

сообщвиип объвдинвнного
 ииститута ддерных исслвдовании
 дубна

$5481 / 2-81$

$$
\begin{gathered}
9 / \mathrm{ki}-81 \\
\mathrm{E} 2-81-609
\end{gathered}
$$

P.Exner

COMPLEX-POTENTIAL DESCRIPTION OF THE DAMPED HARMONIC OSCILLATOR.
II. The One-Dimensional Case

1. Introduction

In the firet part of this paper [1] , we applied the pseudoHamiltonian approach [2] to the case of multidiaensional damped harmonic oscillator. We set

$$
\begin{equation*}
H=-\frac{1}{2} \Delta+x \cdot(\Delta-i \eta) x \tag{1}
\end{equation*}
$$

where A, are strictily positive matrices. By Lie-Troter form- $^{\text {w }}$ la, we found explicitly the continuous contractive semproup $\nabla_{t}=$ $=\exp (-1 H t):$

$$
\begin{equation*}
\left(\nabla_{t} \varphi\right)(x)=\int_{R^{d}} G_{t}(x, y) \varphi(y) d y, t>0 \tag{2}
\end{equation*}
$$

for an arbitrary $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$, where

$$
\begin{align*}
G_{t}(x, y)= & (2 \pi i)^{-d / 2}\left(\operatorname{det}\left(\Omega^{-1} \sin \Omega t\right)\right)^{-1 / 2} \exp \left\{\frac{1}{2}[x \cdot(\Omega \operatorname{ctg} \Omega t) x+\right. \\
& +J \cdot(\Omega \operatorname{ctg} \Omega t) y]-1 y \cdot(\Omega \operatorname{cosec} \Omega t) x\} \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
\Omega=-(A-1 \pi)^{1 / 2} \tag{4}
\end{equation*}
$$

In the present paper, we atudy properties of the above solntion. For the sake of almplicity, the disoussion is limited engentially to the one-dinenaional case.

The first problem concerna the non-damped limit : we show that it gives correct Feynman propagator including the phase fac-
tor $[3,4]$; thus we find in the present case an alternative and very natural way of finding Maslov correction. Purther we shall discuss the classical limit. Let us notice that comparing to common practice [5-9] we did not obtain the pseudo-Hamiltonian (1) by some kind of quantization of the classical damped oscillator (CDO). According to our opinion, such an approach makes sense only if there is a reasonable similarity between the classical and quantum mechanisms of damping. In general, this is not the case ; thus there is no a priori reason why should the classical limit reproduce the exact behaviour of CDO. We shall illastrate it on an example: for our damped oscillator and special Gaussian wavepackets, the classical limit gives trajectories of CDO (with linear damping), but corresponding to changed initial conditions ; the difference vanishes in the weak-damping limit. Finally, we shall find the point spectrum of H, which is of the form of the undamped-oscillator spectrum rotated around the origin to the lower complex halfplane. The eigenvectors, however, are not longer orthogonal because H is not normal.

2. The non-damped limit and Maslov correction

It is known that Feynman's propagator formula for the nondamped harmonic oscillator must be corrected by jumps in phase at every half-period :

$$
\begin{equation*}
K_{t}(x, y)=K_{t}^{P}(x, y) \mathbf{M}(t) \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
& X_{t}^{Y}(x, y)=(2 x i)^{-1 / 2}\left(\frac{\omega}{|\sin \omega t|}\right)^{1 / 2} \exp \left\{\frac { \pm \omega } { 2 \operatorname { s i n } \omega t } \left[\left(x^{2}+\right.\right.\right. \\
& \left.\left.+y^{2} \cos \omega t-2 x y\right]\right\} \text {, } \tag{5a}\\
& \mathbf{M}(t)=\exp \left\{-\frac{\pi i}{2} \operatorname{Ent} \frac{\omega t}{\boldsymbol{x}}\right\} \tag{5b}\\
& \text { if } t=\frac{1}{2} k \tau \text { (we assume } m=k=1 \text {) and } \\
& K_{t}(x, y)=\exp \left\{-\frac{x i}{2} k\right\} \quad \delta\left(x-(-1)^{k} y\right) \tag{6}\\
& \text { if } t=\frac{1}{2} k \tau \text { (see [4] for further references). We shall show that } \\
& \text { Kasiov correction (5b) emerges naturally in non-damped limit of } \\
& \text { the above resulte: }
\end{align*}
$$

Proposition 1 : Let $\alpha=1$ and $\Omega=\omega-i \nu$ with ω, ν positive. Then, if $\omega t \neq k \pi, k=0,1,2, \ldots$, and $\varphi \in L^{2}(\mathbb{R})$ has a compact support, we have

$$
\begin{equation*}
\lim _{y \rightarrow 0+}\left(V_{t} \varphi\right)(x)=\int_{\mathbb{R}} K_{t}(x, y) \varphi(y) d y . \tag{7}
\end{equation*}
$$

On the other hand, it holds
$\lim _{\nu \rightarrow 0+}\left(V_{t} \psi\right)(x)=\exp \left\{-\frac{\pi i}{2}\right\} \psi\left((-1)^{k} x\right)$
for $t=k \pi / \omega$ and $\psi \in \mathcal{Y}(\mathbf{R})$.
Proof : Let $\omega t=k \pi$ and consider (2), (3) with $d=1$ and $\Omega=$ $=\omega-1 \nu$. We denote

$$
h_{x}(y)=\exp \left\{\frac{i \Omega}{2 \sin \Omega t}\left(y^{2} \cos \Omega t-2 x y\right)\right\},
$$

then

$$
\begin{aligned}
\left|h_{x}(y)\right|=\exp \{ & \frac{\omega \nu t}{2 \operatorname{loin} \Omega t]^{2}}\left[\left(y^{2} \cos \omega t-2 x y \operatorname{ch} \nu t\right) \frac{\sin \omega t}{\omega t}-\right. \\
& \left.\left.-\left(y^{2} \operatorname{ch} \nu t-2 x y \cos \omega t\right) \frac{\operatorname{sh} \nu t}{\nu t}\right]\right\}
\end{aligned}
$$

so that

$$
\left|h_{x}(y)\right| \leqslant \exp \left\{\omega|y|(|y|+2|x|) \sin \nu t \sin ^{-2} \omega t\right\},
$$

and therefore the dominated convergence theorem can be applied if φ has a compact support. It implies

$$
\begin{equation*}
\lim _{\nu \rightarrow 0^{+}}\left(V_{t} \varphi\right)(x)=\lim _{\nu \rightarrow 0^{+}} \exp \left\{\frac{1}{2} g_{\nu}(t)\right\} \int_{R} K_{t}^{F}(x, y) \varphi(y) d y, \tag{9}
\end{equation*}
$$

where $g_{\nu}(t)=\arg (\Omega / \sin \Omega t)$, i.e.,

$$
\begin{equation*}
g_{\nu}(t)=\operatorname{arctg}(\operatorname{th} \nu t \operatorname{ctg} \omega t)-\operatorname{arctg} \frac{\nu}{\omega}-k \pi \tag{10a}
\end{equation*}
$$

for $k \pi<\omega t<(k+1) \pi$. The term $-k \pi$ is chosen 80 that the rhs is continuous in the pointe $t=k \pi / \omega$ and tends to zero with $t \rightarrow 0+$ which certainly must be true for g_{ν}. It is easy to see that g_{ν} is decreasing ; its shape for three values of ν / ω is sketched on the Figure. For fixed t, (10a) gives

Fig. The function g_{ν}.
$\lim _{\nu \rightarrow 0+} g_{\nu}(t)=-k \pi \quad$ for $\quad k \pi<\omega t<(k+1) \pi \quad ;$
this relation together with (5b) and (9) gives (7).
Let now in turn $\omega t=k x$. We tale $\psi \in \mathscr{(}(\mathbb{R})$ and express $\left(\nabla_{t} \psi\right)(x)$ from Proposition 6 of [1]. Since

$$
\left|\exp \left\{-\frac{y^{2} t \operatorname{th} \nu t}{2(k \pi-i \nu t)}+\frac{1(-1)^{k} x y}{\operatorname{ch} \nu t}\right\}\right| \leqslant 1
$$

the dominated convergence theorem can be again applied which gives

$$
\lim _{\nu \rightarrow 0^{+}}\left(V_{t} \psi\right)(x)=(2 x)^{-1 / 2} \exp \left\{-\frac{\pi i}{2} k\right\} \int_{\mathbb{R}} \exp \left\{i(-1)^{k} x y\right\}(F \psi)(y) d y
$$

where $F=F_{1}$ is the Pourier-Plancherel operator (so $F \psi \in \mathscr{Y} \mathbb{R}$)). Using further $\left(F^{2} \psi\right)(x)=\psi(-x)$ for k odd, we arrive at (8).

3. The classical Iimitt

As is mentioned in the introduction, we limit ourselves to the case when the initial wave-packets are Gaussian, especially such obtained by shifting the "ground state". We take $\varphi=\varphi_{\mathrm{L}, \alpha, \alpha}$:

$$
\begin{equation*}
\varphi(x)=\left(\pi 1^{2}\right)^{-1 / 4} \exp \left\{-\left(2 L^{2}\right)^{-1}(x-\alpha)^{2}+\frac{1}{Z} x x\right\} \tag{1/a}
\end{equation*}
$$

with L complex, $\operatorname{Re} L^{2} \geqslant 0, I^{-2}=|I|^{-4} R e L^{2}$, and α, \mathcal{H} real. Expectations and dispersions of position and momentum are the following

$$
\begin{align*}
& \langle Q\rangle_{p}=\alpha,\langle P\rangle_{\varphi}=\varkappa, \tag{12}\\
& (\Delta Q\rangle_{p}=2^{-1 / 2} 1, \quad(\Delta P)_{p}=\left.2^{-1 / 2} \nmid \underline{1}| | L\right|^{-2} .
\end{align*}
$$

The propagator referring to arbitrary m and K is obtained from (3) by substitutions $t \rightarrow \frac{K t}{m}, \Omega \rightarrow \frac{m \Omega}{n}$. Applying now Theorem 2 and Proposition 4 of $[t]^{\text {mith thts modification, we obtain }}$ $\left(v_{t} \varphi\right)(x)=\left(\pi 1^{2}\right)^{-1 / 4}\left(\cos \Omega t+i \Lambda^{2} L^{-2} \sin \Omega t\right)^{-1 / 2} \exp \left\{-1\left(2 \Lambda^{2}\right)^{-1}\right.$. - $\frac{\sin \Omega t-1 \Lambda^{2} L^{-2} \cos \Omega t}{\cos \Omega t+1 \Lambda^{2} L^{-2} \sin \Omega t}\left[x^{2}-2 x z \Lambda^{2}\left(\sin \Omega t-i \Lambda^{2} L^{-2} \cos \Omega t\right)^{-1}+(13 a)\right.$ $\left.\left.+\Lambda^{4} z^{2}\left(\sin \Omega t-1 \Lambda^{2} L^{-2} \cos \Omega t\right)^{-1} \sin \Omega t\right]-\frac{1}{2} \alpha^{2} L^{-2}\right\}$, where $\Lambda^{2}=\frac{M}{M \Omega}$ and $z=\mu K^{-1}-1 \alpha L^{-2}$. Further we choose L ae follows

$$
\begin{equation*}
L^{2}=\Lambda^{2}=\frac{k}{m \Omega}, \tag{11b}
\end{equation*}
$$

and denote as above $\Omega=\omega-i \nu$, then (13a) can be simplified into the form

$$
\begin{align*}
\left(V_{t} \varphi\right)(x)= & \left(\pi \lambda^{2}\right)^{-1 / 4} \exp \left\{-\frac{1}{2} \Omega t-\frac{1}{2} \Lambda^{-2}\left[x-\left(\alpha+\frac{1}{H} \not \Lambda^{2}\right) e^{-i \Omega t}\right]^{2}+\right. \\
& \left.+\frac{1}{2} \Lambda^{-2}\left(\alpha+\frac{1}{\Pi} \mu \Lambda^{2}\right)^{2} e^{-i \Omega t} \cos \Omega t-\frac{1}{2} \alpha^{2} \Lambda^{-2}\right\}, \tag{13b}
\end{align*}
$$

where $\lambda^{2}=\frac{h}{m \omega}$. The probability density is given by

$$
\begin{equation*}
\left|\left(\nabla_{t} \varphi\right)(x)\right|^{2}=\left(\pi \Lambda^{2}\right)^{-1 / 2} \exp \left\{-\nu t-\Lambda^{-2}\left(x-x_{0}(t)\right)^{2}+y(t)\right\} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{0}(t)=\left[\alpha \cos \omega t+(m \omega)^{-1}(\mathscr{H}-m \alpha \nu) \sin \omega t\right] e^{-\nu t} \tag{15}
\end{equation*}
$$

and
with

$$
\begin{gathered}
y(t)=\frac{1}{2} \gamma^{2} \lambda^{-2}-\frac{1}{2} \lambda^{-2}\left[\left(\beta^{2}-\gamma^{2}\right) \cos 2 \omega t+\frac{\nu}{\omega}\left(\alpha^{2}-\gamma^{2}\right) \text { sin } 2 \omega t-\right. \\
\left.-\alpha^{2}-\beta^{2}\right] e^{-2 \nu t}
\end{gathered}
$$

$$
\beta=(m \omega)^{-1}(\chi-m \alpha \nu), \quad \gamma^{-1}=m|\Omega| x^{-1}
$$

Thus we have obtained the Gaussian-shaped function with the following properties :
(1) height of the peak decreases with time, for lerge t approximately as $e^{-\nu t}$,
(ii) its width λ does not change, it is negligible in the classical limit when $\alpha^{2}+\beta^{2} \gg \Lambda^{2}$,
(iji) the peak travels along $x=x_{0}(t)$ which is the trajectory of the classical damped oscillator with the initial position $x_{0}(0)=\alpha$, however, the corresponding initial momentum is $\dot{x}_{0}(0)=f-2 m \alpha \nu$ instead of α. Denoting $x_{0}($.$) the$ trajectory of CDO with initial conditions (α, x), we have $x_{c}(t)-x_{0}(t)=2 \alpha \nu \omega^{-1} e^{-\nu t}$ sin ωt so that the difference is negligible in the case of weak damping, $\nu \ll \omega$.

4. The point spectrum of H

We put again $k=m=1$, then $\sigma_{p}(H)$ is of the following form :
Proposition 2 : Let $d=1, \Omega=山-i \nu$, then $H \psi_{n}=\lambda_{n} \psi_{n}$ with
$\psi_{n}(x)=F_{n n}^{-1 / 2} H_{n}(\sqrt{\Omega} x) \exp \left(-\frac{1}{2} \Omega x^{2}\right)$,
$n=0,1,2, \ldots$, where H_{n} are Hermite polynomiala, and
$\lambda_{n}=\Omega\left(n+\frac{1}{2}\right)$.
In general, the eigenvectors are not orthonormal: $\left(\psi_{n}, \psi_{m}\right)=$

$N_{n, n+2 \mathbf{s + 1}}=0$,
$N_{n, n+2 s}=(\pi / \omega)^{1 / 2} \frac{n!(n+2 s)!}{(n+s)!} \omega^{-(n+s)}|\Omega|^{n} \Omega^{s}$. - $\sum_{k=0}^{\left[\frac{n}{2}\right]}\left[\begin{array}{l}{\left[\frac{n}{2}\right]+8} \\ \sum_{=0} \\ (-1)^{k+1}\binom{2(n+8-k-1)}{n-2 k}\binom{k+1}{k}\binom{n+8}{k+1} \omega^{k+1}(\bar{\Omega})^{-k} \Omega^{-1}, ~\end{array}\right.$
with $s=0,1,2, \ldots$, and [.] denotes the entire part.
Proof : By straightforward computation.
In conclusion, let us make some remarks. It is easy to see that $P=\left\{\psi_{n}\right\}_{n=0}^{\infty}$ is complete in $L^{2}(\mathbb{R})$ so that for $\Lambda \neq \lambda_{n}$, $n=0,1,2, \ldots$, the set $(H-\lambda) P_{1 i n}=P_{\text {in }}$ is dense and H has no residual spectrum. The problem of absence of continuous spectrum will be considered separately. Proposition 2 determines, of course, also $G_{p}(H)$ for the multidimensional oscillator in the case when $\Omega^{2}=2(A-i n)$ can be diagonalized. Moreover, some resulte remain true even if A, W are not simultaneously diagonalizable. For inatance, one can check easily that the "ground state" vector

$$
\psi_{0}(x)=\pi^{-d / 4}(\operatorname{det}(\operatorname{Re} \Omega))^{1 / 4} \exp \left(-\frac{1}{2} x \cdot \Omega x\right)
$$

corresponds to the eigenvalue $\frac{1}{2} \operatorname{Tr} \Omega$ for any A, W which obey assumptions of Theorems 1,2 of [1] ; notice that it is not a minimum-uncertainity state - cf.(12).

References

1 Exner,P., JINR E2-81-608, Dubna 1981.
2 Blank,J., Exner, P. and Havl£Cek,M., Ozech.J.Phye.1979, v.B29, pp.1325-1341.
3 Combe, P. et al., Rep.Math. Phys.1978, v.13, pp.279-294.
4 Horváthy, P.A., Int.J.Theor.Phys.1979, v.18, pp.245-250.
5 Haase, R.W., J.Math. Phys.1975, v.16, pp. 2005-2011.
6 Dekker,H., Phys.Lett.1980, マ.80A, pp. 369-371.
7 Brinati,J.R. and Mizrahi,S.S., J. Math.Phys.1980, V.21, pp.2154-2158.
8 Englert, B.-G., Ann. Phys.1980, v.129, pp.1-21.
9 Okubo,S. Preprint UR-763, University of Rochester, 1980.

Received by Publighing Department on September 221981.

