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1 • lntrodu.ction 

In the first part of this paper [1] , we applied the peeu.do­

Hamiltonian approach~] to the case of multidiaeneional daaped 

harmonic oscillator. We set 

1 H =- 2t1 + x.(A-iW)x (1) 

where A,W are strictly poe1t1Te .atricee. By Lie-Trotter forau­

la, we found explicitlJ the continuou.e contractive eeaigroup vt~ 

exp(-1Ht) : 

(Vtf')(X) = J Gt(x,y) )"(;f)~ t ,.0 
lid 

(2) 

for an arb! trary 'f e L 2 (lid) , where 

-d/2 -1 -1/2 {1 r. 
(2:t1) (det(.ll o1n.Qt)) oxp 2 Lx. (.Qctg.Qt)x + 

+ 1• (.12 ctg 12 t)y] - 17. (.Qcooec .llt )x J 0) 

and 

il = -(A -1'1') 
112 (4) 

In the pre•ent paper,we atu.d7 properties of the aboTe solution. 

For the sake of siaplicitJ, the dieouaaion is liaited ea~entiallJ 

to tbe one-d1aene1oaal caee. 
The first problem concerna the non-da.ped limit : we show 

tbat it giTes correct Pe~ propagator 1nclud1mg the pbaae fac-
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tor[3,4] ; thus we find in the present case an alternative and ve­
ry natural way of finding Maslov correction. Purther we shall die­
cuss the classical limit. Let ue notice that comparing to common 
praotice[5-9J we did not obtain the pseudo-Hamiltonian (1) by soae 
kind of quantization of the classical damped oscillator (CDC). 
According to our opinion, such an approach makes sense only if 
there is a reasonable similarity between the classical and quantum 
mechanisms of damping. In general, this is not the case ; thus the­
re is no a priori reason why should the classical limit reproduce 
the exact behaviour of CDO. We shall illustrate it on an example: 
for our damped oscillator and special Gaussian wavepackets, the 
classical limit gives trajectories of CDO (with linear damping), 
but corresponding to changed initial conditions ; the difference 
vanishes in the weak-damping limit. Finally, we shall find the 
point spectrum of H , which is of the form of the undamped-oscil­
lator spectrum rotated around the origin to the lower complex 
halfplane. The eigenvectors, however, are not longer orthogonal 
because H is not normal. 

2. The non-daaped limit and Kaslov correction 

It is known that Peynman~s propagator formula for the non­
damped harmonic oscillator must be corrected by jumps in phase 
at every half-period : 

Kt(x,y) • K~(x,y)M(t) 
(5) 

where 

(2tl)-1/2( ... )1/2•"1'{ 
I sin <uti 2 

+y~coswt-2xy]J, 

~(x,y) • 

(5a) 

M(t) • oxp{- "i Ent ~t} ( 5b) 

i.t t "" ~ kt- (we assume m: )l = 1 ) and 

(6) 
if t ., in (see [4] for further references). Ye shall show that 
KaaloV correction (5b) emerges naturally in non-damped li•it or the above results 
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l?roposi tion 1 : Let d = 1 and !1. = {()- i )I 

_Then, if GUt f k:rc , k=0,1,2, ••• , and 

pact support, we have 

positive. 

has a com-

lim (Vtf)(X) = j ~(x,y) f(y) dy 
-.l-.0+ IR 

On the other hand, it holds 

lim (Vt1p)(x) = exp{- ~i \"f'<<-t)kx) 
\)+Q+ 

for t=kll/w and 1f€.J"(R) • 

(7) 

(8) 

Proof : Let w t = ,k:Jl' and consider ( 2), ( 3) with d = 1 and J2 = 

= w-iv We denote 

hx(y) = expf 
2 

iQ <icoe.l!t -2xy)} 
l sin J2t 

then 

{ 
Wvt ~ 2 sin t...>t 

= exp 2 (y cos wt - 2 x:y ch vt )---
2lsinJ2tl ' t.Jt 

2 shvt]} -(y chyt -2xycoswt)~ 

eo that 

and therefore the dominated convergence theorem can be applied 

if ~ has a compact support. It implies 

where gY(t)::arg(.n/ainJlt), i.e., 

f K~(x,y) f(Y) dy, 
R 

gtl(t) = arctg(th )o)t ctg wt)- arctg~ - k~ 

(9) 

(lOa) 

:for k.1t < wt < (k+1 ).1l • The term -kn is chosen so that the rhs 

is continuous in the pointe t :o: k9t/.:.; and tends to zero with 

t -+ 0+ which certainly must be true for gv • It is easy to see 

that g~ is decreasing ; ita shape for three values of Y/AJ 

is sketched on the Figure. For fixed t, (lOa) gives 
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-Tr 

-2Tf 

9,( t l 

~ = { 0,1 
0,01 

Fig. The function g" • 

lim. gl)(t) = -lr:!ll' for kJr < 4.lt < (k+l ).l" ••O+ 
this relation together with {5b) and (9) gives (7). 

(lOb) 

Let now in turn 4.:1 t = b • We take "f£ .J'(Il) and express 
(Vt'f)(x) from Propoeition 6 ot [I] • Since 
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the do~nated convergence theorem can be again applied which gives 

where :P • P1 
Using further 

is the Fourier-Plancherel 

(FZyJ(x) = ~(-x) for k 

3. The classical limit 

operator (so F'f~,Y(Ii) ) • 

odd, we arrive at (8). 

• 
As is mentioned in the introduotion,we limit ourselves to the 

case when the initial wave-packets are Gaussian, especially such 

ol;ltained by shifting the "ground state". We take !fl :: lfL,O(,df : 

( t ta) 

with L complex, Re L2 ~o, 1-2 :: !Lt-4Re L2 , and OC,J( real. 

Expectations and dispersions of position and momentum are the 

following 

(Q>,. "" • (p~ = :X 

(6QJr = 2-t/2 1 <oPlr = 2-t/2 )! 1 1 Li-2 
( t 2) 

The propagator referring to arbitrary m and ~ is obtained 

from ( 3) by substi tutiona t ~ ~ , .0. ~ 1= . Applying now Theo­

re• 2 and Propoai tion 4 of [1) with this modification, we obtain 

2 -t/4 2 -2 -t/2 ( 2 -t 
(Vtf)(x) • (:>t1 ) (cos.Jlt + 1/1 L s1n,Jlt) expl-1(2~) • 

• s1n.l1t -11\2L-2oos.Jlt [x2- 2xz/\2(s1n.Jlt -1/lh-2cos.Jlt)-t + (13a) 
cos S2t +1A.2L-2sin Jlt 

where A2 "" ~ and 
follows 

-1 2 
z = at;)! - 1 Cl L- • Further we choose L as 

5 



( 11b) 

and denote as above S2 eu -ill , then ( 13a) can be Silltplified 
into the form 

2-1/4 [ i 1 -2[ i 2 -i.!ltJ 2 (Jr~) exp- 2 .llt- 2 A x-(0(+ )13<11 )e + 

< nbJ 1 -2 1 ,2 2 -iJlt .J2 - _21 ~ 2.-2 2 + 2 A (OC + i1 "" ) e coe t ~ " J 

where .>..2 The probability density is given by 

( 14) 

where 

( 1 5) 

and 

'with 

-1 fl= (mw) (;r-moc>) 
-1 -1 t = mi.JliJ( 

Thae we have obtained the Gaussian-shaped function with the follo­wing properties : 

(1) height of the peek decreases with time, for large t appro­ximately as e-~t , 

(11) its width ~ does not change, it is negligible in the clas­
sical limit when tX.

2+ fo 2 >> --' 2 , 
(~) the peak travels along x =x0 (t) which is the trajectory of 

the classical damped oscillator with the initial position 
x0 CO) = x , however, the corresponding initial momentum 
!a .X

0 ( 0) = d(- 2mt:t).) instead of ~ • Denoting x
0 

(. ) the 
trajec~ qf CDO with initial conditions («,~) , we have 
x

0
(t) -x

0
(t) = 2~tY{<.)-l e-vtainwt eo that the difference is 

negligible in the case of weak daaping, .1> <<4.1 
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4. The point spectrum of H 

We pat again ~ = m = 1 , then 5p(H) is of the following 

:form 

Propos! tiop 2 : Let d = 1 , .f2 = o -1V then H1"n = .J..n Y'n with 

( 1 6a) 
'fn(x) = li;d./2 Hn(./iix) exp(-~Jlx2 ) 

n-=0,1,2, •.• , where Hn are Hermite polynomials, and 

-An= Jl(n~~) (16b) 

In general, the eigenvectors are not orthonormal: (~n'o/m) = 
= N - 112N- 1/ 2N , where 

nn mm nm 

Nn,n+2s+1 = 0 

(ll'/wll/2 n!(n+2s)! .,-(n+s)l.llln.J2s . 
Nn,n+2B = (n+s)! 

. ~J ~~·· (-1 ,k•l(2(::~;k-l)W~l) (~:~) .,k·\nfk .ll.-1 
k=O 1:;::0 

with s•0,1,2, ••• , and [.] denotes the entire part. 

1I2£! ; By straightforward computation. • 
In conclusion, let us make some remarks. It is easy to see 

that P = f1fnl:=o is complete in L2(1R) so that for ..A f. .J.n , 

n== 0,1,2, ••• , the set (H-.>.)Plin • Plin is dense and H has 

no residual spectrum. The problem of absence o:f continuous spec­

trum will be considered separately. Proposition 2 determines, of 

course, also ~ (H) for the multidimensional oscillator in the 

case when J22 sp 2(A -iW) can be diagonalized. Moreover, some 

results remain true even i:f A,W are not simultaneously diagona­

lizable. For instance, one can check easily that the "ground sta­

te" vector 

-d/4 1/4 , 
'fu(X) = :)( (det(ReJ1)) exp(-2 x • .l)x) 

corresponds to the eigenvalu.e 1 TrJl for any A,W which obey 

aasumptious of Theorems 1, 2 of [1] ; notice that it is not a 

miniaum-uncertainity state- cf.(12). 
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