


1. Introduction

in the first part of this paper [1] , we applied the pseudo-
Hemiltonian spproach [2] to the case of multidimensional damped
haraonic oscillator. We pet

Hz-%a + . (A=-iW)}x , (1)
where A,¥ are strictly poeitive metrices. By Iie-Trotter forau-—

la, we found explicitly the continuous contractive semigroup Vtt
= exp(-iHt) :

(Vop)(x) = i{d G, (x,y) piy}dy , t2>0 - (2)
for am arbitrary pe I.‘?(B.d} s where
0, (x,y) = (201) ™ 2 (det (@ "o1n 0+0) " 2oxp{} [x. (Reteht)x +
+ y.(ﬂctgﬂt)y] -1:.(.Qcouc.ﬂt)x} ik
and
4= -unu)vz . (4)

in the present paper,we study properties of the above solution.
For the seke of simplicity, the discussion ie limited elgentillly
to the one~dimensional case,

The firet problem concerna the non-damped limit : we show
thet it givea correct Feynman propagator including the phase fac~



tor {3,4] ; thus we find in the present case an alternative and ve-
ry natursl way of finding Maelov correction. Purther we shall dis-
cuss the claseical limit, Let ue notice that comparing to common
practice [5-9] we did not obtain the pseudo-Hamiltonian (1} by some
kind of quantization of the classical damped ocscillator (CDO).
According to our opinion, such an approach makes sense only 1if
there is a reasonable similarity between the classical and quantum
mechanisme of demping. In general, this fg not the case ; thue the-
re is no a priorl reason why should the clasaicel limit reproduce
the exact behaviour of CD), We shall 1llustrate it on an example :
for our damped oscillater and epecial Gauasian wavepackets, the
classical limit gives trajectories of CDO (with linear damping),
but correspending to changed initial conditiona ; the difference
vanishes in the weak-damping limit. Finally, we shall find the
point spectrum of H , which is of the form of the undamped-oseil-
lator spectrum rotated around the origin to the lower complex
halfplana., The eigenvectors, however, are not longer orthogonal
because H is not normal.

2. The non-daaped limit and Maslov correction

It ie known that Peynman’s rropegator formula for the non-
damped harmonic oscillator must be corrected by jumps in phase
at every half-period :

e (x,y) = El(x,y ML) (5)
where
K ix,y) = (2n '1/2(—-—-——--"" )’/2 { L
LA (221 fsin w1t it sinr.ot[(xq’F (58)
+y%coa¢ot - 2xy]§ s
xi t
M) = expf- &L pny £t} (5%)
ir t=,:,kz~ (we aggume m=}=1) ang
Ey(x,y) = oxp{- Zx] d(xa (-1)%y) (6)

if t = %kt {see [4] for further Teferencen). We shall show that
Maslov correction {5b) smerges naturally inm non-damped limit of
the above results :



Proposition 1 ¢ Let d=1 =and N =w-iv with &,» positive.
‘Then, 1f wt # kz , k=0,1,2,..., end pe LP(R) has s com-
pact support, we have

1% V.p)ix) = {(y)ady -
ym (Vep)(x) i{ By (x,y) ply) dy (1)
On the other hand, it holds

xi k
im  (V,y) = expi- ((-1)'x) (8)
m (Vo) (x) "p{ 2 }?’ x

for t=k%/w and 'pef'(a) .

Proof : Let wt = k% and consider {(2),(3) with d=1 and fl =
= w-1y . We denote

n_(y) = — 3 (y2coedt -2 )} ,
x(y) exp[ 2 sin ft ¥y ooe o

then
to i t
[hx(Y)l =exp{ ks 2[(y2coa wt -ZHchvt)m
2lein .0t g
- (yzchgt -2xy cos .:,o‘t:)sr1 vAZ :l}
vt
so that

I (7)| < exp{w!yl(!yl +2|x|)eh vt sin 2wt } '
and therefore the dominated convergence theorem can be applied
if @ has & compact support. It implies

i F
Um (¥ =14 = gt K a
Ha (Vyp) (x) w& exp{ 5 &yl )} £ £ (X0 ¥) ,o(y) ¥ » {(9)

where g(t) zarg(fl/sin f11) , 1.e.,
g,(t) = arctg(th vt ctgwt) - mtg% - % {10a)

for ki< wt < (k+1)T . The term -k% 418 chosen so that the rhs
is continwous in the poimte t=zka/y, and tends to zero with

t —> 0+ which certainly must be true for g, . It ie easy to see
that g, 18 decreasing ; ite shepe for three values of /e
is sketched on the Figure. For fixed t, (10a) gives



-2n

-1 R S
2

gt)

Fig. The function By o

lim  gf%) = -kZ for kr<wt < (ke 1) {10p)
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this relation together with (5b) end (9) gives (7).
Let now in turn ©t = ky . ¥We take Y€ . ¥P(R)

&nd express
(Yty;J(x) from Proposition 6 of (1] . 8ince
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the dominated convergence theorem can be agaln applied which gives
~1/2 Zi k
Ln (e = 20 exp{- —z-k}ﬁf expfi-0Firpan ay

where F=F, 1is the Fourier-Plancherel operator (so FyeAR)}.
Ueing further (Fz'tf)(x) = Y(-x) for k odd, we arrive at (8).
B

3., The classical ljimit

As is mentloned in the introduction,we limit ocurselvea to the

case when the initial wave-packets are Gaussian, especlally such
f " = :
obteined by shifting the "ground state". We take y.‘? ?OL,oc,ar
-1 -
pix) = @1?) ﬂ'exp{—(ZLZ) Yx-0? + Jax} (118)
2 -2_ -4 2

with I complex, Re L>0 , 1™ = |L| "Re L“ , and &,¥ real.
Expectations and diepersione of position and momentum &xre the
following

<Q> = & <P7 =X )
’ 1/2 ’ 1/2 2 {(12)
@Q)y = 27er (aR), = R 45 S § /| B

The propagator referring to arbitrary m and K is obtained
from {(3) by substitutions t - nt ’ ‘Q—r% . Applying now Theo-

rem 2 and Proposition 4 of [i] with this modification, we obtain

- _ -1 -
o x) = @157 *(cos 2t + 1A% Zoim ) /2 exp{-i(?!\z) '

sin 0t -1A°L"%coe 2t [ _2 2 2 -2 -1
. x°- 2xz A(ein Dt -1A°L “cos ft) + {(13a)
cos 2t +1A°L " %sin 0t [

+ A*22(etn 0t -1 A0 2c0s 28) Tein 0] - § w2 } ,

2 K -1 -2
where A° = 20 and z= XY -ixl . Further we choose L as
follows
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I {11b)

and denote as above ) = w-iy , then (13a) can be simplified
into the form .

- - 18t 72
(thp}(X} = (:h\z) 1/4319{_ %.Qt - -% A=? [x-(ot+ %a!\‘?)e ] +

(131)
-54t -
+ -% A‘Q(u»«;i;;xm?)z e cos It -%&zr\ 2} .

where .,\2 = ﬁ) - The probability density is given by

] -
[ 1% = (@a?) /2exp{-vt-A2(x-xo(t))2+y(t)}, (12)

where

::O(t) =I[Dccoa wt + (mw)—1(3(-mocv) ainwt] e-w {15)
and

) = 3202 107282 - 4Pycos 2ut + 2(®- 4?) ain 20t -

2 21 =2yt
-t - e
‘with p ']

=1 -1 -
[i=(mw) (¥ -may) , ¥ =ml.(llar‘ .

Thue we have obtained the Gaussian-shaped function with the follo-
wing properties :

(1) height of the peak decreases with time, for lerge t appro-
" ximately as o~V%

L4

(11) ite width A does not change, it is negligible in the clas-
sical 1imit when o2+ ﬁ‘? > .A2 '

(43} the peak travels along x =x,(t) which is the trajectory of
the classical damped oscillator with the initisl position
x5(0) =@ , however, the corresponding initial momentum
ia .io(o) = ¥ - 204y instesd of & . Denoting x, (.} the
trajectary of CDO with initial conditions (&,) , we have
xe(t) -xo(t) = 2avw0”! e"’tsinwt 80 that the difference 1is
negligible in the case of wesk damping, ¥<<aw



4., The point epectrum of H

We put egain M = m = 1 , then Gb(H) i of the following
form @

Propositiom 2 ! Let d=1, =0 -1y , then Hy =.b, with

- g 1/2 12
Falx) = Fop Hn(J.!—l'x) exp( -3 4x°) (162)
an=0,1,2,... , where Hn are Hermite polynomials, and
= 1
Ay = Mo+ 5) {16D)

In geu;ral, the eigenvectors are not orthonormal : Wn’?"m) =
-1/2

= Npn N;;/znnm s where
Nn,n+25+1 =0 ,
1/2 n!' (n+28)! —(n+8) ;. 1 . 8
No,ne2e = /) T w mnhn® .
n
[E] [%]*9 k+1/2¢ ~k-1}Y fXk+1 K4l =~ -k a1
A G Y5 () o e

with 8=0,1,2,... » and [.] denotes the entire part.
Proof : By streightforward computation. |

In conclusion, let us make some remarks. Tt is easy to see
that P = {y }o, 1is complete in L2(R) so thet for K # A, .
n=0,1,2,... , the set (H-.A)Pnn = Pyin ia dense and H has
no residual spectrum. The problem of absence of continuoue spec-
trum will be considered separately. Froposition 2 determines, of
course, also O _(H) for the munltidimensional csclllator in the
case when ..0.2 x 2(A=-1%W) can be diagonalized. Moreover, Bome
results remain true even if A,¥ are not simultaneously diagonh-—
1izable. For inatapce, one can check easily that the "ground sta-
te" vector

-d/ /4

1
'y»o(x) =% 4(dei:(ReJZ)) exp( --12- x.ilx)

corrssponds to the eigenvalue -%Tr.fl for any A,¥ which obey
assumptions of Theorems t,2 of (1} ; notice that it is not @
minimum-uncertainity state - ef.(12).
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