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I. INTRODUCTION 

The description of a two-particle relativistic system is 
one of the central problems of quantum .field theory. To study 
this problem, the four-dimensional Bethe-Salpeter equation 
and covariant three-dimensional'equations, derived in the 
Logunov-Tavkhelidze single-time approachlt/ to the problem of 
the relativistic description of composite systems, are appli­
ed. 

For the relativistic amplitude of 
of two spinless particles with equal 
'tvavc function (WF) of their relative 
Tavkhelidze equations can be written 

0 0 0 0 0 

T(p,-q) = V(p,q ;E)+ 

0 3·!1 

+-1-arvd.k;E) d~k~-
4(2rr) r;,- ·~ 2 Jm"' + k 

the elastic scattering 
masses m1 ::::om 2,.m and the 
motion th~ Logunov-
in the form It f: 

(1. I) 

o o' o oo 0 o 

(m2+ p2-E2 )= _t_a rh::: r dak v <Ii.l1 ;E)'i' (k' l. (I. 2) 
4(2rr) v'ffi2+ p2 ~ .~ 

By zeros tve denote the vectors P and k that are covariant 
generalizations of the momentum vectors of particles in the 
c.m.s. introduced in ref/'i!;./, Thus, if we define c.P 1 )ll = 
=(Ap\> 1 lu, where Ap is the Lorentz boost in the c.m.s. 
of two paiticles_1 that moves with the total momentum P = 
= P1 + P2 , Ap(M,O)=(P0 , ~ ) then: 

~ 1 = i\- ~ [(PI )0- if t'f ) ]. 
o+ M 

o -1 P.·m 
(pt)o-<Ap P1 l 0 =P 1 J~ !M = inv. 

(1.3) 

0 0 0 ~ ~ 0 

F~r the vectors P 1 , P 2 and q 1 , q 2 the relations p 1,- p ~ 
and ~ 1 =-i/(~ if) hold that generalize for an arbitrary system 
the relations between the momenta of particles characteristic 
for the c.m.s. The energy components of the vectors do not 
coincide p0 ~~ 0 what reflects the fact that in equations (1.1) 
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and (1.2) all the quantities (like in the Lippman-Schwinger 
and SchrOdinger equations) are defined off the covariant 
"energy" shell p0a k0 .At the same time in (I. I) and (1. 2) the 
momenta of all the particles belong to the mass shell 

2 -i 2 2 °2 ~ 2 2 p0 - p = m ; k 0 - k = m • (1.4) 

Such a p-icture is an alternative one to the approach based 
on the Bethe-Salpeter equation where the conservation law 
of the 4-momenta takes place at each vertex but all the quan­
tities are defined off the mass shell (1.4). 

The wave function (tfF) in the single-time approach is de­
fined covariantly through the Bethe-Salpeter WF by the fol­
lowing expression/sf . . . 
'I'(P)=fexp[ 1

2 (p
1
-p

2
)x]8(A:px)<O[TI¢

1
C-}l¢

2
C- ~)i[:J'.M> ct 4 x, 

where x~x 1-x 2 is the relative coordinate of two scalar par­
ticles, characterized by the field operators c/; 1 (x 1) and ¢ 2(x 2). 

The vector A
11p ""P'/..{'P! is the 4-velocity of the whole 

system. In the c.m.s. P=O(i.e., Ap =0) frp =1 and the 
presence of the 8 (Ap x) -function under the sign of inte­
gration leads to the coincidence of the particle times X~=X2· 

0 0 0 

The quasipotential V(P.k ;E) (complex function, in the 
general case, and par~metrically depending on the total ener­
gy of a system 2<}0= 2E = M) is built with the use of a two­
time Green function of the considered system or with the use 
of the scattering amplitude on the mass shell, i.e., like 
the solution of equation (1.1) with the quasipotential 

0 0 0 

V(il,lt;E) taken as an unknown function. The amplitude 
0 0 

T(P.Q) is considered as a given function, defined through 
the matrix elements of quantum field theory. Let us note that 

0 0 

since the relativistic amplitude T(p,q) is defined by the 
f

. 0 0 quantum ~eld theory on the energy shell p 0=qQ,then there ap-
pears some arbitrariness in defining the quas~potential 

0 ~ 0 0 0 
V(j!,k ;E ) at p 0 ,(. k 0 , i.e., in extrapolating it off the ener-

gy shell. In what follows we shall make use of this arbitra­
riness defining the quasipotential so that, on the one hand, 
the quasipotential equation for the WF would hav-e a form that 
would be maximally clOse to the form of the nonrelativistic 
SchrOdinger equation, and, on the other hand, the quasipoten­
tial would be a local function in the Lobachevsky momentum 
space/4,5/, realized on the upper sheet of the mass shell hy­
perboloid .0.4). 
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Equation (1.2) by the redefinition of the WF: 

/m2 + ~2 'I'(~) can be represented by: 

- Q 
ljl ( p) = 

(!. 5) 

In the present paper we shall consider equation (1.5) with 

some model quasipotential that is the generalization of the 

nonrelativistic Coulomb Potential. 
In Sec.4 we shall find the energy spectrum for such a model 

of the interaction in the two-particle system and define a 

form of the WF's in the momentum representation. 

2. QUASIPOTENTIAL EQUATION IN THE CASE OF THE 
"NONRELATIVISTIC" NORMALIZATION OF A SCATTERING 

AMPLITUDE TO THE CROSS SECTION 
0 

On the energy shell E~=E 0 an amplitude T(~ ,Q) coincides 

with an invariant amplitude q T(s,t), connected ·with the diffe­

rential cross section of the elastic scattering through the 

relation (s=(PtP
2

) 2 ; t =(q1 
-p

1 
)2), 

du jT(s,t)j 2 

dcu = (8rr)2 s 
(2. I) 

0 0 0 

From (1.1) in the case of a real quasipotential V(p,k; E) 

there follows the relativistic two-particle unitarity condi­

tion (dcu ~ - Sin8d8d¢)': 
• k 0 

~ .!1 I ifl o o o o 

lmT (P ,q) = ...J._.- ( dcu ,!;T*(p ,lt)T(k,q), 

(8rr)2 -'lo k 
0 0 0 
-4 4 ... 

IPI=iql=ikl. 

(2.2) 

Following /s/, let us define 
- 0 0 - (I 0 

T(p, q)= 8u• 2E o T (p, q), 
q 

(2.3) 

i 0 0 ' - 0 0 0 

V(p,k ;E )=-4mE o V (p,k ;E), 
k 

Then the equation for the amplitude 
lativistic" form 

-3o -O~o 
T(p,q) =- .!!!...V(~.q ;E)-

4u 

v<~'·EJ dk p. • 0 0 

i! 2 .... 2 
• - q 

- ~ 0 
T(k, q). 

(2.4) 

takes a "nOnre-

(2. 5) 
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The differential cross section can be expressed through 
0 0 

the amplitude T(p,q) at 
nonrelativistic theory: 

E ,.., E 0 in the same way as in the p q 

du· - ?. ~ 2 --~IT(p,q)l · 
dw (2 .6) 

0 0 0 In the case of a real quasipotential V(p,k;E) from (2.5) there follows a two-particle unitarity condition, that coinci­des in form with the nonrelativistic one: 

0 
0 0 1~1 • ~ 0 Im T(p, (!) = ..L ( T*(p,k )T(~ 

4rr 
• 

;q) dw t 
(2. 7) 

0 0 0 

(at I il I~ I ci I ~I k I ). 
An equation for the WF (1.3) with account of the definition (2.4) can be written in the form 

2 2-~ -~.Jo- 0 ! (Eo -E )'P(p)=- .!E....
3
r v (p,k;E)'I'(kJdak (2.8) 

p (2") 0 
or passing to the binding energy W=2m-2E,in the form 

o -o _ooo-o o [p2 + W(m- t)J'P(il)=- .!E....3 r v (p,k ;E) 'P(l)d 3 i1 (2.9) 
(2") 

In the literature a procedure of deriving equations (2.9) and 
- 0 0 0 (2.5) with the potential V(p,k;E) that is no longer a local function in the Euclidean momentum space is named as the "procedure of a minimal relativization" /e/. 

3. QUASIPOTENTIAL EQUATION FOR THE hT IN THE RELATIVISTIC CONFICURATIONAL REPRESENTATION 
The locality property of a nonrelativistic potential in the Euclidean momentum space allows one to transform the SchrOdinger equation that has the form of an integral equa­tion in the mOmentum space with the help of the Fourier trans­formation in.to a local differential equation in the coordina­te space. The relativistic generalization of this procedure was proposed in/5/, where instead of the Fourier transforma­tion, an expansion over the principal series of the unitary 

representati~ns of the Lorentz group was applied, i.e., an expansion over the functions/7/: 
(3. I) 

) 
-1-irm 
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The modulus of the vector t. i.e., r is the relativistic in­
variant/8,9/ and in the nonrelativistic limit, where 

0 ·""" _, 
_. _, 1 p r . . 

~(p,r)_, e , 1t transforms ~nto the modulus of the 
relative- coordinate, i.·e., it can be conSidered as its inva­
riant generalization Is/. 

The functions (3.1) obey the relations of orthogonality 
and completeness on the surface of the mass-shell hyperboloid 
(1.4). The transformations by them have the form/&/, 

(3.2) 

(3. 3) 

0 0 0 0 0 0 

V(<il<-lf<) 2:El= r r•ci\ ,1)v(r,E)f(k,r')d 3 l (3.4) 

h 1 1 . .!; ~ • h d' ff f . In t e ast 1ne p(-)k ~s t e 1 erence o the vectors 1n 
the three-dimensional momentum space realized on the mass­
shell hyperboloid (1,4) with the Lobachevsky geometry/&/, 

0 0 0 

~ 2. _, o k o kP 
-p(-)k~t.oo =P---(Po- ), (3.5) 

p,k m m + ko 
The dependence of the right-hand siae of the formula (3.4) on 
the vector (3.~) follows from the "additiota" theorem for the 
plane waves f( If, t) 1•1. These functions f (If ,l) obey the 
equation 

" 0 0 

H0 f (p;1 )a 2Eo f(p ,r) ; 
p 

where the "free Hamiltonian" 

ii0 =2m cosh(:.!.. aa. l + .!!.·sinh< J.....L l + 
m r r m a.r 

"' . - .:::J!,.L exp( j_ .L) 
r 2 m a.r 

(3.6) 

(3. 7) 

is a finite-diff~rence operator15{Tbe relativistic invariance 
of the operator H was proved in/9/, From (2,8) with the help 
of (3.2)., }3.4) and (3.6) it is easy to find the .equation for 
theWF 'l'(r) 

(3.8) 
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- 0 ° 0 As was shown earlier/t.to/, the quasipotential VCP.k; E) 
0 0 

can be built with the use of T(P,k) on the energy shell, 
0 0 

taking T(P,k) as given by rules of the perturbation theory 
of quantum field theory. In the lowest approximation we have 
on the energy shell 

_ooo o~ 
V(p,k ;E)=- _.J._T(p,k). (3.9) 

4mE1 
For the amplitude of the scalar meson exchange (of the mass 0 0 

" ) T(p,k) = 4m2g2("2- (p-k)2 )-1, where g is a dimensio
0
nless 

coupling constant, we have on the energy shell Eo= Eo = E 
p k - ~ ~ o m g2 m g2 

V(p,k;E)=- E "2-(p-k)2_,,_E. "2-2m2+Jrrf4;>,2oo (3.10) 
p ,k 0 0 

Let us define, following lui, the quasipotential V(j!,k) off 
the energy shell given by formula (3.!0). Then the quasipoten-

- 0 0 0 tial would be local in the Lobachevsky space: V(p,k ;E) = 

= vr'ilc-Jth 
4. THE SOLUTION OF THE SINGLE-TIME EQUATION WITH THE 

MODEL QUASIPOTENTIAL 

Let us consider equation (2,8) taking as the quasipoten­
tial the following expression 

- -S 0 0 g2 
V(p(-)k;E)=-~-··o 

0
• (4.1) 

E I'PC-)1<1 2 
In the nonrelativistic Schr5dinger equation the Coulomb 

potential in the momentum space has the form 

"' ..... g2 V(p-k)=- -
Iii- "k 12 (4.2) 

The model quasipotential (4.1) is nothing but the super­
position of two quasipotentials of the form (3.10) correspond­
ing to the values of masses of exchanged bosons /.l =0 and 11=2m': 

- 0 0 0 2 ..... ..... . m g V(p(-)k ,E)=--·-----,..-= 
• 0 2 
E i P Hk' I (4.3) 

In what follows we shall consider equation (2.8) with the po­
tential (4. I), 
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(4. 4) 

The corresponding to (4.1) quasipotential in the relativistic 

configurational representation can be found with the formula 

that is inverse to (3.4). 

- o m g 2 
V(r.E)=- 0 ·-tanh(-~.). (4.5) 

E 4rrr 2 

It is clear that in the nonrelativistic limit, i.e., at rm>>l 
g2 77 rm g2 

we have --tanh{--)-~> --- which means that the potential 
4rrr 2 4rrr 

(4.1) in the configurational representation can be considered 

as a generalization of a nonrelativistic Coulomb potential. 

In the spherical-synnn~trical case ( .P (r) = iFc r )) equation 

(3.8) for the function rW(r) for the case of the quasipoten­

tial (4.5) can be written in the form 

2 2 i a 0
2 -

[m cosh (liiar)-E ]r'l'(r)= (4 . 6
) 

m g 2 
1T rm . a -

= 0 · -- · tanh(--)m cosh(_!_ -) r 'I' (r). 
E 4rr r 2 m a r 

The transformations of the WF with the plane waves (3. 1) t~ke 

in the spherical-symmetrical case the forw (here after P~l~\) 
0 - 0 0<1 

p'I'(P)=h ( sin(mrxo )r'l'(r)dr, (4.7) 
0 p 

- 4 ~ 

r'l'(r) =-...!!- r sin(mrxo 

c2 "r o " 

0 - 0 
)p'l'(p)mdxo, 

p 
(4.8) 

where the variable xo.called the rapidity, is defined by the 

parametrization P 
0 

E sh 
~ ~ ~ p (4. 9) 

0 = m co (x 0 ) ; p ""m sinh( x 
0 

) n 0 '; n o = "'"'t>"" 

P P P P P I ill 
and analogously for other 4-momenta. _ 0 _ 

0 
_ 

In equation (4.4) in the case 'I'(P)= 'l'(p)" 'l'(x ~ ) after 
0 

the integration over spherical'angles of the vector R one can 

obtain the one-dimensional equation, written in terms of the 

rapidi ties: 

fm 2cosh 2 ()( 
0 
p 

0 

)-E
2 ]sinh(x

0 
p 

g2 m2 
)=--·-· 

(2rr)3 E 
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xo -xo 
~ cottf( P k (4. 10) 

xflnl. xo+xo 
o cotb2( p t 

2 

Jsinh(xo )'P(xo )mdxo. 
k k k 

Let us integrate formally in the right-hand side of (4.10) 
by parts. The equation then takes the form 

(4. I I) 

With the help of the free Green function 
0 0 1 

G (p , E ) = __J.._ = -;;--_;;._-;;--;;-- ( 4. 12) o E~ -E2 m2coshxo-m2cos2x 
(here E:~ mcosx) Pequation (4. II) d'an be represented in the 
form 

-1 0 ° - 0 G 0 (p,E)'I'(P)= 

(4. 13) 
!Xl - 0 -1 0 ° ( 'I' (k ') d G 

0 
(k ',E ) • 

0 0 -1 0 0 0 
(p,E)-G 0 (k ,E) k 

Let us consider as the WF of the ground state the expres­
sion 

- 0 2 0 ° 'l'(p) = G
0 

(p,E) = -·--_....1 __ _ 

!P 2+W(m-!.JJ
2 

4 

1 

(p2 + m2 sin2x) 2 

With the help of the algebraic equality 

-1 0 0 -1 0 0 -1 0 0 [G 0 (p,E)-G 0 (k,E)J G0 (k,E)= 

-1 0 ° -1 0 ° -1 0 0 0 0 =f!G 0 (p,E)-G0 (k,E)] + G0 (k,E)IG
0
(p,E) 

as well as with the use of the relation 
OXl -1 0 0 -1 0 0 -1 0 
f[G

0 
(p,E)-G0 (k,E)] dk=O 

0 

(4.15) 

(4.16) 



we come to the conclusion that the equation (4.13) with the 
WF (4.14).is fulfilled if there holds the equality 

g2 m'4 O<l o o o 
1.=-·--o ( G0(k ,E)dk. (4.17) 

4rr 2 E .0 

In the nonrelativistic limit this equation gives the quantiza­
tion condition for the energy of the ground state. With the 

help of (4.12) this equation can he represented in the form 

.£.: m
2 

g
2 

=1. (4.18) 
4rr 2if: ym 2 - E 2 4rrsin(2x) 

By differentiating (4. 15) with respect to E 2 one can ob­
tain the equality 

-1 Jl 0 -1 o 0 -1 m o o 
[G 0 (p,E)-G 0 (k,E)] G 0(k,E) = 

-1 o 0 -1 o o -1 m o o 
=[G 0 (p,E)-G

0 
(k,E)] G

0
(p,E)+ 

(4.19) 

Let us look for the WF of an n-th radial excitation of the 

ground state q; (n)( P) as the polynomial of the n +1-th order 

of the free Green function 

(4. 20) 

where stn) are unknown coefficients 
From (4.13) with the help of (4.19) 

n (n) 2 ° 2 f-1 f o o 
l: f Be (m -E ) G 0 (p,E)= 

f=t 

0 

of the same dimension. 
we find 

(4.21) 

where F. (E) 
J +1 

are defined in the following way 

()
0 2 2 0. 

F. n (E)= _g_ • ..!}(m2 - E 2)' 
J+1 4rr2 E 

(4.22) 
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The equality (4.21) as well as the equation (4.13) are true 
if the coefficients B!nJ obey the following system of equa­j tion s: 

(4.23) 

B(ln) = s\n)F/n) (~) + B~n) F~n) cE)+··· +B(:) F~n) cE). 
Starting with the definition (4.22) it is easy to show 

that the following formula 

F(n) (E)~ ( 2 j)! F(n) (E) (4.24) 
J+l (j!)24j 1 

takes place. The first equation of the system (4.23) is no­
thing but the quantization condition 

(n) A g2 m 2 "" o o o 
(4.25) n~F1 (t.)~-·-0 f G

0
(k,E)dk. 

4rr2 E o o 
From (4.25), denoting the energy of the n-th state by 2En"" 

2m oos(xn), we find 
__ Jl. 2. m2 - ~ ___ g_2 ___ = n 

4 2 Eo I 2 E 2 4 rr sin ( 2x ) 
17• n V m - n n 

( 4. 26) 

The binding energy of the n-th state Wn can be written in 
the form 

W ~ 2m[l-(l..+.l. ~g2 
)2)111. 

n 2 2 4"n (4.27) 

It is clear that in the case of a small coupling constant g 
formula (4.27) gives in the first approximation the nonrela­
tivistic coulombic energy levels. 

After we have fixed the energy of the n-th state by the 
equation (4.26) we can define completely all the coefficients 
F.(n) ( E

0 

) f h (4 23) 
1 

+1 n o t e system • : 

F(n) ( E 
.)--\.1 IJ 

10 

) 0 (2j) ! 
(j 'J2 4j 

• n . 
( 4. 28) 



It is easy to see that from n-1 equations of the system (4.23) 
<except tor the tirst one) the coefficients s<:21• sA~?2 ..... s\n) 
can be expressed through the coefficient B~n) that cannot be 
defined from the system (4.23), i.e., from the equation (4.13) 
and can be fixed by an extra condition of the type of the 
normalization condition. Choosing nn~n) =:_(-:1) 11

- 1 C
11 

we shall 
represent the result for all other coeff~c1ents 

f-1 __ I'(n+ __ l )4 1 
1B 1 o(-1) ---Cn (4.29) 

!'(2 1) I' (n+1- 1 ) 

Thus, the wave function of the 
the form 

n-th state can be written in 

- (n) o 2 • o 
'I' (P)oCnG 0 (p,En)x 

(4. 30) 

X l(-1/-1 r<n+ rl 41 [(m2-E2 )G 
1o1 r(2 l)f(n+lf) n ° 

o F -1 
( p, En ) J ' 

0 

where En is· defined from the quantization condition (4.26). 
It is easy now to define the WF in the relativistic confi­

gurational representation. For the WF of the ground state 
(4. 14) with the help of the transformation (4.8) we easily 
find 

riJi(l)(r)o (4.31) 

c1 ( -1) d 1 
~--·-- --1--

4rrm2 sin(2x) dx cosx 

sinh[ ( -F -x)nn] 
I. 

cosh[ ..!:.....IlE....] 
2 

where after differentiating, the value of x is defined from 
2 

formula (4. 18), i.e., as Larcsin(.!_) .Substituting WF (4.31) 
2 4r. 

into the finite-difference equation (4.6), it is easy to show 
that (4.31) is really a solution of (4.6) if for the energy 
2E.,2mcosx the quantization condition (4.17} takes place. 

Analogously, we find in the relativistic configurational rep­
resentation the WF of the n-th state 

(n) 
- (nl 1 ~ Il I , I 

r'l' (r)o------ ~ --·(-sin"x) x 
4rrm 2 sin 2x &l(E-1)! 

d 1 1 
x(-----) ·1--· 

d sin 2x cosx 

sinh[ ( ~ - x) rm 1 
____ 2 ___ } 

cosh[~-] 
2 

(4.32:) 
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where after performing all the differentiations, the value 
2 of x is taken as X= xn = .1._ arc sin(-g-.) and the coefficient 

2 4"n !lin) is defined by (4.29). 

5. CONCLUSION 

We have found the solutions of the relativistic Logunov­
Tavkhelidze single-time two-particle equation. The quasipo­
tential is taken in the form of a difference of two propaga­
tors of the one-boson exchange (see (3.IO) and (4.3)). This 
quasipotential ~- l

200 
can be considered as the relati­

vistic geometrical ge~~ralization of the Coulomb potential 
(4.2) in the sense of the substitution of the difference of 
two vect~rs P-It in the Euclidean momentum space by the dif­
ference ~(-)r (3.5) of two vectors in the Lobachevsky mo­
mentum space. This type of the potential was used earlier in 
the relativistic quark model in paper !12/. 

The relativistic quantization condition for the energy 
levels of the composite system (4.24) as well as the wave 
functions in the momentum (4.30) and configuration (4.31) 
representations are found. 

The questions of normalization of wave functions and ap­
plications for describing the models of relativistic two­
particle systems will be considered in subsequent publica~ 
tions. 

The authors express their sincere gratitude to V.G.Kady­
shevsky, S.P.Kuleshov, N.V.Maksimenko and V.I.Savrin for 
their interest in the work. 
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