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1 • lntrodu.ction 

In the first part of this paper [1] , we applied the peeu.do

Hamiltonian approach~] to the case of multidiaeneional daaped 

harmonic oscillator. We set 

1 H =- 2t1 + x.(A-iW)x (1) 

where A,W are strictly poe1t1Te .atricee. By Lie-Trotter forau

la, we found explicitlJ the continuou.e contractive eeaigroup vt~ 

exp(-1Ht) : 

(Vtf')(X) = J Gt(x,y) )"(;f)~ t ,.0 
lid 

(2) 

for an arb! trary 'f e L 2 (lid) , where 

-d/2 -1 -1/2 {1 r. 
(2:t1) (det(.ll o1n.Qt)) oxp 2 Lx. (.Qctg.Qt)x + 

+ 1• (.12 ctg 12 t)y] - 17. (.Qcooec .llt )x J 0) 

and 

il = -(A -1'1') 
112 (4) 

In the pre•ent paper,we atu.d7 properties of the aboTe solution. 

For the sake of siaplicitJ, the dieouaaion is liaited ea~entiallJ 

to tbe one-d1aene1oaal caee. 
The first problem concerna the non-da.ped limit : we show 

tbat it giTes correct Pe~ propagator 1nclud1mg the pbaae fac-
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tor[3,4] ; thus we find in the present case an alternative and ve
ry natural way of finding Maslov correction. Purther we shall die
cuss the classical limit. Let ue notice that comparing to common 
praotice[5-9J we did not obtain the pseudo-Hamiltonian (1) by soae 
kind of quantization of the classical damped oscillator (CDC). 
According to our opinion, such an approach makes sense only if 
there is a reasonable similarity between the classical and quantum 
mechanisms of damping. In general, this is not the case ; thus the
re is no a priori reason why should the classical limit reproduce 
the exact behaviour of CDO. We shall illustrate it on an example: 
for our damped oscillator and special Gaussian wavepackets, the 
classical limit gives trajectories of CDO (with linear damping), 
but corresponding to changed initial conditions ; the difference 
vanishes in the weak-damping limit. Finally, we shall find the 
point spectrum of H , which is of the form of the undamped-oscil
lator spectrum rotated around the origin to the lower complex 
halfplane. The eigenvectors, however, are not longer orthogonal 
because H is not normal. 

2. The non-daaped limit and Kaslov correction 

It is known that Peynman~s propagator formula for the non
damped harmonic oscillator must be corrected by jumps in phase 
at every half-period : 

Kt(x,y) • K~(x,y)M(t) 
(5) 

where 

(2tl)-1/2( ... )1/2•"1'{ 
I sin <uti 2 

+y~coswt-2xy]J, 

~(x,y) • 

(5a) 

M(t) • oxp{- "i Ent ~t} ( 5b) 

i.t t "" ~ kt- (we assume m: )l = 1 ) and 

(6) 
if t ., in (see [4] for further references). Ye shall show that 
KaaloV correction (5b) emerges naturally in non-damped li•it or the above results 
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l?roposi tion 1 : Let d = 1 and !1. = {()- i )I 

_Then, if GUt f k:rc , k=0,1,2, ••• , and 

pact support, we have 

positive. 

has a com-

lim (Vtf)(X) = j ~(x,y) f(y) dy 
-.l-.0+ IR 

On the other hand, it holds 

lim (Vt1p)(x) = exp{- ~i \"f'<<-t)kx) 
\)+Q+ 

for t=kll/w and 1f€.J"(R) • 

(7) 

(8) 

Proof : Let w t = ,k:Jl' and consider ( 2), ( 3) with d = 1 and J2 = 

= w-iv We denote 

hx(y) = expf 
2 

iQ <icoe.l!t -2xy)} 
l sin J2t 

then 

{ 
Wvt ~ 2 sin t...>t 

= exp 2 (y cos wt - 2 x:y ch vt )---
2lsinJ2tl ' t.Jt 

2 shvt]} -(y chyt -2xycoswt)~ 

eo that 

and therefore the dominated convergence theorem can be applied 

if ~ has a compact support. It implies 

where gY(t)::arg(.n/ainJlt), i.e., 

f K~(x,y) f(Y) dy, 
R 

gtl(t) = arctg(th )o)t ctg wt)- arctg~ - k~ 

(9) 

(lOa) 

:for k.1t < wt < (k+1 ).1l • The term -kn is chosen so that the rhs 

is continuous in the pointe t :o: k9t/.:.; and tends to zero with 

t -+ 0+ which certainly must be true for gv • It is easy to see 

that g~ is decreasing ; ita shape for three values of Y/AJ 

is sketched on the Figure. For fixed t, (lOa) gives 
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-Tr 

-2Tf 

9,( t l 

~ = { 0,1 
0,01 

Fig. The function g" • 

lim. gl)(t) = -lr:!ll' for kJr < 4.lt < (k+l ).l" ••O+ 
this relation together with {5b) and (9) gives (7). 

(lOb) 

Let now in turn 4.:1 t = b • We take "f£ .J'(Il) and express 
(Vt'f)(x) from Propoeition 6 ot [I] • Since 
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the do~nated convergence theorem can be again applied which gives 

where :P • P1 
Using further 

is the Fourier-Plancherel 

(FZyJ(x) = ~(-x) for k 

3. The classical limit 

operator (so F'f~,Y(Ii) ) • 

odd, we arrive at (8). 

• 
As is mentioned in the introduotion,we limit ourselves to the 

case when the initial wave-packets are Gaussian, especially such 

ol;ltained by shifting the "ground state". We take !fl :: lfL,O(,df : 

( t ta) 

with L complex, Re L2 ~o, 1-2 :: !Lt-4Re L2 , and OC,J( real. 

Expectations and dispersions of position and momentum are the 

following 

(Q>,. "" • (p~ = :X 

(6QJr = 2-t/2 1 <oPlr = 2-t/2 )! 1 1 Li-2 
( t 2) 

The propagator referring to arbitrary m and ~ is obtained 

from ( 3) by substi tutiona t ~ ~ , .0. ~ 1= . Applying now Theo

re• 2 and Propoai tion 4 of [1) with this modification, we obtain 

2 -t/4 2 -2 -t/2 ( 2 -t 
(Vtf)(x) • (:>t1 ) (cos.Jlt + 1/1 L s1n,Jlt) expl-1(2~) • 

• s1n.l1t -11\2L-2oos.Jlt [x2- 2xz/\2(s1n.Jlt -1/lh-2cos.Jlt)-t + (13a) 
cos S2t +1A.2L-2sin Jlt 

where A2 "" ~ and 
follows 

-1 2 
z = at;)! - 1 Cl L- • Further we choose L as 
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( 11b) 

and denote as above S2 eu -ill , then ( 13a) can be Silltplified 
into the form 

2-1/4 [ i 1 -2[ i 2 -i.!ltJ 2 (Jr~) exp- 2 .llt- 2 A x-(0(+ )13<11 )e + 

< nbJ 1 -2 1 ,2 2 -iJlt .J2 - _21 ~ 2.-2 2 + 2 A (OC + i1 "" ) e coe t ~ " J 

where .>..2 The probability density is given by 

( 14) 

where 

( 1 5) 

and 

'with 

-1 fl= (mw) (;r-moc>) 
-1 -1 t = mi.JliJ( 

Thae we have obtained the Gaussian-shaped function with the following properties : 

(1) height of the peek decreases with time, for large t approximately as e-~t , 

(11) its width ~ does not change, it is negligible in the clas
sical limit when tX.

2+ fo 2 >> --' 2 , 
(~) the peak travels along x =x0 (t) which is the trajectory of 

the classical damped oscillator with the initial position 
x0 CO) = x , however, the corresponding initial momentum 
!a .X

0 ( 0) = d(- 2mt:t).) instead of ~ • Denoting x
0 

(. ) the 
trajec~ qf CDO with initial conditions («,~) , we have 
x

0
(t) -x

0
(t) = 2~tY{<.)-l e-vtainwt eo that the difference is 

negligible in the case of weak daaping, .1> <<4.1 
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4. The point spectrum of H 

We pat again ~ = m = 1 , then 5p(H) is of the following 

:form 

Propos! tiop 2 : Let d = 1 , .f2 = o -1V then H1"n = .J..n Y'n with 

( 1 6a) 
'fn(x) = li;d./2 Hn(./iix) exp(-~Jlx2 ) 

n-=0,1,2, •.• , where Hn are Hermite polynomials, and 

-An= Jl(n~~) (16b) 

In general, the eigenvectors are not orthonormal: (~n'o/m) = 
= N - 112N- 1/ 2N , where 

nn mm nm 

Nn,n+2s+1 = 0 

(ll'/wll/2 n!(n+2s)! .,-(n+s)l.llln.J2s . 
Nn,n+2B = (n+s)! 

. ~J ~~·· (-1 ,k•l(2(::~;k-l)W~l) (~:~) .,k·\nfk .ll.-1 
k=O 1:;::0 

with s•0,1,2, ••• , and [.] denotes the entire part. 

1I2£! ; By straightforward computation. • 
In conclusion, let us make some remarks. It is easy to see 

that P = f1fnl:=o is complete in L2(1R) so that for ..A f. .J.n , 

n== 0,1,2, ••• , the set (H-.>.)Plin • Plin is dense and H has 

no residual spectrum. The problem of absence o:f continuous spec

trum will be considered separately. Proposition 2 determines, of 

course, also ~ (H) for the multidimensional oscillator in the 

case when J22 sp 2(A -iW) can be diagonalized. Moreover, some 

results remain true even i:f A,W are not simultaneously diagona

lizable. For instance, one can check easily that the "ground sta

te" vector 

-d/4 1/4 , 
'fu(X) = :)( (det(ReJ1)) exp(-2 x • .l)x) 

corresponds to the eigenvalu.e 1 TrJl for any A,W which obey 

aasumptious of Theorems 1, 2 of [1] ; notice that it is not a 

miniaum-uncertainity state- cf.(12). 
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