


1. THE EIGENSTATE METHOD

The notion of elastic diffractive scattering due to presen~
ce of inelastic channels has come into quantum mechanics £rom
optics. In the works by Feinberg and Pomeranchuk’!’ it has
been demonstrated for the first time that analogous diffrac-
tive mechanism leads to the characteristic phenomena of dif-
fractive dissociation. These ideas have been further develo—
ped by Good and Walker’%/.

The operator of the scattering matrix has nondiagonal form
in the basis of hadronic states because real hadrons can be
transformed via scattering to new states. In the Glauber—
Sitenko approximatioufa/ the nondiagonal transitioms are neg~
lected. These contributions correspond to the production of
inelastic intermediate states in the multiple rescattering
of hadrons in the aucleus’?. The inelastic screening reduces
the total hadron-nucleus cross section by approximately 107
for heavy nuclei’aaf- On the contrary, in the process of
diffractive dissociation of hadrons on nuclei inelastic scre-
ening enlarges the value of the cross section’?’. This effect
which is left out of comsideration in the generally accepted
procedure of the analysis of experimental data leads to a
paradoxial conclusion about the abnormally small interactiom
cross section of an unstable system with nucleons.

Considering the diffraction processes it is convenient to
use the basis of the scattering amplitude eigenstates denoted
by |k>, where k labels the states. The physical hadron states
ta> can be expanded in this basis

ia>=§c§‘{k>. : ‘ (1

Index 2- int la,k> denotes those gquantum numbers of the hadron
which do not depend on the interaction with the target, defi-
ned by the index k:

fla,k> = 1 la,k>. (2)

Here and below the diffractive amplitude is assumed to be
imaginary and its imaginary part is denoted by f. The basis
of physical states!a> is orthonormal but the states |a.k>
which are mutually orthogonal over index k, are not orthogonal
in index a:
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<B, tia, k> =8kEB£ . . {3)
The matrix element BY is equal to unity. The following rela—
tions are valid for the matrix By :

a *p2B _ )
2B -0, | )

24 T [/

e )= Bl cf =5 ,BY. ; (5)
From relations (1)-(5) it follows that diffractive amplitude
for the -transition «+8 has the following form:

faﬁ=<ﬁ{fla>=§, C: (Cf)*B:Bfk, S , (6)
This representation of the diffraction amplitude is particular-
'ly convenient for the investigation of the hadron-nucleus
processes. Indeed, the time o6f mixing of states with diffe-—
rent values of index kK, which has the order of inverse hadro-
nic mass in a hadron rest system, undergoes Lorentz dilatati-
on in the laboratory system and has a large value of t~ E/m%
If hadron energy E is so high that the fluctuation time is
much higher than the dimension of the nucleus that is-E/m2>>RA
than expansion (1) can be ‘accepted as a stationary one. The
interaction amplitude f, of the nucleus - (k> state can be
caleculated in Glaubér approximation which in this case is
exact since the |k> sgtate is subjected only to the elastic
rescattering. This calculational method is equivalent to ta-
king into account all the inelastic contribution to the
Glauber-amplitude due to the condition of completeness in

(5}. '
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2. THE PARTON. MODEL

The eigenstate method seems to be farticularly useful in
the frameworkof the parton model’87.? which gives a clear
space-time interpretation of the interaction.

In the parton model we assume for the incoming relativis-—
tic hadron the existence of a parton wave function that is
of "prepared' parton fluctuations of some weights. All of
these fluctuations have a definite number of partons distri-
buted in longitudinal and transversal momentum. In the momen-—
tum region p, <i®R, where R is the longitudinal size of the
target, the parton number has fluctuation during the interac-
tion time and it has indefinite value. All of these wee par-—
tons have a cloud of slower partons whose number changes during
the interaction and these partons determine the effective
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cross section of wee parton interaetion with.the target. Ge-—
nerally this cross section depends on R but this dependence
is slow-logarithmic, so below we meglect it.. - . .

Since only wee partons interact with the target, their
number determines the measure of amplitude fy and so it camn
play the role of index k/8-19/ Note that a state without wee
partons (k =0) can be accepted as a passive one since fy =0.

Let us discuss the following question: what is the analogue
of the inelastic correctioms, decreasimg the hadron-nucleus
total éross sectiom, in terms of the parton model. In the
frame where the nucleus collides with the rest hadron the
nucleus suffers Lorentz contraction and the longitudinal over-—
lapping of parton clouds from different nucleons leads. to the
junction of parton clouds’ 19/ and therefore to the decrease
of the number of wee partons in the nuclei and thus to the
drop of the interactiom cross section. Turning from the par—
ton model to the Reggeon graphs it is easy to find immediately
that the junction of parton ladders directly correspends to
the inelastic contributions. ‘ . . )

The interpretation is entirely different in lab. frame as
the partons of different nucleons are separated in space. If
one applies the optical approximation for amplitude [y ir ex-
pression (6) .

- - = . N

(D @y = 1~ e} - T, S )

where

EY oo -

T(H) = f dzp, (2,5 )
is the profile function of the nucleus at given b one can use
the unequality. : . : ’ :

<omp [ VT > expl-<t > T, o - (8)
where

<ty = X 1t %ty .

The right side of expression (8) corresponds to the Glauber
approximation, It can be seen from (7) and (8) that the am—

plitude (6) is smaller than that given by the Glauber-Siten-—
ko approximatioen.

3, THE CONSTITUENT QUARKS. THE TWO COMPONENT
APPROXTMATION

In the cohstituent quark model a hadromn is considered as
an entity of two or three valence quarks (valons) which de—
termine the quantum numbers of hadron and each valon has a



cloud of sea partons. The wee sea partons interact with the
target and this corresponds to the pomeron comtribution. In
addition, the valon, emitting sea partons, can slow down

and interact with the target. The probability of finding a
valon among the wee partons decreases with energy like a
power function. These contributions to the scattering ampli-
tude correspond to secondary reggeons. Later they will be
discussed but now they are neglected.

Since the parton wave function can be ascribed to the con~—
stituent quark, expansion (1) can be carried out for the con-
stituent quarks’%®/. Tt is convenient here to introduce an
approximation neglecting the difference between the amplitude
fy in the active component of the constituent quark that is
for k> 1.1If one requires the equality of all amplitudes with
k> O then in accordance with completeness relation (4) the
inelastic diffraction amplitude {6) turns to zero. It seems.
natural that there is an utmost difference between the £,
scattering amplitude in a passive state and amplitudes f, with
k21. So the above intreduced two-component approximation
is reasonable for constituent quarks. '

Note that at asymptotic energies the two component appro-
ximation becomes exact as the relative weight of the active
state tends to a constant value’! apd the density distribu-
tion of wee partons in the impact parameter plane has a homo-
geneus parton density py inside a disc of radius R:

" -

p(B = py 8(RZ-0%),
where (¥ is a step function.

From the analysis of experimental data it will be argued
later that the interaction amplitude of two constituent quarks
at emergies presently avaible at accelerators mow is close to
the asymptotical behaviour. Here we describe some simple asymp-
totic relations. . .

.For the weight of the active gomponent of hadron &« we adopt
notation introduced in/1V: B, =2 [Cg1%. Then on taking into

account (8) the amplitude of interaction of two quarks with
one of them in the rest frame is as follows

£(b) = Py Fo 8IRE(V) - 2], (9)

Here R® depends on the rapidity Y =1In(s/s)), F is the am-
plitude of the wee parton-target interaction which does not
depend on b when b< R(y).Comparing (9) with the expression
of the ¢.m. amplitude:

() =~ POL4RE (Y/2) - B2



we obtain that R(Y)=2R(¥/2, that is R is a linear fumctiomn
of Y. Besides one gets that Fy=P <l It is natural that the
disc of wee partons is mot black. If the mutual screening of
partons has a Glauber form, then:

Fg=1-¢ ', (10)
where ¢ is a wee parton-rest quark cross section. Due to the
junction process of partons the quantity p, has a limited va-
lue, so Fy< 1, This can be regarded as an argument for the
existence of passive component of the quark. Now we consider
the constituent quark-nucleus interaction, The partial quark-
nucleus scattering amplitude in optical approximation has the
following form/5.8/.

N cr(tot >

foa® = B, 11 - emic —Pi‘:—T(b))l. (1
Here ogﬁ,qu is a total active quark-nucleon cross section.
Tt is interesting that for infinitely large nucleus, that is
for T(b) + =, the nucleus does not become black and qu(m'tends
to the value =P .The same result can be easily obtained in
the system where a nucleus collides with the rest quark. As
the clouds of wee partoms of the nucleus quarks which are
distributed only by longitudinal coordinate are overlapped
and junctioned, a balance is formed with the parton density
py as in the case of omne quark. Therefore the quark-target
amplitude is equal to Py .

4. THE AMPLITUDE OF HADRON-NUCLEUS ELASTIC
SCATTERING

Let us consider the nucleon-nucleus and pion-nucleus scat-
tering, As long as we take into account the vacuum pole com~
tribution only, the difference in the interactions of u and
d quarks and antiquarks, denoted below by symbeol 4, can be
neglected. The strange quark scattering will be discussed
separately.

Partial amplitude of the hadromn—nucleus elastic scattering
where hadron h contains k comstituent quarks and the mass
number of nucleus is A has the following form:

- k g A o> 2 - >
. . . b, — b} x
SRCENR I FLEOL b

t (12)
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k-1 qN > :

% 2 CE q(1 Py) 1= mlzlnlil 1 P (b rn)ll

Hete b= bh-rA,where bh and rA_ are the coordlnates of cen-
ters masses of hadron and nqgleus, respectlvely, ; and 7|
are the coordinates in the b-plane of quarks in the hadpgn
h and of nucleons in the nucleus, respectlvely, Ph(bi’ Dby
is the quark distribution function in hadron h, which is nor-
malized by the follow1§g COHdlth?

2+
fph (bl paiay k)a (ﬂi-lzlbl—bN)]"u‘]!]l d bi = 1 . (13)

Nucleon distribution function in the nucleus pA& ,?A)
. is normalized in the same manner.

The sum over [ runs through a different combination of
quark numbers having the quarks in active and passive states.
th(b —rn) Py 1is the interaction amplitude of the m-th
quark in the actlve state with the n-th nucleon of nucleus.

It is easy to see that if Py =1 then expression (12) chan—
ges to a common Glauber like formula of the nucleus—nucleus
scattering but its form does not agree with the Glauber am—
plitude for hadron-nucleus scattering since the introduction
of the quark structure of hadron takes already into account
a part of inelastic corrections (the PPR type terms).

For the sake of simplicity we accept the usual factoriza-
tion assumption of nuclear density

PA(TY seaty) = H pa(y =7 4). (14)
If one assumes that pA(T )has a Gaussian form that is
A(f:-TA) = pa (0) exp[- &A-—f ) fRA] then the 8~fune-

tion in (12), taking into account the nucleus center of mass
thlOﬂ, can be substituted in the amplitude FhA(a)(ln the
q —momentum transfer—representatlon) by the factor

K@ = exp(a” RA/4A). (15)

This factor does not give contribution to the totdl cross
section and should be taken into account in the calculation
of differential cross section only Note that the Gaussian
form of pA(r ) for heavy nuclei is unrealistic but in this
case the correction due to the nucleus center of mass motion
is small so this approximation does not gilve an observable
error. In further calculatlons we use the Woods-Saxon paramet-—
rization for p,{r; in heavy nucleus,

Taklng into account (14) one- performs 1ntegrat10n over
g in (12), and obtains
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| S : -+ -
by, (D) = f!l'lid b, 8" (_;—5 by =B y)on By s Dy) X
K k .'_’ - .
x. 2 C E (1 P ) 31—.EfdfPA(T——TAr) x )
=0 , - (16)
;i . W :
« 1 (l—fN(b _r)/Pqn-;.

For further transformation of this. expre551on we assume
that p (b b ) have a faetorized form (13), too,: and the -
pr (D) 51ng1e partlcle density has a Gaussian- distribitien’
with root mean square Rt21 We assume as well Gaussian depen-—
dence on % for the quark-nucleon scattering amplitude:

qN (b) =T qN () exp(— /RqN)

Further transformations of expression (16) are presented in
the Appendix.

The final formula for the calculatlon of the partial am~
plltude of the 7—A scattering has the following form:

(1 @ >
{ (D) = 2P, (1-P F, )(b) WL a . | (17)
where
1 TN SoA -
R R e L : (18)
2P, _
and ‘
tot tot 42 oy TN '
{2) - 1-{1- i@...l (;))L +(Uq) oLy }A . (19)
P 1 P3  320(RZ +RZ)

q
Bere oqN is the total cross sectlon of the quark—nucleon
interaction; -
2 2'

» -R N n - . .
1, (0 - 2_1_ fe O pA(RTg (kb kak, (20
T .
Jo (% is the zero order Bessel functiom,
pA(k)— je (b)d Y x : (21)
is the single partlcle form factor of the nucleus, while
PA(O) =1. S
The pion size is taken into account by factors .
LT;N:‘em('_R”:/RA) s : I(ZZ)
(23}

2,pR
L;Naembﬂﬂfﬁﬁ).



In the two component approximation the constituent strange
quark s is different from y and d quarks only in the weight
of the active component P_.The cross section of the interac-
tion in the active state does mot depend on the sort of the

quark: v’ /P smo;gt /Py . Therefore the K - meson-nucleus
scattering amplitude has the form:

ha® =@+ P, 2P POFD D 4 b P, RO G (24)

The quantities Fy (b and Fga(b) can be obtained from
(18) and (19) by substituting R?, by RE .
For the nucleon—nucleus scattering amplitude one obtains

2) .

I —+
fva (0= 3Py (1-B ° Ryl (B + 371~ PORT () +

3 _1(3)
+ Py F{;A(b).

(25)

S (t 2 . :
The quantities ngzg and qui can be obtained from (18) and

(19) by a change of RZ to Rﬁ? The quantity Fb?i has the form

tot (1o 1 (-l;)MNN
(€1 ing 3 “gN + NN %N 2 2
FaM=1-[1-~ % I, ()M, + 3 5T RE
Na 2 P 1 P3 327 (R + R5)
toty3 Toag NN
(C’QN ) Ly (DM A
387 2R (R REp®
Here 22 rRZ
-2 8 2 2 _2___1;_
R
MTNm e = FA MIZN= exp(~ -—N? -~ «-a;—),MgN= e RN

One can easily obtain the expression for the hyperon-nuc-
leus scattering amplitude (Y ~A,3)

fy, =12 (1P Y1-P)+P (1-P )21 F O -
YA q q 8 q NAY

2) 4 (3 2

_ (26)
+[PE(1-P)+ 2P P, (1-POIFR (@) + PEP,FA ).

Here we assume the same hyperon radius as for the nucleon.

5. GOMPARISON WITH EXPERIMENT

The formulae of the previous section for the hadron—nucleus
elastic scattering amplitude have two independent parameters:
F,.which is the weight of the active component of the consti-

10t : . "
tuent v or d quarks and TgN » which is the total cross gsecti-
on of the quark-nucleon interaction. The values of these pa-—
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rameters can be easily established using nucleon-nucleus cross
sections at high energies/1%. -

As total cross sections for sufficiently heavy nuclei -have
no energy dependence within the experimental errors at ener-
gies higher than 100 GeV we have used for the analysis:the
240 GeV /12/data.A Woods—Saxon form with parameters of work /1%
was chosen for the nuclear demsity function. The result of
analysis gives with xZ=1 per degree of freedom (see Table 1).

Table !
A 12 27 63 208
onl (fln®)  32.82%0.21 62.95+0.37 122.5+1.1  291.9+4.8
exp
oA (m?) 32,79 63.04 122.51 284,64
theor
orkem®) 29.23 56. 44 110.28 258.97
theor .
(Y=A,5)
Pq= 05 ot = 16mb. ' (27)

Formula (25) is different from the expression which was
used for the analysis of neutron-nucleus total cross sections
in work/6:1%. In these works the size of the nucleon compared
with the size of the nucleus has been neglected. The terms of
2nd  and 3nd order in factor a&‘&'y(R{?J.- quN) in expressions

(19) and (26) were also omitted. Numerically this gives a
10-207 difference in parameters Py and 0.

The analysis of K; —A total cross section data from re
gives for the weight of the active component of the strange
quark Pg= Pq /2.

Now we can predict the hyperom-nucleus cross section valu-
es. Using formula (26} and parameters Py, Py andacﬁ.{' we ob—
tain the values presented in Table 1. for the A and % hyperons.

f,/ 12/

Having the parameters (27) one can calculate the differen—
tial cross sections of elastic scattering. The results of
calculations are compared with the protom-nucleus data of
work/ 1%/ in Fig. 1. In the calculation of the cross section
the Coulomb contribution is taken into account and the contri-
bution of the quasifree nuclear scattering is calculated in
accordance with formula/ 15/
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Fig.1. The proton-nucleus differential cross sections
for the 880y ang ®7ph (Fig.1a) 12C, Al (Fig. 1b) nuclei

at 175 GeV. The experimental points are taken from
work” 1%, The solid lines are calculated in the quark
. parton model, the dotted lines correspond to the usual
Glauber approximation. The Coulomb and the quasifree
nuclear scattering contributions are taken into ac-
r¢dunt,  see text,

daBIgA ’
NA/ae . . :
dog 7t = T Aot _ (28)

where

g Ol D) I
B =[d%b[e - e 1. (29)

Figures la, 1b contain also the results of the Glauber-Sitenko
calculation. For the nucleus 27Pb there is a strong differen-

ce between the results of the two methods, which is decreased

for smaller atomic number nuclei where the quasielastic back-

ground fills up the diffractional minima.

In work /28/the differential cross section of the elastic
p-*He scattering has been measured without quasielastic back-
ground., The calculations with and without inelastic shadowing
corrections presented in Figure 2 show the important role of
inelastic screening. It is true that in this case the agreement
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Fig.2. The proton - 4He diffe-
rential cross section at 200 GeV.
The experimental goints are
taken from work’ 1%.The solid
]ines are calculated in the
quark-parton model, the dotted
1ines correspond to the usual
Glauber approximation.

hetween the data and the calcu-
lation is not very good. This
can be explained by the oversi-
mplified form of the 4He wave
function of ref. /17

6. THE MIXTURE OF PARTON COMPO-
NENTS. THE ENERGY DEFPENDENCE

OF CROSS SECTIONS AND THE SHRIN-
KAGE OF DIFFRACTIVE CONE ON
NUCLEI

During transmission through
the nucleus the active state of
the incident quark can convert
into a passive one and vice ver=-
sa. The contributions of these
transitions, neglected above,
can lead to observable effects as
for instance energy dependence
and additional real part of the
elastic hadron—nucleus scatte=
ring/lsf_

Let us investigate for illustration two channel problem
with more rigid assumptions than earlier. We retain in expan-
sion (1) only two components 9i0> and |1> Then the equation,
describing the evolution of quark wave function during the

nucleus transmission, has the following form

s s

/ 18/

where the momentum operator is equal to
i 2
g+ 1Cq" Ag -CouCtAq
Q- (31)
2 .
_CgciAq q+1COL Agq - if '
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Here q is the quark momentum, f is the forward elastic quark-
nucleon amplitude which, as we suppose, for the sake of simp-
licity does not depend on the longitudinal coordinate z. The
mixture parameter Aqof states 0> and /1> has the order ,ua,f’E,
where uis some characteristic mass. The scattering amplitude
on the layer of nuclear matter with thickness u has the

form:

~iF(W)=1 -< Pour WY, @>, | (32)

vhere ¢ (W) and ¢, (u) are the solutions of equation
(30) and the incoming wave at point z=u, respectively. From
(30) and (32) we obtain /18/

~iF(=1 - exp (8 _iAq 2 )[ cos( Ay
iA P )
_—I..E_t:z.ﬂ_.i'sin(-f-\é‘i)].

3 2
Here Pq=}C-1T
A=[(AgQ)® -12 _ 21‘fA'q(2Pq —1)}"{2 ' {34)
At high energies Aq-0, the parameter A ig imaginary, A = if
and expression (33) coincides with formula (11). And vice
versa, at small energies, when the mixing is large, expres-

sion (33) can be expanded by the small parameter f /Ag and
for the imaginary part of amplitude F we obtain

~P fu P ¢(1_pP 1.2 =P 7
ImF(g)=1-e 9 ———q-{—-—gﬂ_).._e et x
(Ag)
© =(2P ~=1)u {35)

x{1-e a cos(Ag-u)j .

In limit f/Aq »0 only the first two terms, corresponding
to the Glauber-Sitenko approximation, are retained in this
expression. This can be expected as the complete mixing ta-
kes place at distances of internuclear order. The last term
of (35) is of interest too. In the investigated two-channel
case it coincides with formula of Kondratyuk and Karmanov
for the first inelastic correction /19/ Indeed, if, following
the approach of work /19{we assume that the quark and all the
products of the quark's diffraction dissociation have the
same interaction amplitude with nucleon, then Pq=21/2. The

factor exp(—F, {T) describes the absorption of particle
in the nucleus. The factor P A-P)I® in the two channel

approximation is equal to og4irr + The factor {1—oo's(Aqu)}é;(A\q),2
of expression (35) coincides with the factor 1/2| F(AQ)!® in

12



the formula of work /19/In the given case the 1ong1tud1nai
form factor of nucleus is equal to F(Aq)= fdzenﬂlbqﬂ

It can be ‘alsc seen from this comparls%n that the mixing
of different components of hadrom during transmission through
a nucleus is equivalent to the influence of the nuclear form
factor. This apparently leads to a decre351ng energy depen—
dence of the total hadron-nucleus cross sectien, :

it is worth while noting that if one consideres the mixing
process on a probability level /20/one finds that corrections
to asymptotic expression (11) decrease with energy as 1 /E.
Gur above analysis showed that the terms of the order of 1/E
in the amplitude have no imaginary part and only terms of
the order of O(1/E?) give a contribution teo the total cross
section.

The pass to the multi-channel problemfgi/makes important
alterations in the obtained results. The emergy dependence
of the mixing parameter Agq= y %E is due to the fact that we
have retained only two states with fixed masses. In the real
case when the energy is increased the nuclear form factor
provides opportunity for the production of higher and higher
masses in the intermediate state. In the parton model this
means that although the hadrom erergy is increased there are
always such components in the passive state for which the
gap in the rapidity scale, unoccupied by partons, does not
increase with energy. The existence of such a component leads
to the continucus "pump over" of norm from the active state
to the p3551ve one with the increase of emergy. It was shown
in work 721/ that this fact leads to relation between the
section of diffraction dissociation into high mass and the
logarithmic derivative of Ph over the rapidity:

d"di“ s Sogp-r i, AR (36)
dq dM M2 dqf a dln(Mz/so)

The derlvatlve dP /dn(s/sy ) is negative and turns to zero
at s-« in the pomeron theory with 1ntercept ap(@)>1. In the
energy region available now the derivative is small and has a
small energy dependence. This gives the explanation of the
smallness of the triple pomeron constant and of the approximate
Feymman scaling in the diffraction cross sectiom, observable
experimentaly. The scaling means that the diffractive produc-—
tion of states with a given longitudinal momentum transfer
Aq does not depend on energy. In such a case the corrections
on mixing would not depend on energy. But as the energy is
increased the scaling must be drastically broken due to ex-
pression (36) and formula for Fh(Q which has been found in
work/22/ in the parton cascade model '

13



. g lmap(®) -
P(s):Pm[I—(I_Pm)(%g 1. . 3N

It can be seen from (37) that the derivative of P, in (36)
decreases as power of the energy if emergy is large enough
In(s/s o)>> (a p (0)-1).

At energies avaible at accelerators the correction to the
parton states mixing does not become extinct, their aceount
can lead to the decrease of the total hadron-nucleus cross
sections. For example at the calculation of the first inelas~
tic correction the substitution do 4i¢ /AM2~ M™% leads to
a negative contribution increasing logarithmically with ener-
gy. The effect of mixing for all the inelastic corrections
can be simply found by the eigenstate method. Indeed, ac-

Table 2
A P, =0.5 P, =0.55 P =0.6
12 0.03 0.02 0
*7Al 0.02 0.01 -0,01
640y 0.01 ‘ 0 ' -0.01
207 p, 0 ~0.01 -0.02

cording to relation (36) it is emough to introduce an energy
dependence for P,in formula (11) as for example in (37). It
can be seen from (11) that the simultaneous decrease of P
with energy and the increase of o;°t lead to a decrease with
energy of the partial amplitude f ,(b) for large T(b) and to
an increase of fya(b) for small I(b). In Table 2 the values
of the logarithmic derivative dlnoﬁﬁ_/dhﬁs/so) at 200 GeV are
given via the value of Py.For the calculation we have used
expression {37).

Table 2 shows that the. energy dependence of‘the hadron-
nucleus total cross section is very sensitive to the value
of Py . The data/12/ show a possible decrease of the n— 207Py
and n~ *3BU cross sections with energy. Higher accuracy of
data is needed.

The other manifestation of energy dependence of o

tot
P is an additional shrinkage of the diffraction cone for nuc-
lei in comparison with the nucleon. This effect has been
first observed experimeptaly in the elastic p—d scattering /23/
and has been explained 2¢/by the increase of the inelastic

and
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corrections with energy. One can see however 'that already in:
the Glauber—-Sitenko approximation additional shrinkage of -
the diffraction cone on nuclei exists due to: the increase
of the hadron—nucleon total cross section. The energy depen—
dence of the inelastic corrections due to the decrease of P
with energy enhances the effect’ as can be seen from (11). As
it has been already noted, for sufficiently heavy nuclei the
partial amplitudefgyb) decreases with enérgy in the. center
of the nucleus.and increases with energy in the pheripherical
region. This leads to-a particularly rapid increase of the
interaction radius, i.e., large additionmal shrinkage of the
diffraction cone. The results are presented in Fig. 3 for
=1 min (E). : : . .

The results of the calculation of a’p(A) the effective -
slope of the Pomeron trajectory describing the shrinkage of

Fig.3.The motion of position of
the first diffraction minimum
for the p~*Heelastic scatte-
ring cross section with the
_incident energy. The expe-
rimental values are estimated
from the results of work /16/.
The theoretical curve is

-‘t‘.gmdml') g .

022

a2 . - L calculated in the quark-par-
f: v
w > W el ton model.
e
E
NG Fig.4 The dependence of the
] effective slope of the Po-
1+ meron trajectry on the mass
number A according to the
() Ll quark-parton medel.

[ |
i 5 W 50 00 A
the diffraction cone are shown in fig. 4. We have used the
formula
4 g1
dln(s /55) gaggf
Where the amplitudefis(m has been calculated using the for-
milae of the 4th section which takes into account the energy

a i (B r %821 M @)1, (38)
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dependence of q%f Py and Ri&.It is seen that' a ., (A) rapidly
increases with A. In this conmection we expect the higher va-
lue of @,y for NN scattering than for N and KN ,

7. THE REAL PART OF THE HADRON-NUCLEUS ELASTIC
SCATTERING AMPLITUDE

Although the quark-nucleon amplitude f was introduced as
a pure imaginary one the quark-nucleus amplitude (33) has
a real part. This xeal part has the following properties /18/,
it is negative, it has a maximum value which position depends
on the atomic number and the mixing parameter e, At p?=
=1 (GeV/c)? the maximum (minimum) has the position at a few
tens of GeV. At higher energies the ratic Kef M /Infh2& decreg—
ses ‘as 1/E.

It is clear that all of these results could be obtained
also in the basis of physical states if one sums all the
graphs. In such a method the origin of real part is parti-
cularly clear. Because inelagtic intermediate state ig produ~
ced with another mass, and, as a collary with another wave
number, there is a phase shift between the incoming and outgo-
ing waves which résults in a real part of the scattering am-
plitude. '

In the multichannel case the energy behaviour of the real
part is quite different. The expression for the real part of
scattering amplitude at angle 0° corresponding to the first
order inelastic correction can be written as follows;

2 BN p ot o
Refya 7 e 4% gigr o 2N T®
- = ome—— by . - " —
Imf tot 5 2 32-0
Mlia Tha dq} dM L (39)

+x -+ - #2
x [ 48,dl,n(b, €)p(h, £ sin( 1t 1~y ).

This formula can be obtained on the basis of the same assump-
tions as formula of Kondratyuk and Karmanov/19/ for the totail
cross section correction.

" It can be seen from (39) that if the Mz-dependence of the
inelastic diffraction cross section has the from dad”f/dH%=M“2
then the ratio Ref®®/ImfP* does not depend-on energy. As it
‘has been noted in the previous section the scaling behaviour
of 04i;r has an approximate character and with inecrease of
the energy and M? the cross section has a strong decrease
which leads to the decrease of the real part of the amplitude
with energy. Nevertheless in the wide energy region now avai-
lable at accelerators the triple Pomeron term in ogirr makes a
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negative, logarithmically increasing contribution to the to-
tal cross section and makes a constant negative contribution
to Refl®

Formula (39) can be written taking into account the
quark structure of hadron., In addition, the inelastic shadow—
ing significantly "enlights" the nucleus. Because the real
part has a small value it can be taken into account only
in the first order of approximation. On the basis of these
assumptions new expression can be obtained, for example, for
the NA scattering: -

2 qN
Refna __ 127 [#gam? %o die | [1-P + (40)
Imt ot 32 3 >8_ q
Na TNA _dq_LdM ay Y
tot 7 o
-0 o T(D)/2F g  += . .
+Pge ° 1° % [faL,dl,p(b, £ )p(b, £y ) x

. ;1.2
x sin( £ -0, 1)

NA . : .
We have calculated RefNa /Imf  using formula (39) and {40).
The diffraction dissociation cross section has been taken in

the following form:

5%{ If M2< 5 eV then/12/
a0 a2, Ny o
L o — g "2 3 . =26,472 35,972 +
m——— -
-003F | Q’J‘ aM qJ_—G
-0.051 3 4 5
3 18,47z° — 4142740,34z2 %1
B 11 I 2| where z=M?2 —(My+ m_ )f?
\___—____._-—-—'—'——_—— .
-004t
-aosk If M2>5 GeV® then /28/
-001F
-003?" —————— T -6301 )
mgsfxﬁ_,f—~‘““'"'—_—- Fig.5. The energy dependence of
the forward RefNA/ImfNA ratio
for the 1%C,27A1,%3Cy and 207 py
ST TSI TS nuclei. The solid lines are cal-
xp culated in the quark-parton mo-
-005 del {formula 40), the dotted
lines correspond to the calcu-
o1 1 L lations which neglect the nue-
0 0! 10° E [GeV] leon structure {expression 39).
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:;{f;ﬁ§—|€fﬁ0=, pep. (O /M + Gppp (O/M° , ] (42)
where Ugp(0)=3.4 mb/GeVg,GppR(o)=3.4_mb/GeV. NN

In formgla_(40) expressions (41) and (42) for 04igy have -
to be multiplied by the factor oM /oNN _ The results of cal-
culations are presented in Figure 5. It can be seen that the -
real part corresponding to formula (40) has higher: absolute
values than the calculated one using (39). This.can be explai-
ned by a significant enlightening effect caused by the inelas-
tic corrections. As can be expected, the importance of enligh-
tening strongly increases with the increase of atomic number,
see Fig, 5. .= o . A

It worthswhile noting that to the real part of the scatte—
ring amplitude calculated above one should add a part connec—
ted with the increase of the cross section with energy and
the contribution of the secondary Reggions.

8. SECONDARY REGGEONS

The problem of nuclear remormalization of secondary reg-
geons in this approach has been studied in ref./26/ in con-
nection with K ~regeneration on nuclei. The regeneration am—
plitude on nuclei can be well described by formula/26/:

.- _gt B —ot0t T (E .
ffs=(rLNs)w [ BT -P 4P, e N TPy ooy (*’/2, (43)
Here /27/ RN
N 8. a,,—1
(f ——=(Zmyp, ) . (44)

Ls'w o CUS(fmm/"Q)

BiN=IO.46 mb/GeV? -~ residue of the w- reggeon, a  =0,44 -
intercept of the w- trajectory, P, ~momentum of K-meson.
Formula (43) takes into account that the w exchange is
possible only for the u-quark, but the s—quark is coupled
only to the low lying ¢-— trajectory and thus s—quark is a
spectator. The change of phase offﬁS in comparison with fﬁg
is small and can be neglected. Note that the energy dependen-
ce of ‘expression (44) is quite sensitive to the logarithmic
derivative of By with respect to the rapidity which is deter—
mined infkﬁ/using experimental data and is found to be equal
to ~0.08 in a good agreement with the results of section 5
of the present work.
The real part of the n-A scattering amplitude contains
the f and p pole contributions. In the P -A scattering the { and
and o poles have a dominant role which contributions are equal
due to the approximate exchange degeneracy. So
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NA . NN 2w _tot g
Ret’R =.2Refw - fd bT(b:)exp(-'a.qN T(b)/2¥’qL )x"

(45)
[1~F +F en_:p(-&;({; T(b) /’2Pq')]? B
where .. :
gL sin(Z2%)
M w _‘2__ ' a, -1
RefllN = Y (2mN pL) ® . ' (46)

9. CONCLUSIONS

There has been proposed in refs 56/ a method of effective
accounting of all inelastic screening corrections — the eigen
state method. In the same refs. the concrete realization of
the method was proposed within the quark-parton model. The
two component approximation seems to be very convenient for
calculations. This approximation leads to simple formula
having two free parameters: the weight of the active component
of the constituent quark and the cross section of the quark—
aqucleon interaction which can be easily established by the
total hadron-nucleus cross section data. Other quantities,
the differential cross section of the hadron-nucleus elastic
scattering, the real part of the scattering amplitude, the

. triple pomeron constant, the Ky meson regeneration amplitude
on nuclei are calculated without free parameters in a good
agreement with the experimental data. So ome can say that
a quite convenient calculational scheme is proposed and rea-
lized which allows one to take into account all the inelastic
screening corrections in the diffractional type hadrom—nuc—
leus processes.

It is interesting that the results (27) of the data analy-
cis within the two component approximation give additional
support for this approximatiom. Indeed the total cross section
of two active constituent quark interaction in the c.m. system
has the form: ‘ ’ -

ad Tt o -
I

q
If we put here a&ﬂ =6 mb and'Pq=0.5 then we obtain (aﬁf)ag
=24 .mb, which is very large cross section.. The minimal radius

of quark interaction;can: be: found from here if formula (47)

is equated with 27Rgq which gives R§q=§iol(GeV/c)+2”This ;
quantity is larger than the -wellrknown value of squared- Regge

radius R2=4a51ns =6 (GeV/c)_z(at:-=400AGeV?). Thus.we  have:
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the conclusion that the quarks im the active state are black
which provides the basis of the two component approximation,
We note that there exists another way of realizationm of the
eigen state method using the ideas of the quantum chromodyna-
mics (QCD), as proposed in work 23{As in the QCD only the
coloured charge can interact them the colour singlet hadrons
can interact only due to intrahadronic colour distribution in
the impact parameter plane. Thus the cross section of hadrons
interaction depends on their size/?9/ Thus the hadron state
with a defined transversal distance between quarks can be
considered as an eigenstate of interaction. In this method
the total hadron-nucleus cross section/28/ and the K¢gmeson
regeneration amplitude on nuctei/30/ have been calculated
without free parameters in a good agreement with experiments.

The authors are most indebted to E.M.Levin, N.N.Nikolaev.
M.G.Ryskin, A.V.Tarasov and Al.B.Zamolodchikov for many
helpful discussions.

APPENDIX

The first term of the sum over f in expression (16) cor-
responds to the case where only one quark of the hadron is
in active state. This can be written directly as

(1) 2 id’(E'ﬂ—?A) 1
F o@=1(d"b_e {1 —

¥ - (2”’)2Pq
2. E(b~74) - A '
f
x [ ke v (B, 14 )
-, 6, B - »> B
x p_(B 1.b2)§.2(—-—’2i—-2--bﬁ )d%8.a "5,

We chovse the pion density function in factorized form:

0 (B B )mp,(By =B b, (By—b_),

where .
- > 2-71/2 (bi‘bﬂ)
Po(bi—bs)=(2aR) o[- — 1] . (A.2)
4Rﬂ

Carrying out in (A.1)a substitution of integration variable
and taking { (B} in Gaussian form we obtain expression (18)
which in ¢ -fepresentation has an additional factor expngR:/‘s)..

The second factor of the sum over { corresponds to two
active quarks. It has the form:
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A(i-[!;—'i % .
(2#‘)25"[

s B e ad -
2 1k(b1—-‘rA) 1k(b2—ra)
€ + &

2 e . (A3
ICTRCR | (4.3)

2 2 - ii;l(gr?.&) 1£ég2“?A) -
f "k, d ke - e _ 'qu(kl)x_

+

(2m)*PS
- > L A 5 > 2 ; +i; - g5 B2

x € n (B o & #E) o, (Dyib )0 (ZL=2- - )d6yd b, -

The first integral in the square brackets can'ﬁe trans—
formed to the form: » -
© s Batba o
2 o K(—F—-Ta) . - ]—; " R
- [d"k e _ qu(k)pA(k)COS[-é-(bl -byl. (A4)

(2:7)2Pq

_ : . _
We put into the argument of the cosinus <(B 1—132)'2>=2R'?7 '

and considering the smallness of the quantity Ri/Riwe obtain
the factor with 1, in expression (i9).
‘The second integral in (A3) can be transformed to the form: -

2 -~ %2R A2 E 43

2o —EtpYeriy o AL o bRy

Son(® RN 4% “ﬁ{_p e ¢ * . (A5
EE) A

(2m) R

H P 4+ -3 e -
Changntgq (bl—b2)2t0 <(bl-—b2)2>=2Ri we obtain (19)-(20).
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