then 
M plays the role of a regularization mass parameter according to the 
Pauli-Villars method used by ;t Hoeft /9/. The exponential cutoff 
corresponds to a hard core enforcement of diluteness invented in 
Ref./10/, with A(9) = aN/y 2 and ~ = (bN-4)/2. y is the average 
size of inatantons being in one-to-one correspondence with the di­
luteness parameter a' which controls the smallness of interactions 
between two (anti)inatantons, a 1 < /y1-y2J 4/ '? ~ ~ ~· This parameter is 
estimated in Ref./10/ from the positivity of the action as a'~ 0(100). 
Using the Fourier transform of the singular gauge instanton 

± ~Q - h 
R0 (1c.) • 4t'i R ~ ~ r <·r• ,... 
n ,. l • !i. (1- 'L' ~<.N )1 ,.a. .z fj 

(4) 

( R«.Q- adjoint representation of SU(N), 1- the 't Hoeft tensor /9/) 
we find the unrenormalized, ~amputated three-point function taken at 
the symmetric point kikl: -k2(1-30il)/2 (in Landau gauge) 

(jj;:;•• (k,,k,,O.)i •i(Zu)~8~(~R;)[~~ ~~N x;'f..~ ~ 
' 1 •fl o.p. T'Cw 2N•2 -•• (M)bH ( • 1 4 + N'('Ni:1j x. e ;;: 1• o(g. )) 'ii• • ( 5) 

• g. r····· f Of</'· (~.-lo+·. c~d.} ~ ~kk ·lc ...... 
We have denoted 

""-• ( ' 4) I.,(t.!) = [ ~ y'b••"' F3(9')e<p(-aH :g) 
and took into account the divergent contributions from the perturba-
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tive one-loop corrections. In the same way one proceeds to calculate 

the leading instanton contribution to the gluon propagator. To renor­

malize the Green functions one could choose a minimal subtraction 

procedure by defining Z-fact'ors that contain only the perturbative 

logarithmic divergence. Via coupling constant renormalization the 

instanton contribution became well-defined then; however, the corres­

ponding f3 -function would be identical with the usual, perturbs ti ve 

one-loop result 1111. We choose to apply a momentum subtraction pre­

scription, which is related to the minimal one by a finite renorma­

lization. We demand the renormalized three-gluon vertex to exhibit 

the zeroth order vertex structure, with the bare coupling constant 

replaced by the renormalized one at some subtraction point k2 =r 2 • 

Analogously we deal with the gluon propagator. Then e~.(5) serves to 

identify the Z-factor combination z§z11 with instanton contribution. 

The knowledge of z3 from the propagator (glu.on wave function) renor­

malization leads finally to 

'!, -1( M -) 
~3 i', f. f'~ : 1 + .'!.. x;' ~. ~ + ~ (q."J • 

:1, ,. 

+ ;'CN ttJ+• -<. ("'JbN T ( -)(1+Q(q')) 
N(N'-1) x. e -;: -. f~ • 

which renormalizes the coupling constant as gren = z5l2z11 g0• 

(6) 

The instanton contribution to z3 does not explicitly appear in e~.{6), 

since it is suppressed by O(g~). We obtain the fo-function from 

(3 C ~·l".l_ ~ 'i ~ -1 
G - ~ ~~ { 1 + ~~~'V'~ + ~-'~ xv/~·'e -•i") X 

'"f > 1 ~ 81i" N(N'-1) (7) 

• ( I~(f~)- Z a0 I,lr~) fb•<rsf) (~+O(~'(fl)) j 

where the one-loop running coupling constant 

•(rJ • Sn' 5 Xo- b fnl!_ a b en~ 
9fJ'J• N }' N A 

has been used in order to eliminate x0, and we represent f3 para­

metrically as gren = gren(g(j-'),~A), (3={3(g(/" ),!fA). Here j(a')J\ 

appears as a free parameter bounded only by the above-mentioned di­

luteness criterion. In orde~ to compare with Euclidean lattice cal­

culations we have to choose a corresponding regularization scheme 

which is tantamount to a change of the. A parameter and the overall 

constant eN: Awf ALatt: 31.3 / 12/, ci'!cJ;"tt: (i\pvfALatt)-bN. 

For some vallle s of a' we have plotted the resu.l ting {3 -function in 

the Figure. Still tolerable seems to be the curve a'=114, whereac 

a' = 30 is already in a region where the DGA cannot be trusted any-
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SU(J) gauge theory }9 -function with instanton 
contributions,according to 
(I) momentum spaee subtrac­
tion (described in this work) 
for different degrees of 
diluteness: (a) a'=)O, 
~ALatt =.0055, (b) a'~ 
=1~4,~ALcet:--=•0048, (c) 
a•=691.,i'AL.,t.•=·0040, (II) 
cna/5/ renormalization 
(eq.(1)) with a=~(a•)/10/ 
(without instanton interac­
tions),.~ Curve III shows 
a Pade extrapolation of tne 
Euclidean §t~ong coupling 
expansion/2/. The dashed 
curves show the leading 
terms of the strong and 
weak coupling expansions, 
respectively. 
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more / 10/.,There are two ·salient feat~es visible: the departure from 
the perturbative fo -function happens at g ~o.g almost independently 
of the diluteness, and the slope fits well with PadS extrapolated 
strong coupl~ng result 121. 

The renormalization scheme chosen here is conceptionally very far 
from the cDG /5( proced~e, the result of which is shown for compari­
son, too. According to eq.(1), diluteness changes while one approaches 
the strong coupling branch of the ~ -function. Nevertheless, the in~ 
stanton gas is dilute enough to upset any' hOpe that instanton inter­
action might lead to a smooth bend-over into the strong coupling re­
gime. In ou.r earlier papers 1101 we have pointed oUt that a ·croSs­
over is inevitable within the CDG coupling constant renormalization 
prescription. Rather we have used this in order to determine there 
the maximal space-time packing fraction f!:!: .01 of the dilute instan­
ton gas, relying on another mechanism which should suddenly take over. 
In the present formulation however, there is no cross-over at all, 
and a reasonably dilute gas does well over the whole intermediate 
coupling region. It remains to be investigated whether account of in­
stanton interactions and higher order (in g 2) terms will spoil this 
nice picture. 

We are indebted to Prof. D.V, Shirkov and A.A.Vladimirov for help­
ful remarks and acknowledge discussions with v.V.Beloku.rov, B.Geyer 
and E.Wieczorek. 
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Note added in proof: 

After completion of this paper we, received the Tohoku University 
preprint TU/80/212 by M.Honda "Vacuum Stability of QCD and Constraint 
on f3 -Function 11 where a bound for the rise of - fJ/g is derived. The 
result obtained in the present letter {curves I) fulfils this bound 
while curve II does not. 
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