


The existence of both the weak/1/ and strong /2/ coupling regime
in SU(F) lattice gauge theories has become a well-known fact. They
gre cleariy distinguished by the corresponding branchee of the /37
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seems to take place over a narrow interval in g. Interesting pheno-

F}-function, and the continwous transition between these regimes

mena seem to happen in the transition region 4 , but the typical
relevant field configurstions are not yet identified sufficiently.

Within the continuum Yang-Mills theory so far the only mech-
anism to provide & breakdown of perturbative behaviour of the ﬁ-func-
tion, still at small coupling, is the instanton mechanism, rroposed
by Callen, Dashen and Gross {CDG) 5/, There sre however some ingre-
dients in their anslysis which look foreign to the ususl field theoxy
formulation: the "instanton medium" and the "vacuum permeability"}gwm
ere used for rencrmelizing multiplicatively the fields as well as

the coupling constant in the following form
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Gran (@) = Poocl) 9@, g’a) = 3:7;74/—0,() , b= MN/3, (1)
§. represents the usual infrared cutoff for the instenton scale ¢ ,
whereas @ is the lattice constant of an effective lattlice gauge the-
ory with a coupling greéa).ln order to obtain the latter by cone-
atrained functional integration, CDG argued for setting a==9k, the
only length scale in the game. Apart from the lack of a proof for
this, it is not clear in what respect eq.(1) reflects correctly re-
normalization group properties as known from perturbation theory. '
This holde alsc for other definitiond of a running coupling constant
with inclusion of instanton effects, e.g.,in Ref./6/.

In this paper we propose another, more conventlional wey to agti-
mate the instanton contributions to the ﬁ?-functicn by considering
leading radiative as well as semiclassical correctlons to the gluon
two- and three-point functions of pure fang-Milla theory. We define
the connected Green functions with incliusion of instanton ssctors
via the genersting functionel W(J) which can be written within the
dilute gas approximation {Dca) /T - without any account of inatanton
interactions and up to corrections of ordar O(gg) - as follows



W3 =Wo(3) + 2 fd*gj%ifdre d(g) =
x [e_snlhsl} e éfgw(niﬂ.ﬁ”_‘bo)}(4+o(gg)) - 'i] ) (2)

where WO(J) is the generating functional corresponding to the usual
perturbation theory and D(AiDSt) and Do are the gluon propagators in
the cone-instanton and A=0 background, respectively, Therefore,in the
leading order in 8ot the nonpsrturbative sectors contribute to the
two- and three-point functions only the classical fields

ainst,, 0(1/6,), weighted by the instenton amplitude a(g), given in
one~-loop approximation 97
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Here £, is understood as the unrenormalized coupling con‘sta.nt; then
M plays the role of a regularization mass parameter according to the
Pauli-Villars method used by 't Hooft 9 + The exponential cutoff
corresponda 6 a hard core enforcement of diluteness invented in
Ret./10/, with A(3) = ay/% 2 and ay = (by-4)/2. § is the everage
size of instantons being in one-to-one correspondence with the di-
luteness parameter a' which controls the smallness of interactions
between two (anti)inatantons, at< Iy1-y2|4/912?g. This parameter is
estimated in Ref./10/ from the positivity of the action as a! > 0(100}),
Using the Fouriler tranaform of the singulear garge instanton
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Flg')= f"z- (4— % Ky{e')

: *
{ R . adjoint representation of SU{N}, M - the 't Hooft tensor /9/)
we find the unrenormslized, cnanputated three-point function taken at
the symmetric peint kikj = —k2(1—3 €ij }/2 (in Lendauw gauge)

G;,:&;Z (k)] = 009805 k) [ar S0 x50 00
TRy 2Ne2 ox, ;M1 b .
+N(N3.i:) Xo *, e X (_E) N (,“. 0(9;))] -i;-‘ x (5)

x g .Faqqlaj {6}““}.1&1-}“_) gt cgc(.} + kRk -leems

We have denoted 50
_ ' RT3
To(k3) = [4E ¢ pyg)enn(-a, (L)

and took into account the divergent contributions from the perturba-



tive one-loop correctioné. In the same way one proceeds to calculate
the leading instanton contribution to the gluon propagator. To renor-
melize the Green  functions one could choose a minimal subtraction
procedurs by defining Z-factors that contain only the pertarbative
logarithmic divergence, Via coupling constant renormalization the
instanton contribution became well-defined then; however, the corres-
ponding f%—functlon would be identical with the usual, perturbative
one-100p result . We choose %o apply a momentum subtraction pre-
scription, which is related to the minimal one by a £inite renorma-
lization, We demand the renormalized three—giuon vertex to exhibit
the zeroth order vertex structure, with the bare coupling constant
replaced by the renormalized one at some subtraction poin%t k fl
Anslogously we deal with the gluon propagator. Then eq.{5) serves io
identify the Z-factor combination Z%Z; with instanton contribution.
The knowledge of 23 from the propagator {gluon wave function) rencr-
malization leads finelly %o

g:é:gq"'(}i.: r/;g)z 4+ %N Xo ' En; + 6(q,
-—1 '3 - b, - i
iy CN xZPJ ze Xg [_:..) N Ez(/‘g)(4+0(qi)) (6)

N (w1
which renormalizes the coupling constant as &, = Zg/2Z?1 Bqe
The instanton conbribution to Z, does not explicitly appear in eq.(6),

since it is suppressed by D(gz) We obtain the ﬁ—function from
: 34 - (p) R M43 _x
_/sag,y(;j‘ 33"2,""' ~..9__£ {1+o(g‘rp)+ Wl ) e ()
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where the one-loop running coupling constant
s Xo - M )
x()‘) g(F}; 5 Xo = by e“'u_ s bN n y
has been used in order to eliminate Xg and we represent S para-
metricelly 88 Epon = Bpen(8(M)iEA)s B=F(8(x ),3A). Here F(a')A
appears as a free parameter bounded only by the above-mentioned di=-
luteness criterion. In order to compare with Zuclidean lattice cal-
culations we heve to chooge a corresponding regularization scheme
which ie tantamcunt te a change 05 ;?e A parameter and the overall
. _ 1 PV, Latt ~b
constant Cyt Apy/ Apppy = 313 v Oy /Oy = (j\EW//\Iﬂ¢t) X,
For some values of a' we have plotted the resulting i ~fonetion in
the Pigure. 5till tolerable seems to be the curve =a'=114, whereas
a' = 30 ig already in = region whers the DGA cannct be trusted any-
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contributions,accordi to

(I) momentum speee subfrac— 20

tion (Gescribed in this work)

for different degrees of )

diluteness: (a) a'=30,

FAp, 4y =+0055, () a'= 15

=114’§ALatﬁ='0048’ (C)

872691350, o =<0040, (I1)

CDG/5/ renormalizetion
(eq. (1)) with a=§ (a')/10/
(without instanton interac-
tions), Curve III shows -
a P%ge extr:polation of the 5§
Euclidean gtro coupling
expansion/2/., %ﬁe dashégs
curves show the leading
- terms of the sirong and
weak coupling expansions,
respectively.
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more /10/.‘There are two -salient featurss visible: the departure from
the perturbative B -function happens at g%0,9 glmost independently
of the diluteness, and the slops fits well with Padé’axtrapolated
girong coupling result 2 .

The renormalization scheme chosen here is conceptionally very far
from the CLG 5, procedure, the result of which is shown for compari-
son, too. According to eq.(1), dilutenéss changes while one approaches
the strong coupling branch of the 3 -function. Nevertheless, the in-
stanton gas is dilute enough Yo upset any hope that instanton inter—
action might lead to a smooth bend-over into the strong coupling rew
gime. In our earlier papers 710/ e have pointed out that a crogse
over is inevitable within the CDG coupling constant renormalization
preseription, Rather we have used this in order to determine there
the maximal space-time packing fraction £2.,01 of the dilute instan-
ton gas, relying on another mechsnism which should suddenly take over,
In the present formulation however, there is no cross-over at all,
and a reasonably dilute ges does well ever the whole intermediate
coupling region. It remains to be investigated whether sccount of in-
stanton interactions and higher order (in g2) terms will spoil this
nice picture,

We sre indsbbed to Prof. D,V, Shirkov and A.A.Vladimirov for hel p-
ful remarks and acknowledge discussions with V.V.Belokurov, B,Geyer
and E.Wieczorek,



Note added in proof:

After completion of this paper we received the Tohoku University
preprint TU/80/212 by M.Honda “Vacuum Stability of QCD and Constraint
on ﬁ ~Function" where a bound for the rise of ~ ﬁ/g is derived. The
result obtained in the present letter {curves I) fulfils this bound
while curve II does not.
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